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Abstract—In modern online social networks, each user is
typically able to provide a value to indicate how trustworthy
their direct friends are. Inferring such a value of social trust
between any pair of nodes in online social networks is useful
in a wide variety of applications, such as online marketing
and recommendation systems. However, it is challenging to
accurately and efficiently evaluate social trust between a pair of
users in online social networks. Existing works either designed
handcrafted rules that rely on specialized domain knowledge, or
required a significant amount of computation resources, which
affected their scalability.

In recent years, graph convolutional neural networks (GCNs)
have been shown to be powerful in learning on graph data. Their
advantages provide great potential to trust evaluation as social
trust can be represented as graph data. In this paper, we propose
Guardian, a new end-to-end framework that learns latent factors
in social trust with GCNs. Guardian is designed to incorporate
social network structures and trust relationships to estimate
social trust between any two users. Extensive experimental results
demonstrated that Guardian can speedup trust evaluation by up
to 2, 827× with comparable accuracy, as compared to the state-
of-the-art in the literature.

I. INTRODUCTION

Online social networks, such as Facebook, have become a

norm in our social and personal lives. Users routinely share

their opinions and life experiences in these social networks.

The explicit or implicit social relationships established on

these online social networks can be leveraged to market

products and services, or to make recommendations.

However, the inherent nature of online social networks

provides a favorable environment for malicious users to spread

incorrect information, either for financial gains [1] or to in-

crease social influence [2]. Therefore, social trust has become

an important concern in online social networks. In particular,

it is helpful to evaluate the pairwise trust relationship between

two users who are not directly connected within online social

networks. Such estimates of trustworthiness help indicate to

what extent a user could expect someone else to perform given

actions [3].

With the popularity of online social networks and the

importance of social trust, an extensive amount of work

on evaluating pairwise social trust has been reported in the

literature [3]–[8]. For example, OpinionWalk [7] evaluated

trust relationships by performing path searches throughout the

network. Discounting and combining operators are designed to
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model trust propagation and aggregation along network paths.

These hand-crafted rules rely heavily upon the knowledge

of domain experts, and may be difficult to be generalized

to different domains. Liu et al. [8] proposed NeuralWalk, a

framework based on neural networks, to learn trust propaga-

tion and aggregation rules with machine learning techniques.

However, it required a significant amount of computation

resources for its matrix operations, which is not scalable to

real-world online social networks.

Existing trust evaluation approaches were designed based on

the propagative and composable nature of social trust in online

social networks. In particular, the propagative nature of social

trust refers to the fact that trust may be passed from one user to

another, creating chains of social trust that connects two users

who are not explicitly connected [9]. The composable nature

of social trust refers to the fact that trust needs to be aggregated

if several chains of social trust exist [9]. In a nutshell, trust

propagation and aggregation rules are the keys to effectively

evaluate pairwise social trust in online social networks.

In recent years, we have witnessed encouraging develop-

ments in deep graph convolutional neural networks (GCNs)

for graph-structured data [10]–[12]. With graph convolu-

tional neural networks, feature information from local graph

neighborhoods is iteratively aggregated. By stacking multi-

ple convolutions and transformations, local information can

be propagated throughout the entire graph. In online social

networks, social trust can be similarly represented as graph

data, including both social network structures and associated

trust relationships between users. Thus, given their advantages,

excellent opportunities may exist in use the GCNs to capture

trust propagation and aggregation rules for evaluating social

trust relationships between pairs of users.

Yet, evaluating social trust using graph convolutional neural

networks is quite challenging. Online social networks not only

contain the social graph structure (social connections between

users) but also include pairwise social trust relationships. In

this context, the first challenge is how social connections and

associated trust relationships can be represented jointly so that

the propagative nature and composable nature of social trust

are able to be captured simultaneously. In addition, social trust

is typically asymmetric; one user may trust someone else more

than she is trusted back. Therefore, the second challenge is

how to characterize such an asymmetric property in social

trust.

In this paper, we propose to address these challenges in

social trust evaluation based on graph convolutional neural net-



works. More specifically, we aim to effectively and efficiently

estimate the value of trustworthiness between any two users

who are not explicitly connected, given the social network

structure and associated trust relationships between users.

For this purpose, we propose an end-to-end framework that

stacks multiple trust convolutional layers, which is designed to

discover hidden and predictive latent factors of trust in online

social networks.

The key component of our proposed framework is the trust

convolutional layer, which employs the notion of localized

graph convolutions [10]. It is designed to capture the prop-

agative nature and composable nature of social trust. The

parameters to be learned in each layer are shared across

all users, making the parameter complexity of our proposed

framework independent of the size of the input network graph.

In particular, in order to capture the asymmetric property of

social trust, each of our trust convolutional layers consists of

two components: popularity trust propagation and engagement

trust propagation. The former is used to learn the extent that a

user is trusted by the others, while the latter is for capturing the

willingness that a user trusts the others. Finally, by stacking a

fully-connected layer, Guardian is able to explicitly represent

both popularity trust and engagement trust of individual users

in a collaborative manner. As such, effective pairwise trust

relationships can be established.

Highlights of our original contributions are as follows. First,

we introduce a principled methodology to jointly capture both

social connections and associated trust relationships of the

users within online social networks. Second, we propose a

new approach to jointly characterize the popularity trust and

engagement trust of users so that the asymmetric property

of the social trust can be captured implicitly. Third, we

demonstrate the effectiveness and efficiency of our proposed

framework using two online social networks from different

domains — Advogato and Pretty Good Privacy. Our extensive

array of experiments on benchmarking datasets demonstrated

that Guardian can speedup trust evaluation by up to 2, 827×
with comparable accuracy as compared to NeuralWalk [8], and

increase accuracy by up to 18.8% and 19.8% compared with

Matri [3] and OpinionWalk [7], respectively.

II. PROBLEM SETUP

Throughout this paper, we consider a social trust evaluation

problem in an online social network, which is modeled as a

directed graph, denoted as G = (V, E ,W), where any vertex

u, v ∈ V represent users, and eu→v ∈ E denotes the observed

trust relationships. wu→v measures the trustworthiness of the

trustor-trustee pair 〈u, v〉, where the trustworthiness domain

is typically application-specific. For example, in Epinion1,

w ∈ {Trust, Distrust}, while in Advogato2 and in Pretty-

Good-Privacy3 (PGP), w ∈ {Observer, Apprentice, Journeyer,

Master}. Let W = {〈u, v〉, wu→v|eu→v ∈ E} be the set

of observed trust relationships in the given online social

1https://snap.stanford.edu/data/soc-Epinions1.html
2http://www.trustlet.org/datasets/advogato/
3http://networkrepository.com/arenas pgp.php

TABLE I
NOTATIONS

Notation Descriptions

wu→v the trustworthiness of v from the perspective of u

W the set of observed pairwise trust relationships

|w| the number of trustworthiness types

NO(u) the set of observed trustees

whom u endorses her trust on (out-neighbors of u)

NI(u) the set of observed trustors

who endorse trust on u (in-neighbors of u)

x[u] initial embedding of user u

De the dimension of initial embedding vector

pTr, eTr the popularity trust and the engagement trust

hI [u] the latent factor of the popularity trust

from in-neighbors NI(u) of user u

hO[u] the latent factor of the engagement trust

from out-neighbors NO(u) of user u

h[u] the trust latent factor of user u

h̃u→v the pairwise trustworthiness latent factor

w̃u→v predicted trust relationship

⊗ the concatenation operator of two vectors

⊕ the mean aggregator

σ non-linear activation functions, e.g., tanh(·), softmax(·)

W , b the model parameters (weight matrices and bias) in Guardian

graph. W̃ = {〈u, v〉, w̃u→v|ẽu→v /∈ E} denotes the set of

unobserved/missing trust relationships that are to be evaluated.

Notably, as in most existing online social networks, trust-

worthiness is represented by categorical values. In this context,

the social trust evaluation problem is equivalent to a social trust

prediction problem. We can define |w| to be the total number

of types of trustworthiness, which is application-specific. For

example, in PGP or Advogato, |w| = 4.

Before we formulate the problem of pairwise social trust

evaluation, we introduce some important notations and neces-

sary properties of social trust to facilitate a better understand-

ing of the problem and our solution. For any user u ∈ V , let

NO(u) be the set of observed trustees whom u endorses her

trust on (out-neighbors of u), NI(u) be the set of observed

trustors who endorse trust on u (in-neighbors of u). In this

sense, we can define |NI(u)| and |NO(u)| to represent in-

degree and out-degree of u, respectively. The mathematical

notations used in this paper are summarized in Table I.

In the literature [13], widely used trust properties include

the propagative nature, composable nature, and asymmetric

property. For the sake of clarity, we use an example to

illustrate the properties of social trust, which will also be used

throughout this paper. Fig. 1a shows a social network graph,

where nodes represent users, directional edges denote trust

relationships of the trustor-trustee pairs, and the numbers are

the associated trustworthiness (0 for the lowest trustworthiness

and 3 for the highest trustworthiness).

Fig. 1c illustrates the propagative nature of social trust.

Since user A trusts user B with a trust value of 3 and user

B trusts user C with 2, user A trusts user C with 2. In this



example, A → B → C forms a trust chain for A → C. To

establish a trust relationship for A → E as shown in Fig. 1d,

there exist two trust chains that need to be aggregated. Because

both the trust value for B→ E and D→ E are 1, it is unlikely

for A → E to achieve a high trust value. The asymmetric

property of the social trust can also be illustrated in Fig. 1b:

the trustworthiness of user G from the perspective of user E

(E → G) is different from that of E from G (G → E), even

though they endorse trust explicitly to each other.
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Fig. 1. The property illustrations of social trust: an example.

With the aforementioned notations and definitions, we can

now formally define the problem of social trust evaluation (or

prediction). Given an online social network G = (V, E ,W),
the social trust evaluation problem aims to evaluate (or predict)

the trustworthiness of the trustor-trustee pair w̃u→v , where

u, v ∈ V , u 6= v and ẽu→v /∈ E .

III. Guardian: PROPOSED FRAMEWORK

We now present Guardian, our proposed framework for

social trust evaluation, the architecture of which is illustrated

in Fig. 2. There are three components in the framework:

(1) an embedding layer that offers an initialization of user

embeddings; 2) multiple trust convolutional layers that refine

the popularity trust embedding and engagement trust embed-

ding by injecting high-order social trust relationships; and

3) a prediction layer that consists of a fully-connected layer

followed by a softmax function. It first transforms the latent

representations of users into the latent factor of trust, and then

outputs the probability of the prediction. In what follows, we

first conceptually discuss the efficiency and effectiveness of

our proposed framework, and then discuss more influential

factors for social trust evaluation and limitations of our frame-

work.

A. Embedding Layer

With the recent emergence of representation learning, the

network embedding technique has been extensively studied to
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Fig. 2. Illustration of Guardian framework.

discover and encode network structural properties into a low-

dimensional latent space. More formally, network embedding

learns a representation vector x[u] ∈ RDe×1 for each user u
in the network graph G. In Guardian, we use a pre-trained

embedding layer to map each user into a De-dimensional

representation. It is worth noting that these representations

serve as an initial state for user embeddings, to be optimized in

an end-to-end fashion. In Guardian, we refine the embeddings

by propagating them along the online social network graph.

With a specially designed transformation layer, these refined

user embeddings can be transformed into pairwise trustor-

trustee embeddings for trustworthiness prediction.

B. Trust Convolutional Layers

As an online social network graph contains not only social

connections between users but also trust interactions between

the trustors and the trustees, we provide a principled approach

to jointly capture the social connections and associated trust

relationships for learning the embeddings h[u] of the users.

In particular, due to the asymmetric property of social trust,

a user can assume different roles, either as a trustor or a

trustee. To be able to capture the asymmetric property of social

trust, we first separate pairwise trust interactions into two

groups: popularity interactions and engagement interactions.



Popularity-based interactions refer to the trustworthiness of a

user as observed by the others. In this sense, the more a user

is trusted by the others, the more popularity-based trust this

user gains. Similarly, engagement-based interactions refer to

the trustworthiness of the others from a user’s perspective. The

popularity trust indicates the extent that a user is trusted by

the others, while the engagement trust reveals the willingness

that a user trusts the others.

In what follows, we consider two types of trust aggregation

to characterize the popularity trust and engagement trust,

represented as hI [u] and hO[u], respectively. For each of

them, we use mean-aggregator to aggregate its associated

trust interactions with its neighbors. It is worth mentioning

that, mean-aggregator is the main operation of aggregating

information from local graph neighborhoods [10], [11].

Let’s see an example in our example social network graph,

originally shown in Fig. 1a. With our trust model, the popular-

ity interactions of user A and E are depicted in green in Fig. 3,

while the engagement interactions are shown in blue. More

specifically, for user E, there are four incoming neighbors, all

of which have a trust value of 1. The popularity trust of E is,

therefore, 1 by averaging over its incoming trust relationships,

and the engagement trust of E is 3. Similarly, the popularity

trust of A is 2, as there is only one incoming neighbor with

trust value 2, while its engagement trust is 3, averaging over

its two outgoing trust relationships.
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Fig. 3. The popularity trust and the engagement trust: an example.

Popularity Trust Propagation (pTr). Intuitively, the in-

coming social connections and associated trust relationships

provide direct evidence on the popularity trust of a user in

online social networks. We build upon this basis to propagate

the popularity trust between connected users.

In particular, to model categorical trustworthiness, we first

use one-hot encoding to represent each type of trustworthiness.

Taking the Advogato dataset as an example, for trustworthiness

wu→v ∈ {Observer, Apprentice, Journeyer, Master}, we model

them as the following one-hot representations: [0, 0, 0, 1]T ,

[0, 0, 1, 0]T , [0, 1, 0, 0]T , and [1, 0, 0, 0]T . Then Guardian em-

ploys a linear transformation to convert the one-hot encodings

into dense vector embeddings through Eq. (1) and Eq. (4). For

a trust relationship with trustworthiness wu←v (u is being a

trustee in this trust relationship), we model the popularity trust

of u as observed by v with a combination of v’s embedding

x[v] and the embedding of associated trustworthiness ewu←v
.

ewu←v
= Wu←v · wu←v (1)

pTru←v = x[v]⊗ ewu←v
(2)

where Wu←v ∈ R
De×D|w| is a trainable transformation

matrix, ⊗ denotes the concatenation operation between two

vectors, and |w| denotes the number of trustworthiness types.

We now take the element-wise mean of the vectors in

{pTru←v, ∀v ∈ NI(u)}. This mean-based aggregator is a

linear approximation of a localized spectral convolution [11],

as the following function:

hI [u] =
1

NI(u)
·

∑

v∈NI(u)

pTru←v (3)

Engagement Trust Propagation (eTr). Accordingly, we char-

acterize the engagement trust of a user through its outgoing

social connections and associated trust relationships. We build

upon this basis to perform the propagation and aggregation

of engagement trust between the connected users. Thus, the

engagement trust of user u can be captured by the following

functions:

ewu→v
= Wu→v · wu→v (4)

eTru→v = x[v]⊗ ewu→v
(5)

hO[u] =
1

NO(u)
·

∑

v∈NO(u)

eTru→v (6)

where eTru→v denotes the involvement trust of the user u
to user v in online social networks.

Learning Trust Latent Factors of Users. In order to learn

better latent factors of users for downstream trustworthiness

prediction, the popularity trust and engagement trust are

needed to be considered jointly. Here, we propose to combine

these two types of trust through a standard fully connected

(FC) layer, where hI [u] and hO[u] are concatenated before

feeding into the FC. Formally, the latent factor of user u, h[u],
can be characterized as follows:

h[u] = σ(W · (hI [u]⊗ hO[u]) + b) (7)

where W is a trainable transformation matrix, b is a learnable

bias, and σ denotes the non-linear activation function.

Higher-order Trust Propagation. By stacking l trust con-

volutional layers, a user is capable of receiving the social trust

(the popularity trust and engagement trust) propagated from its

l-hop neighbors. In the l-th step, the representation of user u
is recursively formulated as Eq. (8) - Eq. (12):

pTrlu←v = hl−1[v]⊗ {W l
u←v · wu←v} (8)

eTrlu→v = hl−1[v]⊗ {W l
u→v · wu→v} (9)

hl
I [u] =

1

NI(u)
·

∑

v∈NI(u)

pTrlu←v (10)



hl
O[u] =

1

NO(u)
·

∑

v∈NO(u)

eTrlu→v (11)

hl[u] = σ(W l · (hl
I [u]⊗ hl

O[u]) + bl) (12)

where h0[u] = x[u] is the pre-trained embedding of user

u obtained in the embedding layer, wu→v and wu←v are

the observed trust relationships, and W l
u←v , W l

u→v , W l, and

bl are the model trainable parameters, to be optimized in

an end-to-end fashion with Guardian. Note that, by stacking

multiple trust convolutional layers, we not only enrich the

initial user embedding with its propagated popularity trust

and engagement trust in online social networks, but also allow

controlling the range of trust propagation by adjusting l.

C. Prediction Layer

In order to learn the latent factor of trust relationship, we

first concatenate the latent embeddings of the trustor and

the trustee, and then fit them to a standard fully-connected

(FC) layer followed by a softmax layer. Formally, the latent

representation of the trustor-trustee pair is formulated as

Eq. (13), where Wfc is a trainable weight matrix defined

in the FC layer, and σ is the softmax function, defined as

softmax(xi) =
exp (xi)

Z
with Z =

∑
i exp (xi).

h̃u→v = σ(Wfc · (h[u]⊗ h[v])) (13)

The advantage of using concatenation lies in its simplicity

and expressiveness, which have been shown in a recent work of

graph convolutional neural networks [10]. In addition, the fully

connected layer leads to a more effective representation of a

trust relationship for prediction, as this step explicitly injects

the popularity trust and the engagement trust of individual

users in a collaborative fashion. The outcome of this step

is the probabilistic prediction values of the trustworthiness.

As a consequence, the trustworthiness of user v from the

perspective of user u is computed as w̃u→v = argmax
j

(h̃u→v).

Note that w̃u→v 6= w̃v→u, due to the asymmetric property of

social trust in online social networks. The detailed forward

propagation algorithm of Guardian is shown as procedure

Guardian.

D. Model Training

To learn the model parameters in Guardian, we define

the objective function as the cross-entropy loss between the

predicted values and the ground-truth trustworthiness from the

observed set W . Formally, it is formulated as:

L = −
1

|W|

∑

(〈u,v〉,wu→v)∈W

log h̃u→v,wu→v
+ λ · ||Θ||22 (14)

where W = {〈u, v〉, wu→v} is the set of ob-

served trustor-trustee pairs and associated trust relationships,

Θ = {{W l
u←v,W

l
u→v,W

l, bl}Ll=1,Wfc} denotes all train-

able model parameters, and λ controls the L2 regulariza-

tion strength to prevent over-fitting. In particular, we adopt

Adam [14] as the optimizer in our implementation, as it has

been shown to be effective in updating the model parame-

ters [10].

1: procedure Guardian: TRUST RELATIONSHIP PREDIC-

TION (I.E, FORWARD PROPAGATION)

2: Generate initial states of user embeddings for G
3: h0[u]← x[u], for all u ∈ V

⊲ Trust latent factors of observed users

4: for all u ∈ V do

5: for l = 1 · · ·L do

⊲ Popularity Trust

6: hl
I [u] =

1
NI(u)

·
∑

i∈NI(u)
pTrlu←i

⊲ Engagement Trust

7: hl
O[u] =

1
NO(u) ·

∑
i∈NO(u) eTrlu→i

8: hl[u] = σ(W l · (hl
I [u]⊗ hl

O[u]) + bl)

⊲ Trust relationship prediction vector

9: for all 〈u, v〉 ∈ W do

10: h[u]← hL[u]
11: h[v]← hL[v]
12: h̃u→v = σ(Wfc · (h[u]⊗ h[v]))

E. Analysis and Discussions

Different from the state-of-the-art trust evaluation solutions

in the literature [7], [8], our framework does not have any

assumptions on the existence of paths between the trustor

and the trustee while we compute the pairwise trustworthiness

values. This reflects the real-world situation where some of

the users are new in the society and may not have any

social connections with the other users. However, these newly

added users are still able to trust the existing users who have

a significant popularity trust (e.g., the authenticated/official

users) to some extent. Surprisingly, our proposed framework

can still achieve the best prediction accuracy even if we do

not make any assumptions, which, as shown in Sec. IV, can

be empirically verified later.

The key computational operations of our framework are

the notion of localized graph convolutions [10]. To be able

to implicitly capture the asymmetric property of social trust,

each trust convolutional layer learns how to aggregate the

popularity trust and engagement trust of users from a small

graph neighborhood in the social graph. By applying multiple

trust convolutional layers that aggregate the trust information

from the local neighborhood of users, our approach can obtain

the popularity trust and engagement trust of users from their

local network topology.

It is worth mentioning that parameters of our proposed trust

convolutional layers are shared across all users, making the

parameter complexity of Guardian independent of the input

graph size. Sec. IV empirically verified the efficiency and

scalability of our framework. In addition, as Guardian is an

inductive learning model, it is able to estimate the pairwise

trustworthiness for users that were not seen during the training

phase. In other words, it does not require any retraining



TABLE II
STATISTICAL DESCRIPTION OF ADVOGATO AND PGP DATASETS.

DATASET # OF NODES # OF EDGES AVG. DEGREE DIAMETER

ADVOGATO 6, 541 51, 127 19.2 4.82

PGP 38, 546 317, 979 16.5 7.7

process as the pre-trained parameters can be used for inference

for the unseen users.

Incorporating context-aware features. Except for the social

network graph and associated trust interactions, context is also

an important influential factor for social trust evaluation [15].

In different contexts, trust relationships are typically different.

For example, user A trusts user B for movie recommenda-

tions, while A may not trust B for restaurant recommenda-

tions. Movies and restaurants here represent different contexts.

Therefore, it is crucial to distinguish between the different

contexts of trust. Our framework can be readily extended to

incorporate such context-aware features to further improve

prediction accuracy, e.g, concatenating context features and

graph structure embedding as the initial representation of a

user.

Limitations. One important property of the social trust is

that it is dynamic. More precisely, social trust can increase or

decrease with new interactions and observations. It may also

decay with time. A more recent interaction or observation may

be more important than those that have happened earlier. It is

intriguing to find out how our proposed framework responds

to dynamics in social trust relationships, which will be left as

our future work.

IV. EXPERIMENTAL RESULTS

A. Description of Datasets Used

In our experiments, we choose two widely used, real-world

and benchmarking datasets for performance comparisons of

different trust evaluation models [8]. The first dataset is

Advogato, which is an online social network for open source

developers. To allow users to certify each other, this network

provides four different levels of trustworthiness. More specif-

ically, the types of trustworthiness are {Observer, Apprentice,

Journeyer, Master}.
The second dataset is Pretty-Good-Privacy (PGP), an en-

cryption program that provides cryptographic privacy and

authentication for data communication by adopting the concept

of “web of trust.” Similarly, the web of trust in PGP dataset

contains four different levels of trustworthiness. The statistics

of these two datasets are presented in Table II.

B. Experimental Settings

Baselines for comparisons. To demonstrate the effective-

ness, we compared Guardian, our proposed framework against

three groups of methods including traditional walk-based

approach, matrix factorization-based approach, and deep neu-

ral network-based approach. For each group, we selected a

representative baseline and below we will detail them. All

experiments run 20 times to ensure statistical significance.

OpinionWalk [7]: This approach modeled the pairwise

trustworthiness using statistical distributions in three-valued

subjective logic. In order to establish a trust relationship

between two indirectly connected users, it walked throughout

the network in a breadth-first search manner. In particular, trust

propagation and aggregation along the social paths were mod-

eled with its predefined discounting and combining operators.

Matri [3]: This methodology was proposed to combine

trust tendency and trust propagation under a collective matrix

factorization framework. Under this framework, the trustor and

trustee are mapped into a joint latent space. The trustworthi-

ness of each trustor-trustee pair is modeled as the similarity

(measured by the inner product of two vectors) between the

latent vector of the trustor and the latent factor of the trustee

in the learned latent space.

NeuralWalk [8]: This model was the state-of-the-art trust

evaluation solution in the literature, in terms of its prediction

accuracy. Its core is to learn single-hop trust propagation and

aggregation rules with a neural network architecture, WalkNet.

By iteratively executing the learning process of WalkNet

multiple times, NeuralWalk is able to evaluate multi-hop social

trust within online social networks.

Evaluation metrics. In order to evaluate the effectiveness of

our proposed framework, two popular metrics were adopted

to evaluate the prediction accuracy, including F1-score and

Mean Absolute Error (MAE). All results are reported based

on the results of 20 runs. Note that, larger values of F1-score,

smaller values of MAE indicate better prediction accuracy.

A small improvement in these evaluation metrics implies a

significant influence on the quality of prediction. For efficiency

and scalability, we used the average wall-clock time over 20
runs.

All the experiments were performed on a machine with

Intel Core i7-9700K 8-core 3.6GHz CPU, 32GB RAM, 500GB

SSD, and GeForce GTX 1660 Ti GPU.

Data preprocessing. We followed the data preprocessing as

reported in NeuralWalk [8]. Specifically, as OpinionWalk is

deductive, there is no need to separate the datasets for training

and inference. Instead, we randomly selected 1, 000 trustor-

trustee pairs for each dataset to statistically compare Opin-

ionWalk with our framework. As for Matri, NeuralWalk, and

Guardian, we randomly split each dataset into two portions:

80% of the trustor-trustee pairs to constitute the training set,

and the remaining 20% as the test set. More precisely, the 20%
of trustor-trustee pairs were removed from the network graph

to compose the training set.

OpinionWalk [7] and Matri [3] mapped four trustworthiness

levels into scalar values, aka {Observer: 0.1, Apprentice:

0.4, Journeyer: 0.7, Master: 0.9}, and they used MAE as

their performance metric. Similarly, to be comparable, we did

the same mapping for NeuralWalk and Guardian (both are

categorical classifiers) to obtain the model MAE. Regarding

F1-score, the outputs of OpinionWalk and Matri were rounded



TABLE III
PREDICTION ACCURACY ON ADVOGATO

APPROACHES F1-SCORE MAE

Guardian 74.3% 0.082

NEURALWALK 74.0% 0.081

OPINIONWALK 64.3% 0.228

MATRI 65.6% 0.127

to the nearest categorical values, aka {Observer: 0, Apprentice:

1, Journeyer: 2, Master: 3}.
As illustrated in Sec. III, to model categorical trustwor-

thiness, we used one-hot encoding to represent each type

of trustworthiness. As the benchmark datasets we used all

contain four different types of trustworthiness, we transformed

{Observer, Apprentice, Journeyer, Master} as following one-

hot representations: {[0, 0, 0, 1]T , [0, 0, 1, 0]T , [0, 1, 0, 0]T , and

[1, 0, 0, 0]T }. Note that, our framework can be readily gen-

eralized to any application domains containing an arbitrary

number of trustworthiness levels.

Parameter settings. We implemented our proposed frame-

work in Pytorch4. node2vec [16] was used to generate the

initial embeddings for each user5. The embedding dimension

was fixed to 128 for all datasets. In terms of hyperparameters,

we applied a grid search for hyperparameters: the learning rate

was tuned amongst {0.001, 0.005, 0.01, 0.05}, the coefficient

of L2 normalization was searched in {10−5, 10−4}, and the

dropout ratio was in {0.0, 0.1, . . . , 0.8}. We used the Xavier

initializer [17] to initialize the model parameters. In addition,

early stopping strategy was performed, i.e., premature stopping

if training loss does not increase for 10 successive epochs.

Without specification, we report the results of three trust

propagation layers [32, 64, 32], learning rate of 0.01, dropout

ratio of 0.0 and normalization coefficient of 10−5. The detailed

parameter settings for OpinionWalk, NeuralWalk, and Matri

refer to [3], [7], [8], respectively.

C. Performance Comparisons

Effectiveness. The Advogato dataset is used to evaluate the

performance of different approaches. The results are reported

in Table III. Guardian offers the best F1-score with 0.3%
improvement on NeuralWalk — the state-of-the-art solution

— and even higher improvement on Matri, about 8.7%. As F1-

score is scaled between 0 and 1, the increases in performance

are significant. In terms of MAE, NeuralWalk and Guardian

achieved approximately the same prediction accuracy, which

implies the powerful learning capability of machine learning

techniques.

To test that Guardian does not rely on datasets, we also

evaluated our framework on PGP. We were not able to report

4https://pytorch.org
5As the benchmarking datasets do not contain context information, we

do not consider context-aware feature in our experiments.

TABLE IV
PREDICTION ACCURACY ON PGP

APPROACHES F1-SCORE MAE

Guardian 87.1% 0.083

NEURALWALK − −

OPINIONWALK 67.3% 0.249

MATRI 68.3% 0.122

the performance of NeuralWalk on PGP, as it ran out of the

memory after one out of three iterations on our machine. As

shown in Table IV, Guardian consistently offers the best F1-

score by increasing the accuracy 18.8% for Matri and 19.8%
for OpinionWalk. The results reported successfully verify that

our proposed trust convolutional layers are able to characterize

the trust latent factors of users to establish effective social trust.

Matri was not able to offer comparable performance on

two datasets, which indicates that either the collected matrix

for factorization or the inner product in the learned latent

space of users may not be sufficient to capture the complex

relations among the trustors and trustees. We also observed

that OpinionWalk achieved the worst performance on both

datasets, which shows that the path-search manner or the

predefined trust propagation and aggregation rules may not

be effective to provide accurate estimations.

Efficiency. For efficiency comparisons, we evaluated differ-

ent approaches on the same machine as listed above. Because

OpinionWalk is a deductive method - evaluating one trustor-

trustee pair at a time, it does not generate any model param-

eters/user latent space for new trustor-trustee pair evaluation.

In other words, the time for trust evaluation increases linearly

with the number of trustor-trustee pairs to be evaluated. As

such, we report the average runtime for evaluating 1, 000
trustor-trustee pairs in Fig. 4 but exclude this method from

the following discussions.
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Fig. 4. Wall-clock time on Advogato and PGP6.



TABLE V
TRAINING AND INFERENCE TIME (ON THE FULL TEST SET)

PROCESS APPROACH ADVOGATO PGP

TRAINING TIME (S)

Guardian 28.580 304.370

MATRI 176.395 1, 593.285

INFERENCE TIME (S)

Guardian 0.102 0.583

MATRI 0.008 0.044

We compared the total runtime of three approaches (Matri,

NeuralWalk and Guardian) and the results are also shown

in Fig. 4. It is worth noting that Guardian consistently

outperforms all other baselines on all datasets. In particu-

lar, Guardian shortens the processing time significantly on

NeuralWalk by 2, 827×. Note that, when we run NeuralWalk

on PGP, running one of three iterations has already cost us

around 52 hours before it ran out of memory. Comparing

to Matri, Guardian is 6.17× and 5.23× faster on Advogato

and PGP respectively. It demonstrates that our proposed trust

convolutional layer greatly speeds up trust evaluation process

in online social networks and shows its promising that can be

applied to large-scale network applications.

To enhance the understanding of the time cost for train-

ing7and inference respectively, we measured the time used

for these two processes separately on both datasets. Table V

summarizes the training and inference time for different ap-

proaches. As reported, Guardian is 6.17× faster than Matri

on the training phase, which shows the total time cost of

Matri mainly comes from its matrix factorization phase. We

also noticed that our framework bears longer inference time

as compared with Matri. However, Matri can not evaluate

the trust relationship for users that were not seen during the

learning phase, while our proposed Guardian is an inductive

model that can be generalized to unseen users. Therefore, a

retraining of the dataset is needed for newly added users for

Matri. Guardian, on the other hand, does not require retraining

because the pre-trained parameters can be saved for later

inference.

Scalability. The scalability of Guardian is evaluated by mea-

suring the wall-clock times with a different number of users

and a different number of trustor-trustee pairs, respectively.

Both of the selected users and pairs are subgraphs from the

main graph of the dataset, and each node in the subgraphs

has at least one edge (no singleton node). We observe that the

results, shown in Fig. 5, are consistent with the complexity

discussions in Sec. III-E.

More specifically, as Fig. 5a and Fig. 5b show, the wall-

clock time of Matri increases sharply with the number of users

while Guardian consistently performs well as the number of

users increases. This is because the parameters of our proposed

6Due to RAM issue, we are not able to reproduce NeuralWalk on PGP
with our machine.
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Fig. 5. Scalability: Guardian vs. Matri.

TABLE VI
ROBUSTNESS WITH DIFFERENT SIZES OF TRAINING SET ON ADVOGATO

APPROACH TRAINING SET(%) F1-SCORE MAE

Guardian

80% 74.3%± 0.4% 0.082± 0.002

60% 72.9%± 0.2% 0.087± 0.001

40% 70.7%± 0.1% 0.094± 0.001

MATRI

80% 65.6%± 0.4% 0.127± 0.001

60% 63.9%± 0.3% 0.132± 0.001

40% 61.7%± 0.3% 0.139± 0.001

trust convolutional layers are shared across all users, making

the parameter complexity of our approach independent of the

number of users. For the increasing number of trustee-trustor

pairs, the time of Matri increases dramatically and shows

similar trends on both datasets, shown in Fig. 5c and Fig. 5d.

It is noteworthy that Guardian consistently performs well on

all benchmarking datasets, indicating that Guardian is more

scalable and can readily be generalized to large-scale network

applications.

Robustness. We evaluated the approaches with different

training and test set ratio to measure their robustness. The

portions of the training set were set as 80%, 60%, 40% of

the entire dataset. Table VI and Table VII show the evaluation

results of both datasets. As reported, Guardian has a minor

performance decrease of 3.6% for Advogato and 1.9% for

7For simplicity, in this paper, we described the factorization phase of
Matri as training phase.



TABLE VII
ROBUSTNESS WITH DIFFERENT SIZES OF TRAINING SET ON PGP

APPROACH TRAINING SET(%) F1-SCORE MAE

Guardian

80% 87.1%± 0.1% 0.083± 0.001

60% 86.5%± 0.1% 0.088± 0.001

40% 85.3%± 0.2% 0.096± 0.001

MATRI

80% 68.3%± 0.7% 0.122± 0.0003

60% 64.7%± 0.1% 0.131± 0.0004

40% 60.5%± 0.1% 0.144± 0.0001

PGP when the size of the training set is reduced to 40% of

the entire graph, while Matri has a decrease of 3.9% and 7.8%,

respectively. This indicates that our proposed framework has

better robustness, with respect to the size of the training set.

Notably, Guardian also consistently offers the best prediction

accuracy, even when the model was trained with 40% training

data as compared to Matri with 80% training data. This

further suggests that proposed convolutional layers are able

to effectively learn social trust relationships.

V. RELATED WORK

In this section, we present and discuss some related works

on pairwise social trust evaluation and recent advancements

in applying convolutional neural networks to graph-structured

data.

A. Pairwise Social Trust Evaluation

Walk-based approaches: In the past decade, most of the

existing trust evaluation models were based on the trust

propagation along the paths from the trustor to the trustee. For

example, ModelTrust [18] and TidalTrust [19] evaluated the

pairwise trustworthiness by searching the paths throughout the

network. The propagated trust from multiple paths, between

the trustor and the trustee, then are aggregated to be the

estimated value of trust. Aiming for higher accurate trust

evaluation, AssessTrust [6] and OpinionWalk [7] modeled the

value of trust using statistical distributions in three-valued

subjective logic. In particular, in order to establish a trust

relationship between two indirectly connected users, Opin-

ionWalk [7] walked throughout the network in a breadth-

first search manner and modeled the trust propagation and

aggregation via its predefined discounting and combining

operators.

Matrix factorization-based approaches: [20] and Matri [3]

are matrix factorization-based approaches, which are pro-

posed to analyze the observed trustworthiness to identify

the unobserved/missing trust relationships. In this category,

the trustor-trustee pairs were analogous to user-item pairs in

a recommender system. In general, the matrix factorization

methods are used to map the trustors and the trustees to a

joint latent factor space, so that the trustworthiness of the

trustor-trustee pairs can be modeled as their inner products in

that space. In particular, Matri [3] was designed to combine

trust tendency and trust propagation under a collective matrix

factorization framework, while [20] further considered the

similarity of users’ trust rating habits. Since these approaches

are inherently transductive, expensive re-training process may

be required to estimate the trust values for users that were not

seen during the training phase.

Neural network-based approach: In contrast to the afore-

mentioned approaches, NeuralWalk [8] was designed to cap-

ture the trust propagation and aggregation rules using machine

learning techniques. The main component of this model is

WalkNet, a neural network architecture, that was designed

to model single-hop trust propagation and aggregation. By

iteratively employing WalkNet, NeuralWalk is capable of

establishing a trust relationship between the trustor and the

trustee, as long as there exists at least one social path from

the trustor to the trustee. Even though NeuralWalk can achieve

state-of-the-art prediction accuracy in the literature, it is highly

inefficient due to the massive matrix operations for training

and test set selection.

B. Graph Convolutional Neural Networks

More recently, graph convolutional neural networks (GCNs)

have been proven to be capable of learning on graph structure

data [10], [11], [21], leading to new state-of-the-art results

on benchmarks such as node classification and link predic-

tion. These GCN-based approaches consistently outperformed

techniques based upon matrix factorization or random walks

(e.g, node2vec [16], Line [22], and DeepWalk [23]).Their

success has led to a surge of interest in applying GCN-based

frameworks to applications ranging from recommendation sys-

tems [12], drug design [24], to social influence prediction [25].

Despite the compelling success achieved by previous work,

little attention has been paid to social trust evaluation with

graph convolutional neural networks. Here we fill this gap and

show the effectiveness and efficiency of graph convolutional

neural networks-based representation learning for social trust

evaluation.

VI. CONCLUSION AND FUTURE WORK

In this paper, we devised a new framework Guardian, to

model social trust for trust evaluation. In this framework, we

explicitly incorporated the popularity trust and engagement

trust into the latent representations of users to learn effective

trust relationships. The key of Guardian is the newly proposed

trust convolutional layer, which is able to jointly capture social

graph structure and associated trust interactions. Extensive

experiments on two real-world datasets have demonstrated

the rationality and effectiveness of our proposed Guardian. In

the meanwhile, it enjoys high efficiency due to the notion of

localized graph convolutions. In the future, we are interested in

improving Guardian by incorporating the attention mechanism

during trust propagation. Moreover, we will investigate the

capability of Guardian to address trust dynamics. It will also

be interesting to incorporate the context-aware information to

further enhance prediction performance.
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