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Abstract—Modern stream processing frameworks, such as Spark Streaming, are designed to support a wide variety of stream

processing applications, such as real-time data analytics in social networks. As the volume of data to be processed increases rapidly,

there is a pressing need for processing them acrossmultiple geo-distributed datacenters. However, these frameworks are not designed

to take limited and varying inter-datacenter bandwidth into account, leading to longer query latencies. In this paper, we present the design

and implementation of an extended Spark Streaming framework to automatically and optimally schedule tasks, select data flow routes

and determinemicro-batch sizes across geo-distributed datacenters in wide-area networks. Tomake these decisions, we propose a

sparsity-regularized ADMMalgorithm to efficiently solve a nonconvex optimization problem, based on readily measurable operating

traces. Toward incremental real-world deployment, we take a non-intrusive approach to support flexible routing of micro-batches by

adding a newDStream transformation we have developed to the existing Spark Streaming framework. As a result, our implementation

can enforce scheduling decisions bymodifying application workflows only.We have deployed our implementation on Amazon EC2with

emulated bandwidth constraints, and our experimental results on various types of queries have demonstrated the effectiveness of our

proposed framework, as compared to the existing Spark Streaming scheduler and other data-locality-based heuristics.

Index Terms—Wide-area networks, spark streaming, routing and batch sizing
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1 INTRODUCTION

MANY types of big data streaming analytics are being
generated, computed and aggregated over the wide

area. A social network, such as Facebook and Twitter, may
need to detect popular keywords in minutes. A search
engine may wish to obtain the number of clicks on a recom-
mended URL once every few seconds. A cloud service oper-
ator may wish to monitor system logs in its distributed
datacenters to detect failures in seconds. In all these stream-
ing analytics, log-like data are generated from all over the
world and are collected at local nodes, datacenters or points
of presence (PoP) first, before being aggregated to a central
site to repeatedly answer a standing query.

Spark Streaming [1] is an extension of Spark that enables
and simplifies the processing of streaming analytics using
micro-batches of data. Spark is built on the concept of Resil-
ient Distributed Datasets (RDDs) [2], where an RDD is
a batch of input data. Similarly, Spark Streaming relies on
the concept of discretized streams (DStreams) for data

abstraction. A DStream is a continuous sequence of RDDs
arriving at different time steps, where each RDD contains a
one-time slice of data in the stream. The length of the time
slice is referred to as the batch size [3]. Spark Streaming per-
forms a transformation on a DStream by applying the same
transformation on each RDD in the DStream. For example,
an operator may wish to compute the word counts in a doc-
ument stream once every five seconds, where the batch size
is 5 seconds. In other words, Spark Streaming is based on a
“micro-batch” architecture, where streaming computation
is carried out as a continuous series of MapReduce opera-
tions on the micro-batches.

While recognizing the significance of Spark Streaming,
one may want to directly apply the Spark Streaming frame-
work to perform streaming analytics over wide-area net-
works. For example, one can first use Spark Streaming
framework to launch amap task at each of the local nodes, so
as to perform partial computation over the streams of data.
After that, a reduce task can be launched at the central loca-
tion, which is responsible for collecting intermediate results
from all the local nodes, performing the remaining computa-
tion, and displaying querying results to analytics users [4].

Needless to say, in this paradigm, resources are typically
limited at the wide-area network that may have highly con-
strained and variable bandwidth [5], [6], [7]. Despite this,
Spark Streaming is not specifically designed to take into
account the significant bandwidth variation on wide area
network (WAN) links. Directly transferring all the collected
data from a source to its central collecting site may not
always be the best choice, if the link bandwidth between
them is limited. In fact, since Spark Streaming needs to pro-
cess all the micro-batches generated at the same timestamp
together, even a bottleneck link at a single data source can
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significantly slow down the overall query response rate.
With delayed responses, the operator may lose the key
opportunity to make decisions based on the query.

In this paper, we extend state-of-the-art batched stream
processing systems, typically represented by Spark Stream-
ing, to operate in wide-area networks, jointly considering
bandwidth-aware batch sizing, task scheduling and routing
of data streams. Note that simple data locality mechanisms,
such as performing reduction or local aggregation at data
sources, are insufficient as a solution in WAN. In order to
increase the query response rate and meet batch processing
deadlines, the system must address the following chal-
lenges: (1) selecting a fast path to route the DStream from
each source to its collecting site and avoid bottleneck links,
where the fastest path is not necessarily the direct route but
might be a detoured path with higher bandwidth; (2) deter-
mining the minimum batch size for each query, which may
rely on data generated from multiple input sources, when
multiple queries coexist; and (3) placing reducer tasks at
proper intermediate nodes to perform data reduction and to
support flexible detoured routing. The complexity of these
challenges comes from their coupled nature: both the
achievable batch sizes and reducer placement will depend
on data routing decisions, while routing decisions, in turn,
depend on the required batch sizes.

To tackle these challenges, we have made two original
contributions in this paper:

First, we have formulated the problem of joint batch siz-
ing, task placement and routing as a nonconvex optimization
problem, and solve it with the alternating direction method
of multipliers (ADMM) [8], an optimization framework that
has recently gained widespread popularity in machine
learning and big data applications. Through an innovative
problem reformulation, we propose an ADMM algorithm to
jointly learn the efficient data aggregation paths for each
query together with its optimal batch sizing based on read-
ily available runtime traces, including link bandwidth and
the relationship between input and output sizes in the
application of interest. We have also introduced a sparsity
regularizer into our ADMM algorithm to yield sparse route
selection for each query and to avoid traffic splitting.

Second, we have designed a routing functionality for
Spark Streaming to support flexible routing and task place-
ment decisions, including transfers with a detour route. In
our implementation, we adopted a non-intrusive approach
by adding a new transformation of DStreams to Spark
Streaming. It allows explicit DStream migration between
any two nodes in a geo-distributed cluster. The new trans-
formation can carry out any computed routing and task
scheduling decisions by only modifying application work-
flows; in the meantime, it can still leverage load balancing
and data locality mechanisms implemented by the task
scheduler in the original Spark.

We have implemented the proposed Wide-Area Spark
Streaming framework, and performed an extensive evalua-
tion of this framework through real-world experiments
conducted on a cluster of Amazon EC2 instances, with pre-
specified bandwidth capacities between different instances
to emulate a bandwidth-limited environment in wide area
networks. We have also used container-based virtualization
and Docker Swarms to ensure the concurrent execution of

tasks from coexisting Spark Streaming jobs in the shared
emulated environment. By running coexisting streaming
queries of different types (including WordCount, Grep and
Top-k) based on a real-world dataset, we show that
through data-driven machine intelligence, our extended
wide-area Spark Streaming framework leads to a signifi-
cantly higher query rate (i.e., lower batch size) while reduc-
ing the processing latency—especially the tail latency—of
each micro-batch. It also improves network transfer times
as compared to the original Spark Streaming framework
that adopts heuristic scheduling optimization.

2 PROBLEM FORMULATION AND PROCEDURE

We first motivate the importance of intelligent data routing
and task scheduling for wide-area streaming using a simple
example in Fig. 1. In this example, a streaming query needs
to compute certain statistics based on the micro-batches
generated on nodes A, B and C, and displays the computed
result at node D once every 1 second, i.e., the batch size is 1
second. With its data locality mechanism, as shown in
Fig. 1a, Spark Streaming will first perform local computa-
tion to generate the intermediate result on each of the input
nodes A, B and C. The intermediate results are then sent to
node D for reduction into the final result. Suppose the size
of intermediate data per batch after local computation is
5 Mb on each input node. Obviously, with the bottleneck
link A ! D, the processing time of each micro-batch is at
least 2.5 seconds, which is the time for the straggler node A
to transfer its intermediate data to node D. This cannot meet
the per batch deadline of 1 second.

A better solution, as shown in Fig. 1b, is for node A to use
the detour path A ! B ! D to transfer its intermediate data
to avoid the bottleneck link. Moreover, we can further place
an additional reduce task in node B to merge the intermedi-
ate data from nodes A and B into 10 Mb or less. This scheme
will lead to a processing time per micro-batch of less than 1
second, meeting the per batch deadline. This example sug-
gests that Spark Streaming is not always optimal in wide
area networks.

In this section, we formulate a joint problem of automatic
micro-batch sizing, task placement and routing for multiple
concurrent streaming queries on the same wide area net-
work. Such a joint problem will be formulated as a noncon-
vex optimization problem. Note that task placement may be
implicitly decided by the routing path selection. The prob-
lem we will formulate is bi-convex in terms of routing path
selection and batch sizing, i.e., given one set of variables
fixed, the optimization of the other set is a convex problem.
We will subsequently propose an ADMM algorithm to solve
the problem.

Fig. 1. The topology of a motivating example. Red lines represent bottle-
neck links.
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2.1 System Model and Goodput Maximization

We use a graph G ¼ ðV;EÞ to represent a network of geo-
distributed nodes. The number of nodes is denoted as
N ¼ jV j. Each node may consist of multiple co-located serv-
ers and can host multiple Spark workers. Let Ce be the avail-
able bandwidth on each link e 2 E. Suppose there are Q
streaming analytics queries on G. Each query i monitors the
data generated from a set of source nodes Si � V , and col-
lects output at a single destination node Di 2 V . Each query
i has a batch interval ti (in terms of seconds), specifying how
frequently new data should be processed in query i. The
batch interval ti corresponds to the batch size in Spark
Streaming. Important notations used throughout this paper
are listed in Table 1.

We denote the output size of query i per batch at the
collecting node Di as MiðtiÞ which is a function of the
batch interval ti. Then, given the data generation rate rvi at
each source v 2 Si of query i, the amount of output per
batch MiðtiÞ is a function of the amount of total input data
generated in this batch, i.e.,

MiðtiÞ ¼ Ui

�X
v2Si

rviti

�
;

where Ui is a function that can be learned from the data
characteristics of each particular application, which we will
illustrate in Section 2.2. Also, we will show that Ui is often a
linear function based on some real-world data, although
our algorithm does not rely on the linearity assumption.

We can then define the goodput of query i given ti as

RiðtiÞ :¼ MiðtiÞ=ti;

which is the rate at which useful information is collected by
query i at the collecting node. Assume the batch size ti of
each query i has a lower bound tli.

Now consider a particular query i with source nodes
Si � V and destination node Di 2 V . For each source v 2 Si,
it is easy to enumerate all the paths, denoted by the set Pvi,
from v to Di. Choosing one path for each source and com-
bining them over all the sources in query iwill lead to a tree
from the sources Si to Di. For query i, we denote all these
feasible trees as Ti1; . . . ; TiJi , where each Tij is an aggregation

tree from sources Si to Di. We only consider trees up to two
hops to limit the propagation delay and variable space. By
considering trees instead of paths, we can perform data
aggregation (e.g., ReduceByKey, Union, Join, etc.) at an
intermediate node if two paths pv1;i and pv2;i of two source
nodes v1 and v2 in query i shares a link.

We then need to derive the data rate incurred on link e
due to each selected aggregation tree, in order to avoid vio-
lating the bandwidth constraints. Similar to MiðtiÞ defined
above, let Me

ijðtiÞ denote the amount of data transmitted on
link e for query i if tree Tij is selected. Just like MiðtiÞ,
Me

ijðtiÞ can also be learned as a function of ti, i.e.,

Me
ijðtiÞ ¼ Ui

X
v2Si

T
Descendants of e in Tijrviti

� �
:

Similar to RiðtiÞ, if tree Tij is selected, the data rate on link e
due to query i is given by

Re
ijðtiÞ :¼ Me

ijðtiÞ=ti:

Our objective is to jointly select the optimal aggregation
tree as well as the optimal batch size ti for each query i, to
maximize the total goodput

PQ
i¼1 RiðtiÞ. Let xij 2 f0; 1g

represent tree selections, where xij ¼ 1 indicates that tree
Tij is selected and xij ¼ 0 indicates otherwise. Then, our
problem is to find fxijg and ftig by solving the following
problem:

maximize
fxijg;ftig

XQ
i¼1

RiðtiÞ (1)

subject to
XQ
i¼1

X
j:e2Tij

Re
ijðtiÞ � xij � Ce; 8e 2 E; (2)

Xki
j¼1

xij ¼ 1; i ¼ 1; . . . ; Q; (3)

xij 2 f0; 1g; j ¼ 1; . . . ; Ji; i ¼ 1; . . . ; Q; (4)

ti � tli; i ¼ 1; . . . ; Q; (5)

where constraints (3) and (4) require that only one tree
should be chosen for each query, while constraint (2)
ensures that the total data rate on link e will not exceed the
link capacity Ce. Since R

e
ijð�Þ and Rið�Þ can be learned offline,

they serve as predetermined basis functions in problem (1).
Problem (1) is a hard non-convex problem, since 1) xij

is a binary integer, and 2) there is a multiplication
between Re

ijðtiÞ and xij that leads to non-convexity. In
Section 3, we will propose an efficient ADMM algorithm
to solve Problem 1, through an innovative reformulation
to decouple path selection and batch sizing. We also
adapt the ADMM algorithm to incorporate an iteratively
reweighted sparsity regularizer to ensure sparse tree
selection for each query.

2.2 Learning the Basis Functions

As has been shown in Section 2.1, the basis functions Rið�Þ
and Re

ijð�Þ depend on the input-output relationship Ui in a
particular application as well as data generation rates rvi,
which can be monitored at each input source v.

TABLE 1
Notations and Definitions

Symbol Definition

G the network of geo-distributed nodes
V the set of nodes in G
E the set of links in G
Ce the available bandwidth on link e 2 E
Q the total number of streaming analytics queries
Si � V the set of source nodes for query i 2 Q
Di 2 V the destination node for query i 2 Q
ti the batch interval or batch size of query i
tli the lower bound for ti (i.e., ti � tli; 8i)
rvi the data generation rate for query i at source v 2 Si

MiðtiÞ the output size of query i per batch
RiðtiÞ the goodput of query i
Ji the total number of aggregation trees from sources Si toDi

Tij the jth aggregation tree in fTi1; Ti2; . . . ; TiJig
xij an indicator variable that represents whether Ti;j is selected
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For a variety of typical queries, the input-output relation-
ship U actually demonstrates an approximately linear and
stable shape over different input sizes [9], and thus can be
readily profiled in advance. For example, WordCount
calculates the count of each distinct word in documents,
where the number of distinct words linearly increases with
the arrival of input documents. This is true at least in the
regime of micro-batches, as we will verify by profiling real
Wikipedia data. Grep finds all the input strings that match
a particular pattern, e.g., all the lines containing a specific
word in system logs. Again, more lines will match the
pattern as more input logs become available. The Top-k
Count gathers the counts of the most popular k elements
(e.g., URL, keywords), and thus the output remains constant
as the input data size increases.

In fact, in Facebook’s big data analytics cluster, the ratio
of intermediate to input data sizes is 0.55 for a median
query, with 24 percent of queries even having this ratio
greater than 1 [10]. Since Spark Streaming is based on
micro-batches, it exhibits a similar input-output scaling pat-
tern, although in the regime of small batch sizes.

The particular U can be learned for each application
either based on benchmarking data or adaptively from past
data during runtime. Here we specifically characterize the
input-output relationship U of WordCount, which is a
widely used benchmarking query for big data platforms,
based on a publicly available 12 GB text dataset from Wiki-
pedia [11]. To focus on the micro-batch regime, we split the
Wikipedia dataset into small chunks of different sizes rang-
ing from 5–50 MB, and randomly choose 10 chunks of each
size to serve as the inputs of WordCount in Spark. We per-
form a linear regression for the input-output relationship
and show it in Fig. 2. We can observe that the output size is
approximately UðIÞ ¼ 0:40I þ 0:43 for an input size I
between 5 and 50 MB, a range compatible to micro-batches
in streaming analytics.

If Ui is linear,MiðtiÞ is linear in ti, and RiðtiÞ :¼ MiðtiÞ=ti
will be a linear function of the query frequency 1=ti. Similarly,
in this case Re

ijðtiÞ is linear in 1=ti. Hence, in the rest of the
paper, we may abuse notation and use Rið 1tiÞ to equivalently
represent RiðtiÞ and Re

ijð 1tiÞ to represent Re
ijðtiÞ.

3 AN ADMM ALGORITHM FOR JOINT TREE
SELECTION AND BATCH SIZING

In this section, we propose an ADMM algorithm to solve the
joint batch sizing and sparse tree selection problem. Instead

of solving problem (1) with integer constraints, we relax xij
to be a fractional number and solve the following problem
penalized by a sparsity regularizer:

maximize
fxijg;f 1tig

XQ
i¼1

Ri

�
1

ti

�
� �

XQ
i¼1

XJi
j¼1

1ðxij > 0Þ (6)

subject to
XQ
i¼1

X
j:e2Tij

Re
ij

�
1

ti

�
� xij � Ce; 8e 2 E; (7)

Xki
j¼1

xij ¼ 1; 8i; 0 � xij � 1; 8ði; jÞ;

0 <
1

ti
� 1

tli
; i ¼ 1; . . . ; Q;

where 1ðxij > 0Þ is an indicator function defined as

1ðx > 0Þ ¼ 1; if x > 0;
0; otherwise:

�
(8)

The regularizing term
PQ

i¼1

PJi
j¼1 1ðxij > 0Þ is a penalty to

yield sparse tree selections by pushing most xij to zero.
Note that Problem (6) is still a non-convex problem

involving an integer penalty term
PQ

i¼1

PJi
j¼1 1ðxij > 0Þ

and non-convex multiplicative terms in constraint (7). In the
following, we first propose an ADMM algorithm to solve
Problem (6) without the sparsity penalty. Then, to handle
the sparsity penalty, we propose an iterative reweighting
procedure to solve the linearization of a smooth surrogate
of the sparsity penalty in each iteration, and merge this pro-
cedure into the proposed ADMM algorithm to yield sparse
tree selections fxijg.

3.1 An ADMM Algorithm to Decouple
Non-Convex Constraints

The rationales why ADMM is selected are three-fold. First,
ADMM is exactly a method for addressing problems in bi-
convex form, while problem (6) without the sparsity penalty
is a bi-convex problem, i.e., convex for tree selections given
fixed batch sizes, and convex for batch sizing given all the
selected trees. Therefore, through an innovative reformula-
tion, we can decouple this non-convex problem (6) into
alternated minimizations of two quadratic programs (QPs),
for tree selection and batch sizing, respectively. Second,
ADMM has superior empirical performance in solving
large-scale optimization problems. Third, ADMM has been
shown as a theoretically grounded method for bi-convex
problems [8]. In the following, we first provide a brief
primer on ADMM.

A general bi-convex problem that ADMM solves is of the
form

minimize F ðx; zÞ
subject to Gðx; zÞ ¼ 0;

(9)

where F : Rn �Rm ! R is bi-convex, i.e., convex in x for a
given z and convex in z for a given x, and G : Rn� Rm ! Rp

is bi-affine, i.e., affine in x given z, and affine in z given x.
This problem can be solved by the scaled form of ADMM
with the following iterative updates [8]:

Fig. 2. The input-output relationship of WordCount based on 12 GB of
Wikipedia data. Linear regression reveals the fit of the model for the
output size UðIÞ ¼ 0:40I þ 0:43 as a function of the input size I.
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xkþ1 :¼ argmin
x

�
F ðx; zkÞ þ r

2
kGðx; zkÞ þ ukk22

�
(10)

zkþ1 :¼ argmin
z

�
F ðxkþ1; zÞ þ r

2
kGðxkþ1; zÞ þ ukk22

�
(11)

ukþ1 :¼ uk þGðxkþ1; zkþ1Þ: (12)

We now reformulate problem (6) without the sparsity
penalty into the general bi-convex problem above. Introduc-
ing the auxiliary variable zije to decouple constraint (7),
problem (6) without the sparsity penalty is equivalent to the
following problem:

maximize
fxijg;f 1tig;fzijeg

XQ
i¼1

Ri

�
1

ti

�
(13)

subject to Re
ij

�
1

ti

�
� xij � zije ¼ 0; 8ði; jÞ; 8e 2 E;

XQ
i¼1

X
j:e2Tij

zije � Ce; 8e 2 E;

Xki
j¼1

xij ¼ 1; 8i; 0 � xij � 1; 8ði; jÞ;

0 <
1

ti
� 1

tli
; 8i;

which is equivalent to

maximize
fxijg;f 1tig;fzijeg

XQ
i¼1

Ri

�
1

ti

�
þ hðf1=tigÞ þ g

�fxijg; fzijeg
�

subject to Re
ij

�
1

ti

�
� xij � zije ¼ 0; 8ði; jÞ; 8e 2 E;

where gðfxijg; fzijegÞ is an indicator function of all the
uncoupled constraints of fxijg; fzijeg in problem (13), i.e., it is
zero if the second and third constraints of problem (13) are
all satisfied and is negative infinity otherwise. Similarly,
hðf 1

ti
gÞ is zero if 0 < 1

ti
� 1

tl
i

; 8i, and is negative infinity
otherwise.

Now we have converted problem (13) into the same form
as the general bi-convex problem above with a bi-affine con-
straint, where all fxijg and fzijeg are treated as one set of vari-
ables and f 1

ti
g is another set of variables. Then we can solve

problem (13) with ADMM, as described in Algorithm 1,
which updates the two sets of variables alternately. Appar-
ently, steps 4 and 5 of Algorithm 1 only involve quadratic
programming (QP), which can be efficiently solved by a num-
ber of existing QP solvers such as interior pointmethods.

3.2 Generating Sparse Tree Selection

When the sparsity penalty in problem (6) is present, the der-
ivation above for the ADMM algorithm still holds except

that we need to add the sparsity penalty �
PQ

i¼1

PJi
j¼1

1ðxij > 0Þ to the objective function in subproblem (14).
Then, subproblem (14) becomes a typical ‘0-norm regular-
ized least squares problem, which can be efficiently solved
by LASSO [12] in statistical learning, which replaces the
‘0-norm sparsity penalty by ‘1 norm, i.e., a linear term

�
PQ

i¼1

PJi
j¼1 xij.

Algorithm 1. An ADMM Algorithm for Problem (6)
Without the Sparsity Penalty

1: Input: Basis functions fRið�Þg, fRe
ijð�Þg; link capacities fCeg.

2: Output: fxk
ijg, f 1

tk
i

gwhen the algorithm stops.

3: k :¼ 0. Initialize fx0
ijg, fz0ijeg, fu0

ijeg.
4: Solve the following subproblem to obtain fxkþ1

ij g, fzkþ1
ije g

minimize
fxijg;fzijeg

X
ði;j;eÞ

�
Re

ij

�
1

tki

�
xij � zije þ uk

ije

�2

(14)

subject to
XQ
i¼1

X
j:e2Tij

zije � Ce; 8e 2 E;

Xki
j¼1

xij ¼ 1; 8i; 0 � xij � 1; 8ði; jÞ

5: Solve the following subproblem to obtain f 1
tkþ1
i

g:

minimize
f 1ti :0<

1
ti
� 1
tl
i

g
�
XQ
i¼1

Ri

�
1

ti

�

þ r

2

X
ði;j;eÞ

�
Re

ij

�
1

ti

�
xkþ1
ij � zkþ1

ije þ uk
ije

�2
(15)

6: Update ukþ1
ije by

ukþ1
ije :¼ uk

ije þRe
ij

�
1

tkþ1
i

�
xkþ1
ij � zkþ1

ije : (16)

7: k :¼ kþ 1, repeat until the stop criterion is met.

It has been shown [13] that reweighted ‘1 minimization
can further enhance the sparsity of the solutions. To solve
subproblem (14), we should iteratively penalize its objective
by �

PQ
i¼1

PJi
j¼1 xij=ðxt�1

ij þ dÞ in each iteration t. Such an
algorithm can achieve fast convergence, minimizing the lin-
earization of a concave log-sum penalty iteratively [14].

To further speed up convergence, we merge the itera-
tions of reweighted ‘1 minimization with those of ADMM,
leading to a revised ADMM algorithm. This algorithm is the
same as Algorithm 1, except that in step 4, we replace the
objective function (14) by

X
ði;j;eÞ

�
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ij

�
1

tki

�
xij � zije þ uk

ije

�2

þ �
XQ
i¼1

XJi
j¼1

xij

xk
ij þ d

;

which places a weight 1=ðxkij þ dÞ for each xij when solving
for xkþ1

ij . Intuitively speaking, the smaller the xk
ij, the larger

the weight, and the smaller the produced xkþ1
ij , leading to a

sparse solution. After the procedure above is done, most
queries will select only a single tree. If a query i still has
multiple nonzero xij, we simply choose the tree with the
largest xij. In Section 6, we show that the algorithm can
effectively select the most appropriate aggregation tree for
each query.

We now highlight several merits of our algorithm. First,
our algorithm can characterize the intertwined relationship
between batch sizing and tree selection, while aiming to
increase the goodput. More specifically, in each iteration, a
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smaller batch size will lead to a tree selection that has more
available bandwidth on its links, whereas a tree with less
bandwidth will force the system to choose a larger batch
size. The root reason is that the smaller the batch size, the
more frequently a query is executed, which generates more
network flows. Hence, higher bandwidth is needed to
accommodate this query. Second, our algorithm has the abil-
ity of self-regulation: if the tree on which a query is routed
has less bandwidth, our algorithm will reduce the query
goodput (by increasing its batch size) to make sure the query
can be supported by the underlying network. Third, the pro-
posed ADMM algorithm can quickly converge within only
3-4 iterations (which we will show in Section 5) and in the
meantime, is amenable to parallelization. This makes our
algorithmmore suitable for large-scale problems.

4 IMPLEMENTATION

In this section,we describe our implementation of an extended
Spark Streaming framework to ensure that the streaming data
are routed and aggregated according to the aggregation tree
selected by our algorithm in each query. In the original Spark
Streaming, although the generator and consumer of a
DStream can be written in the application itself, the routing of
DStream is completely decided by the TaskScheduler, a
component that is responsible for task placement.

For example, consider a streaming WordCount query
generated at node A with the output collected at node B.
The streaming job has two computation tasks, including a
map and a reduce. For data locality, it is the best for the
original Spark TaskScheduler to place the map operation
at node A and place the reduce task at node B. However,
the current Spark Streaming cannot support detoured
routes or relays, e.g., transferring the intermediate map
result of node A to node B via node C, which may exist in
our computed two-hop aggregation trees for the purpose of
avoiding bottleneck links.

One intuitive approach is to revise the default Spark
TaskScheduler. However, this approach is undesirable,
since 1) the required modification will be too intrusive and
non-incremental to the existing Spark framework; 2) sim-
plify modifying task scheduling still cannot enable detoured
routing of DStreams, since there is no “relaying” operation
in native Spark.

Alternatively, we take a non-intrusive approach which is
amenable to incremental deployment, without modifying
the existing internal behavior of Spark Streaming. In our
implementation, we first realize the routing function with a
new transformation, which we call addRoute(), as an
additional method on DStream, the data stream abstraction
in Spark Streaming. We then enforce the scheduling deci-
sions, including detoured routing and aggregation at inter-
mediate nodes, by adding addRoute() together with other
reduce tasks to the application workflow.

Overview. From a high level, addRoute() can explicitly
route the DStream to a specified worker node, adding relay
tasks whenever necessary. It takes a single parameter, which
specifies the hostname towhich theDStream should be routed.
Similar to other Spark Streaming transformations, addRoute
() returns a new instance of DStream, representing the data
stream that has been received by the destinationworker.

Usage. The usage of addRoute() can be explained with
WordCount example mentioned at the beginning of this
section. To route the intermediate DStream generated at
node A to node B via node C, when writing the application,
we can simply add a addRoute(“C”) transformation
between the map() and reduce() transformations in the
application program. Thus, the results from map()will first
be sent to node C and the final reduce() transformation
will be applied onto the DStream that has already been
transferred to C by addRoute().

With addRoute() as a fundamental building block, we
can easily enforce the aggregation tree selected by our opti-
mization algorithm together with the implicit task place-
ment decisions in Spark Streaming. For example, the
optimization results can be fed to the DAGScheduler, the
application workflow analyzer of Spark Streaming. The
DAGScheduler is fully aware of all transformations
applied onto the data stream, and will automatically insert
addRoute() to the original application workflow as addi-
tional transformations, realizing the desired paths for
DStream flows.

Since addRoute() is implemented as an additional
transformation to be inserted to the application flow of a
given Spark Streaming program of interest, our implemen-
tation is non-intrusive and is fully compatible to the original
Spark Streaming framework. In other words, all existing
data locality mechanisms, task scheduling optimizations,
customizations and code patches in Spark Streaming can
still be leveraged.

Implementation of addRoute(). In Spark Streaming, the
micro-batches in a DStream are processed separately and
continuously, by a series of computation tasks. Each task
has an important attribute, preferredLocations, which
specifies its placement preferences with a list of candidate
worker nodes. addRoute() leverages this mechanism to
explicitly specify the route for a data stream, by modifying
the preferredLocations of the subsequent task. While
these tasks are being scheduled, the TaskScheduler will
attempt to satisfy the preferences, by assigning a task to one
of its available candidate worker nodes.

Our implementation is based on Spark 1.6.1, and the
detailed implementation of addRoute() is in the RDD class.
This class contains many transformations, such as groupby
and reduceby. In this class, we have added a new transfor-
mation—TransferTo. With this transformation, users can
explicitly specify a relay node bymodifying application code
only. When users specify such relay node, TransferTowill
launch a task on this node by invoking addRoute()

function. This taskmainly receives themap output, encapsu-
lates them into a new RDD—transferredRDD, and for-
wards the transferredRDD to reduce task.

Example Code. As an example, Fig. 3 shows the code for a
WordCount streaming query. This query performs Word-

Count statistics based on the micro-batches generated on
node A, and displays the result at node C every one second,
using the detoured path A!B!C. Specifically, a Stream-

ingContext is created with a batch interval of 1 second.
Using this context, the source DStream that represents
streaming data from a TCP source (node A) is generated. The
flatmap (one-to-many transformation) is used to split each
record in the source DStream by space characters into words,
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such that a streaming of words could be generated. Such
words DStream is further mapped to a DStream of (word,
1) pairs, via the map function (one-to-one transformation).
The DStream of (word, 1) pairs is then transferred to the
destination node C via the intermediate node B, through the
transferTo transformation. The transferTo transfor-
mation will invoke the addRoute(“B”) to add node B for
transferring data from node A to node C. The reduceByKey
is then performed on the DStream of (word, 1) pairs to get
the frequency of words, and finally print() will print the
results at the destination node. It should be noted that the
WordCount streaming application should be submitted at
node C, such that node C can act as the destination.

5 SIMULATION

Wefirst conduct simulations to verify the effectiveness of our
proposedADMM-based algorithm.We simulate aWANnet-
work with 7 datacenters (please refer to Fig. 5 for the details
of this network). Specifically, we randomly generate around
30 streaming queries, and inject these queries into the net-
work. Similarly, each query has two randomly generated
input sources, and the input data generation rate for each
input source is a random value in the range of ½1; 5	Mbps.

We compare the following two algorithms with the pro-
posed ADMM-based algorithm. The first one is the optimi-
zation algorithm used in our previous work [15], denoted as
“Heuristic Iteration”. Specifically, in each iteration, this
algorithm heuristically minimizes the batch sizes when the
path selection is fixed and leaves more residual bandwidth
by adjusting path selection when the batch sizes are fixed.
The second comparison algorithm (denoted as “Batch-
sizing-only”) optimizes the batch sizes for all queries but
the involved data flows are all routed with direct paths.

Goodput is important for users that have streaming que-
rying demands, as it measures the number of useful

information bits delivered by the network to a certain user
per unit of time. Therefore, we record the total goodput
across all queries, i.e.,

PQ
i¼1 RiðtiÞ. By varying the number of

streaming queries from 5 to 30, we plot the total goodput for
different methods in Fig. 4. It is clear that for both our algo-
rithm and the Heuristic Iteration, the total goodput increases
as the number of queries grows. For Batch-sizing-only, the
total goodput increases until the number of queries grows to
20 and remains the same when the number of queries
is larger than 20. The reason is that in our simulation, Batch-
sizing-only can only support up to 20 queries and will crash
when the number of queries is larger than 20. We can further
observe that the goodput achieved by our algorithm is
always higher than that achieved by both Heuristic Iteration
and Batch-sizing-only algorithms, irrespective of the number
of queries. To be more specific, compared to the Heuristic
Iteration, our algorithm can improve the total goodput by up
to 66.12 percent, and the average improvement on the good-
put can be 55.34 percent. On the other hand, the total good-
put can be improved by up to 67.4 percent, when comparing
our algorithm with Batch-sizing-only. Note that when there
are less than 20 queries, the total goodput achieved by Batch-
sizing-only is a little bit smaller than that achieved by
Heuristic Iteration. This is because that Batch-sizing-only
algorithm ignores an indispensable component—routing,
making it less efficient for maximizing the total goodput of
the queries.

We now investigate the convergence and running time of
our algorithm. By varying the number of streaming queries
from 5 to 30, Table 2 shows the number of iterations needed
to achieve convergence, under our algorithm, the Heuristic
Iteration algorithm and the Batch-sizing-only algorithm.
Note that, for each algorithm, the convergence is achieved
when themaximumnumber of iterations (i.e., 100) is reached
or the gap of goodput between two adjacent iterations is less
than 0.0001.We can clearly see that for both theHeuristic Iter-
ation and Batch-sizing-only algorithms, the number of itera-
tions increases significantly with the increasing of the
number of streaming queries. Note that when the number of
queries is larger than 20, Batch-sizing-only will make the
system crash. We can further observe that our algorithm is

Fig. 3. Example code for a WordCount streaming query.

Fig. 5. The WAN emulation testbed launched for streaming experiments.

Fig. 4. The total goodput achieved by our algorithm and the comparison
method, under different number of streaming queries.
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extremely fast and always converges within 3-4 iterations,
irrespective of the number of streaming queries. This demon-
strates the fast convergence of our algorithm compared to
conventional heuristics. We finally study the running time of
our algorithm.We observe that one iteration takes on average
13.0753 seconds on a Dual-Core Intel(R)Core(TM)i5-2430M
2.40 GHz CPU. As such, if we have a computing cluster with
tens of servers [16] and run our algorithm in parallel on this
cluster, each iteration takes around 0.13 seconds. Thus,
it takes less than one second to solve the problem and to
obtain the batch sizing and routing decisions for all queries,
which demonstrates the efficiency of our algorithm in real
systems. One may wonder how the system will react when
tiny tasks [17] exist or the batch size is less than 1 second, e.g.,
50-100 ms. According to the study [18], Spark Streaming will
crash when the batch size is less than 100 ms. However, it is
worth noting that our optimization techniques can support
as small a batch size as the original Spark Streaming can sup-
port—the routing and batch sizing decisions can be reused
across micro-batches as long as the workload profiles are
slowly changing. In fact, the workload characteristics are
largely static and can change at a much slower rate for a large
number of typical streaming jobs [18], [19], [20].

6 PERFORMANCE EVALUATION

Now, we conduct real-world experiments to evaluate our
extended Spark Streaming framework in an emulated band-
width-constrained environment on a cluster of Amazon
EC2 instances. We compare the proposed Wide Area Spark
Streaming with original Spark Streaming with a data local-
ity mechanism when adopted in WAN.

6.1 Experimental Setup

Testbed Setup. We build a testbed of 7 compute instances in
the US East region on Amazon EC2 with controllable inter-
instance bandwidth constraints, as shown in Fig. 5. Since the
cost of storage and processors is decreasing at a faster pace
than that of provisioning bandwidth [21], [22], bandwidth is
more likely to become the bottleneck in wide area streaming
analytics. We therefore use c3.8xlarge instances to
emulate adequate compute and memory resources. Each
c3.8xlarge has 32 vCPUs and 64 GB memory. To emulate
the bandwidth constraints that would exist in wide area net-
works, we leverage Linux Traffic Control to limit the link
bandwidth between compute instances. Detailed bandwidth
connections are shown in Fig. 5, where the link bandwidth is
chosen from 5 to 35Mbps at random. Even though each com-
pute instance we launched is not as large as a commodity

datacenter, we believe that the testbed can faithfully emulate
the bandwidth bottlenecks in a wide area network.

Deployment. To emulate a multi-user environment, where
each user runs a separate streaming query, we leverage
Docker to deploy Spark Streaming clusters on the launched
testbed. Docker is a widely used technique to automate the
deployment of software applications in a lightweight, porta-
ble, and self-sufficient way. Specifically, we use Docker
Swarm to turn a pool of hosts into a single virtual host, as
shown in Fig. 6. Then, we deploy a Spark cluster for each
user by launching a set of containers in the virtual host. In
such a case, each user can run its respective streaming query
independently in its own Spark cluster (consisting of con-
tainers located in all 7 instances), while different Spark clus-
ters will run simultaneously and share the network.

In our experiments, we use one compute instance to serve
as themanager node,while the other six instances areworker
nodes. We deploy 20 Spark clusters, where each Spark clus-
ter has a separate container in each worker node running
Spark Worker service. Furthermore, each Spark cluster uses
a container in the manager node for running the Spark Mas-
ter service. For each Spark cluster, there is an overlay net-
work that connects its containers in different nodes.

Workloads. We use 20 recurring WordCount queries for
testing, as WordCount is a typical streaming query used in
the benchmarking of big data processing systems. For each
query, there are two input sources placed on two randomly
chosen nodes and there is one randomly chosen output
node where the query is answered. In addition, the input
data generation rate for each input source is uniformly cho-
sen from 1 to 5 Mbps, as shown in Table 3. The experimental
results when using 739 these 20 WordCount queries will be
shown in Section 6.3. We also tested mixed query types,
including WordCount,Grep,Top-K. The Grep streaming
query finds all the lines containing a specific word (i.e.,
“the”), while the Top-k streaming query outputs the most
popular 100 words, by number of times. We use 5 queries
for each query type, and thus there are 15 queries in total.
The experimental results using those mixed queries will be
shown in Section 6.4.

6.2 Evaluated Methods

In our experiments, we compare the following two versions
of Spark Streaming systems, which represent different
methods to make routing and batch sizing decisions:

Wide-Area Spark Streaming. This method jointly deter-
mines the batch size and routing paths for each query by

TABLE 2
The Number of Iterations that our Algorithm and the Heuristic

Iteration Need to Achieve Convergence

Num. of iterations Methods

Num. of queries

Our
algorithm

Heuristic
Iteration

Batch-
sizing-only

5 3 2 2
10 3 3 4
15 4 6 5
20 3 10 7
25 3 12 ⦰
30 4 19 ⦰

Fig. 6. Deployingwide area streaming on the launched cluster via Docker.
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using the proposed Algorithm 1, and runs the application
flow generated by Algorithm 1 with the automatically
inserted addRoute() transformations. The computation
based on Algorithm 1 is extremely fast and always con-
verges within 3-4 iterations. Note that in some rare cases,
Algorithm 1 may not produce a sparse solution for a query,
i.e., a query i selects two trees. In such a case, we choose the
tree with the largest xij.

Original Spark Streaming. In this method, each source
node of a query sends its local output data to the central col-
lecting site directly, where the data is further processed and
aggregated to produce final query output. In other words,
this method sends out intermediate data on the direct path

between each source-destination pair. With such direct path
selection, it can get a convex problem by substituting
xi;j; 8i; 8j to the problem (1), and accordingly the batch size
can be obtained by solving this convex problem. Further-
more, the built-in data locality mechanisms in Spark are
used to enforce all the reduce tasks to be placed at the out-
put node. This strategy represents a common industrial
practice conforming to data locality.

Apparently, with bandwidth constraints, the computed
batch size for Wide-area Spark Streaming is significantly
smaller than that for Original Spark Streaming for each
query. This implies that Wide-area Spark Streaming, which
intelligently selects detours to avoid bottleneck links, can
support a potentially higher query rate in this bandwidth-
constrained scenario. The selected paths for each query
under both Wide-area Spark Streaming and Original Spark
Streaming strategies are illustrated in Table 4.

For validation and performance evaluation, we run all
queries for a period of 5minutes under bothWide-area Spark
Streaming and Original Spark Streaming strategies to mea-
sure the processing time per batch and shuffle transfer time.

6.3 Results of WordCount Queries

Fig. 7 first depicts the shuffle transfer time for each query
achieved by both Wide-area Spark Streaming and Original
Spark Streaming Strategies, in the form of box plot. Each bar
shows five values of shuffle transfer time for a query: 98th
percentile, 75th percentile, 50th percentile, 25th percentile,
2th percentile. It is clear thatWide-area Spark Streaming out-
performs Original Spark Streaming in the shuffle transfer
time for 8 queries, e.g., Query 1, 5, 8, 9, 10, 14, 15, 17. This
is because Original Spark Streaming chooses direct paths
for these queries, while the bandwidth on those direct paths

TABLE 3
Input Data Generation Rates Used in our Experiment

Query 1 Query 2 Query 3 Query 4 Query 5

Input 1 1 Mbps 2 Mbps 5 Mbps 2 Mbps 2 Mbps
Input 2 4 Mbps 2 Mbps 1 Mbps 4 Mbps 1 Mbps

Query 6 Query 7 Query 8 Query 9 Query 10

Input 1 2 Mbps 4 Mbps 4 Mbps 2 Mbps 2 Mbps
Input 2 4 Mbps 3 Mbps 2 Mbps 1 Mbps 3 Mbps

Query 11 Query 12 Query 13 Query 14 Query 15

Input 1 2 Mbps 5 Mbps 1 Mbps 2 Mbps 1 Mbps
Input 2 2 Mbps 2 Mbps 4 Mbps 2 Mbps 2 Mbps

Query 16 Query 17 Query 18 Query 19 Query 20

Input 1 2 Mbps 1 Mbps 5 Mbps 1 Mbps 2 Mbps
Input 2 3 Mbps 2 Mbps 2 Mbps 4 Mbps 4 Mbps

Note: each query has two input sources, and two corresponding input data
generation rates.

TABLE 4
Path Selection for Each Input in Each Query

Query
Index

Wide-area
Streaming

Original
Streaming

Query
Index

Wide-area
Streaming

Original
Streaming

1
AFC AC

11
ADE AE

BEC BC DE DE

2
ADB AB

12
AD AD

DB DB FD FD

3
CA CA

13
EBA EA

DEA DA FA FA

4
BD BD

14
BF BF

CD CD ECF EF

5
BC BC

15
AE AE

EBC EC BE BE

6
DB DB

16
AFB AB

EDB EB FB FB

7
CAE CE

17
BEA BA

DAE DE FEA FA

8
CFD CD

18
CBF CF

FD FD DBF DF

9
EC EC

19
AFB AB

FAC FC CFB CB

10
DF DF

20
CF CF

EDF EF ECF EF

A, B, C, D, E and F are node indexes in our testbed.

Fig. 7. Box plot for the shuffle transfer time per batch for each of the
20 queries.
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is relatively low. For instance, the direct path (i.e., E!F) that
Original Spark Streaming selected for query 10 only has
5 Mbps bandwidth, while our Wide-area Spark Streaming
would choose the detoured path (i.e., E!D!F) that has
bandwidth higher than 5 Mbps. To be more particular, the
shuffle transfer time for Original Spark Streaming can be as
large as 750 ms (e.g., the 98th percentile value in Query 1),
while this value is less than 100 ms for our Wide-area Spark
Streaming. This demonstrates the benefits of leveraging
detoured paths inwide area streaming analytics, as detoured
path have a potentially higher bandwidth than the direct
path. We can further observe that Wide-area Spark Stream-
ing achieves a similar value of shuffle transfer time for the
remaining queries, compared to Original Spark Streaming.
This implies that Wide-area Spark Streaming will not build
its superiority on performance loss of any other queries. The
key is that Wide-area Spark Streaming uses smaller batch
size for each query, leading to higher frequency in sending
the input data. By taking a detailed analysis, we observe that
the average shuffle time per batch over the 20 queries is only
28 ms for ourWide-area Spark Streaming, while that value is
78 ms for the Original Spark Streaming. This implies that our
Wide-area Spark Streaming can reduce the shuffle time per
batch by 64.1 percent on average, compared to the Original
Spark Streaming.

To understand on a microscopic level, we also plot the
CDF of the shuffle transfer time across all micro-batches
and all queries in Fig. 8, under both Wide-area Spark
Streaming and Original Spark Streaming. In this figure, one
may wonder at this point that, the fraction of shuffles with
transfer time less than a same value (e.g., 25 ms) for Wide-
area Spark Streaming is unexpectedly smaller than that for
Original Spark Streaming. This is actually reasonable
because that Original Spark Streaming uses higher batch
size, leading to a lower frequency in sending data and even-
tually it makes less congestion in the wide-area network.
However, such an unexpected result does not mean that the
Wide-area Spark Streaming is inferior to Original Spark
Streaming, as the streaming performance is closely related
to the lowest shuffle transfer time. More precisely, Original
Spark Streaming is more likely to put a shuffle on a bottle-
neck link, as it makes no attempt to use the detoured path
that may have higher link bandwidth. So, this is why all
shuffles under Wide-area Spark Streaming can be com-
pleted within a smaller time, compared to Original Spark
Streaming. Such an interesting property directly demon-
strates that our Wide-area Spark Streaming is more practical
in reducing the tail processing latency.

A lower shuffle transfer time may not always lead to a
lower batch processing time, as processing a batch of stream-
ing data involves both computation stage and network stage.
So, we investigate the batch processing time for each query,
as shown in Fig. 9. Similarly, for Query 1, 5, 8, 9, 10, 14, 15
and 17, Wide-area Spark Streaming achieves much smaller
batch processing times, as compared to Original Spark
Streaming. One of the reasons is still that our Wide-area
Spark Streaming will select detoured paths with potentially
higher bandwidth. Another reason is that the batch sizes for
those queries under Wide-area Spark Streaming are only a
few seconds, while the batch sizes under Original Spark
Streaming are tens of seconds. One may wonder if the Origi-
nal Spark Streaming will perform better when the corre-
sponding batch sizes are reduced. The answer is yes. But we
cannot reduce the batch sizes of those queries (i.e., Query 1,
5, 8, 9, 10, 14, 15 and 17) under the Original Spark Streaming,
since reducing the batch sizes of those querieswill negatively
affect the performance of other queries significantly, and
may even cause the system to crash if the batch sizes are set
to too small values [18]. The 98th percentile batch processing
time of Original Spark Streaming is nearly up to 1,000 s (e.g.,
Query 1), which makes no sense for modern streaming proc-
essing system.While themaximal 98th percentile batch proc-
essing time ofWide-area Spark Streaming is just over 1 s. We
can further observe that there is notmuch difference between
the two streaming strategies for the remaining queries,
in terms of the batch processing time. Even though there is a
little bit difference, it is mainly because that Wide-area Spark
Streaming uses smaller batch sizes and accordingly brings
more overhead on the computation stage. We can easily
check that the results of batch processing time exactly follow
the same trends with the shuffle transfer time in Fig. 7,

Fig. 8. CDF of the shuffle transfer time per batch in all the queries.

Fig. 9. Box plot of the processing time per batch for each of the 20
queries.
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verifying that the link bandwidth is the only bottleneck in
wide area streaming processing. This further implies that
our launched testbed on EC2 platform is appropriate and
solid to benchmarking our Wide-area Spark Streaming. We
can further observe that across all the 20 queries, the average
processing time per batch is only 0.75 s when using our
Wide-area Spark Streaming, whereas that value is 46.5 s for
the Original Spark Streaming, leading to a reduction of 98
percent on the average processing time per batch.

Again, we plot the CDF of batch processing time across
all batches and all queries for both Wide-area Spark Stream-
ing and Original Spark Streaming in Fig. 10. We observe
that 99 percent of batches can be processed faster by using
Wide-area Spark Streaming, compared to Original Spark
Streaming. This implies that Wide-area Spark Streaming is
efficient in reducing tail batch processing time, which has
great significance in modern wide area streaming process-
ing systems with high concurrency requirements.

To indicate the goodput, Fig. 11a first presents the cumu-
lative output data across all queries during the 5-minute
period of time for both Wide-area Spark Streaming and
Original Spark Streaming, as the query output data size

closely relates to the goodput in stream processing system.
We can easily check that across all the time, the cumulative
output data generated by Wide-area Spark Streaming is
always larger than that of Original Spark Streaming. We can
further observe that the output data generation rates are
4.6 and 3 MB/s for Wide-area Spark Streaming and Original
Spark Streaming respectively. Therefore, our Wide-area
Spark Streaming can improve the output data generation
rate by 34.8 percent, compared to the Original Spark
Streaming. To be more precise, Fig. 11b further depicts the
output data size in each time, across all queries, where the
curve of Wide-area Spark Streaming is higher than that of
Original Spark Streaming at most of the time. This indirectly
implies that Wide-area Spark Streaming is capable of proc-
essing more batches given a same duration when compar-
ing to Original Spark Streaming.

6.4 Results of Queries of Mixed Type

As aforementioned in Section 1, there are typically many
types of streaming analytics queries. We now focus on eval-
uating the impact of mixed queries on the performance of
our Wide-area Spark Streaming, in terms of the shuffle
transfer time as well as the processing time.

We use three types of streaming queries: WordCount,
Grep and Top-k, working on the Wikipedia dataset. Fig. 12
shows the input-output relationship for Grep and Top-k

streaming queries, by varying the input data sizes. It is clear
that the input-output relationship for Grep query is approxi-
mately linear, while the output size for Top-k query remains
constant irrespective of the input data sizes. It should be
noted that when using a different dataset, wemay need to do
another job profiling to learn the input-output relationship
for each application. But fortunately, such job profiling will
not bring too much impact to the application. The reason is
that the streaming query could be repeated and theworkload

Fig. 10. CDF of the processing time per batch in all the queries.

Fig. 11. The overall system output rates of Wide Area Spark Streaming
and original Spark Streaming during a period of 200 seconds.

Fig. 12. Measuring the input-output relationships for Grep and top-k

streaming queries, based on 12 GB of Wikipedia data.
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is largely static and changing infrequently for typical stream-
ing jobs [18], [19], [20]. Hence, we can calculate the routing
and batch sizing decisions for multiple micro-batches at once
and reuse these decisions across micro-batches. To further
reduce the overhead added by such job profiling, we can use
techniques like pseudo-distributed execution [5] or
online profiling [7].

With the above input-output relationships, we can incor-
porate these three types of streaming queries in our algo-
rithm. Specifically, in our experiment, we use 5 queries for
each streaming query type, and accordingly there are 15
queries in total. We run these 15 queries for one hour. In the
beginning of every 5-minute interval, we change the input
data generate rate for each query, and run our Algorithm 1
to calculate the updated batch size and routing path for
each streaming query.

Fig. 13 first shows the shuffle transfer time per batch
for each of the queries during the period of one hour, under
both Wide-area Spark Streaming and Original Spark
Streaming. We can clearly find that Wide-area Spark
Streaming achieves a lower shuffle transfer time per batch
for WordCount1 query, while maintains almost the same
shuffle transfer time for the other WordCount queries, com-
pared to Original Spark Streaming across all time intervals.
For Grep and Top-K queries, Wide-area Spark Streaming
can also outperform the Original Spark Streaming, with
respect to the shuffle transfer time per batch. To be more

specific, we can further observe that across all time intervals
and all WordCount queries, the average shuffle transfer
times for both the Wide-area Spark Streaming and the Origi-
nal Spark Streaming are 19.47 and 31.91 ms, respectively. As
for the grep queries, the average shuffle transfer time of
Wide-area Spark Streaming, i.e., 13.18 ms, is a little bit
higher than that of Original Spark Streaming, i.e., 12.6 ms.
The root reason is that Grep queries generate more output
data than WordCount application, making it to be an infe-
rior position when competing network resource with Word-

Count applications. Furthermore, for the top-K queries,
the average shuffle transfer times for both the Wide-area
Spark Streaming and the Original Spark Streaming are 16.9
and 18.9 ms, respectively.

Fig. 14 further presents the processing time per batch
for all queries over the one-hour period, under both Wide-
area Spark Streaming and Original Spark Streaming. It is
clear that for wordcount1, Grep2, Grep4, Top-K1,Top-
K3, and Top-K5 queries, Wide-area Spark Streaming can
significantly reduce the processing time per batch, when
compared to the Original Spark Streaming. For the remain-
ing streaming queries, Wide-area Spark Streaming and
Original Spark Streaming have approximately the same
processing time per batch. After taking a further observa-
tion, we find that: 1) For WordCount queries, the average
processing time across all time intervals is 264,6 ms for
Wide-area Spark Streaming, while that value can be as high

Fig. 13. The shuffle transfer time per batch across all queries during a period of one hour.

Fig. 14. The processing time per batch across all queries during a period of one hour.
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as 9124.3 ms for the Original Spark Streaming; 2) For the
Grep and Top-K queries under the Wide-area Spark
Streaming, the average processing times are 8.18 and 5.71
ms respectively, while these two values are a little bit higher
under the Original Spark Streaming, i.e., 8.35 and 6.01 ms,
respectively. These results directly demonstrate that our
Wide-area Spark Streaming can reduce the average process-
ing time over all time intervals and all types of streaming
queries, compared to the Original Spark Streaming.

7 RELATED WORK

With the emergence and popularity of Internet of Things
(IoT), online social networks and massive social media,
large volumes of data streams have been generated at the
edge of the Internet. As a result, there is a growing demand
for improving the processing of geo-distributed data
streams. We will summarize the following three categories
of related work:

7.1 Batch Processing in the Wide Area

Batch processing refers to the processing of a large and fixed
amount of input data that is collected ahead of time. Exist-
ing solutions on batch processing in the wide area focused
on minimizing either the WAN bandwidth cost or the job
completion time.

With respect to minimizing the WAN bandwidth cost,
Geode proposed to minimize the WAN bandwidth utiliza-
tion with regulatory constraints by optimizing the query
execution plan and data replication strategy [5]. Pixida stud-
ied a new graph partitioning problem to schedule the tasks
with minimum data movement across different regions
[23]. WANalytics was proposed as an extension of Pixida,
and used an efficient cache mechanism to reduce data trans-
fer among datacenters [24]. Li et al. proposed to jointly con-
sider input data movement and task placement to minimize
the inter-datacenter traffic generated by MapReduce jobs
targeting on geo-distributed data, while providing pre-
dicted job completion times [25]. These solutions only
focused on reducing the bandwidth cost without consider-
ing job completion times.

Towards optimizing the job completion time, Iridiumopti-
mized the placement of both the input data and reduce task,
with the purpose of achieving low latency for geo-distributed
data analytical queries [9]. It relied on the idealistic assump-
tion that reduce tasks are infinitesimally divisible, and solved
a mixed integer programming (MIP) problem instead in its
implementation. Flutter proposed to schedule reduce tasks
close to the data by using the exact amount of intermediate
data that each reduce taskwould read, and by solving an inte-
ger linear programming (ILP) problem [26]. Jayalath et al.
proposed G-MR, which considers both the job completion
time and cost when executing a sequence of jobs [27].

Hung et al. proposed SWAG, which leveraged a greedy
job scheduling algorithm to optimize the average job com-
pletion time [28]. Zhou et al. developed a new method to
map parallel processes to physical nodes in a near optimal
way [29]. Nevertheless, they neglected the issue of routing,
which makes their solution less efficient for minimizing the
job completion times. Clarinet used heuristics to jointly
selects the placements and schedules of tasks for reducing

the query completion time [30]. In contrast, our work
focused on streaming analytics, instead of batch processing.
We have seamlessly combined the routing and batch sizing
to reduce job completion times.

7.2 Stream Processing in the Wide Area

Anumber of newstreaming computing engines for large-scale
stream processing have been proposed. For example, Spark
Streaming [1], MillWheel [31], Storm [32] and Comet [33] have
been designed for single-datacenter environments with high-
bandwidth networks. However, theywere unaware of the sig-
nificant bandwidth variation on WAN links. Moreover, all of
them focused on providing fault-tolerant streaming services,
which are orthogonal to our concerns of bandwidth variations
onWAN linkswith scarce bandwidth.

Hwang et al. proposed to replicate stream processing
operators, with the aim of achieving fast and reliable stream
processing over wide area networks [34]. Pietzuch et al. pro-
posed a new layer between a stream-processing system and
the physical network that manages operator placement, with
a series of objectives such as improving network utilization
and providing low stream latency [35]. Rather than optimiz-
ing the operator placement, we leveraged batch sizing and
detour paths to speed up stream processing across wide area
networks. JetStream [22] proposed to trade accuracy for
reducing data sizes, while our work preserves data fidelity.

7.3 Batch Sizing in Stream Processing Systems

Storm [32], TimeStream [36], TeleGraphCQ [37] processed
data streams based on continuous operator models, where
long-lived operators exchange messages with each other in
a predefined order. The streaming data can be computed
immediately as it arrives. Spark Streaming [1] and Comet
[33] can be classified as micro-batch computing engines,
where streaming data arriving within a batch interval will
be collected together as a micro-batch, and they will be com-
puted just like a traditional batch.

Our work mainly focused on stream processing systems
based on the notion of micro-batches. Das et al. [3] discussed
how the batch size affected the performance of streaming
workloads. They designed a control algorithm to automati-
cally adapt batch sizes to make sure that the batched data
can be processed as fast as they arrive. It is implemented
within a datacenter where available bandwidth is consis-
tently high. In contrast, we consider WAN links and aim at
forwarding intermediate results on faster paths to reduce the
transfer time and to achieve a smaller batch size. As a result,
the processing time can be reduced as well.

8 CONCLUDING REMARKS

This paper has proposed a sparsity-penalized ADMM algo-
rithm for streaming analytics over wide area where the
bandwidth is not always sufficient and varies significantly
on all the WAN links. By jointly selecting the best path and
batch sizing, our algorithm can take advantage of detoured
route with sufficient bandwidth to effectively reduce the
processing time of each micro-batch. Our routing function-
ality implemented in Spark Streaming enforces intermediate
data to follow the path optimized by our algorithm, and
allows the additional task to be placed at our desired

1446 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 6, JUNE 2019



location. Extensive performance evaluation based on experi-
ments conducted on an Amazon EC2 cluster implies that
our solution can support higher query response rates, a
larger query output rate, with significantly reduced tail
processing latencies and network transfer times, while
keeping the stream processing system stable.
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