
Wide-Area Spark Streaming:
Automated Routing and Batch Sizing

Wenxin Li∗, Di Niu†, Yinan Liu‡, Shuhao Liu‡, Baochun Li‡
∗University of Toronto & Dalian University of Technology

†University of Alberta
‡University of Toronto

Abstract—Modern stream processing frameworks, such as
Spark Streaming, are designed to support a wide variety of
stream processing applications, such as real-time data analytics in
social networks. As the volume of data to be processed increases
rapidly, there is a pressing need for processing them across
multiple geo-distributed datacenters. However, these frameworks
are not designed to take limited and varying inter-datacenter
bandwidth into account, leading to longer query latencies.

In this paper, we focus on reducing latencies for spark stream-
ing queries in wide-area networks, by automatically selecting
data flow routes and determining micro-batch sizes across geo-
distributed datacenters. Specifically, we formulate a nonconvex
optimization problem, and solve it with an efficient heuristic
algorithm based on readily measurable operating traces. We
conducted experiments on Amazon EC2 with emulated band-
width constraints. Our experimental results have demonstrated
the effectiveness of our proposed algorithm, as compared to the
existing Spark Streaming.

I. INTRODUCTION

Many types of big data streaming analytics are being
generated, computed and aggregated over the wide area. A
social network, such as Facebook and Twitter, may need to
detect popular keywords in minutes. A search engine may
wish to obtain the number of clicks on a recommended URL
once every few seconds. A cloud service operator may wish
to monitor system logs in its distributed datacenters to detect
failures in seconds. In all these streaming analytics, log-like
data are generated from all over the world and are collected
at local nodes, datacenters or points of presence (PoP) first,
before being aggregated to a central site to repeatedly answer
a standing query.

Spark Streaming [1] is an extension of Spark that enables
and simplifies the processing of streaming analytics using
micro-batches of data. Spark is built on the concept of Re-
silient Distributed Datasets (RDDs) [2], where an RDD is a
batch of input data. Similarly, Spark Streaming relies on the
concept of discretized streams (DStreams) for data abstraction.
A DStream is a continuous sequence of RDDs arriving at
different time steps, where each RDD contains a one-time slice
of data in the stream. The length of the time slice is referred to
as the batch size. Spark Streaming performs a transformation
on a DStream by applying the same transformation on each
RDD in the DStream. For example, an operator may wish to
compute the word counts in a document stream once every five
seconds, where the batch size is 5 seconds. In other words,
Spark Streaming is based on a “micro-batch” architecture,

where the streaming computation is carried out as a continuous
series of MapReduce operations on the micro-batches.

However, the current Spark Streaming framework mainly
focuses on fast recovery from faults and stragglers (slow
nodes) [1] in a single datacenter, with high-bandwidth net-
works. Although streaming analytics find a wide variety of
applications in the wide area, Spark Streaming is not specifi-
cally designed to take into account the significant bandwidth
variation on wide area network (WAN) links. Directly trans-
ferring all the collected data from a source to its central
collecting site may not always be the best choice, if the
link bandwidth between them is limited. In fact, since Spark
Streaming needs to process all the micro-batches generated
at the same timestamp together, even a bottleneck link at a
single data source can significantly slow down the overall
query response rate. With delayed response, the operator may
lose the key chance to make decisions based on the query.

In this paper, we jointly consider bandwidth-aware batch
sizing, task scheduling and routing of data streams, to reduce
latencies for queries in state-of-the-art batched stream process-
ing systems, typically represented by Spark Streaming, across
wide-area networks. Note that simple data locality mecha-
nisms, such as performing reduction or local aggregation at
data sources, are insufficient as a solution in WAN. In order
to increase the query response rate and meet batch processing
deadlines, the system must address the following challenges:
(1) selecting a fast path to route the DStream from each source
to its collecting site and avoid bottleneck links, where the
fastest path is not necessarily the direct route but might be
a detoured path with higher bandwidth; (2) determining the
minimum batch size for each query, which may rely on data
generated from multiple input sources, when multiple queries
coexist; and (3) placing reducer tasks at proper intermedi-
ate nodes to perform data reduction and to support flexible
detoured routing. The complexity of these challenges comes
from their coupled nature: both the achievable batch sizes and
reducer placement will depend on data routing decisions, while
routing decisions, in turn, depend on the required batch sizes.

To tackle these challenges, we make two original contribu-
tions in this paper:

First, we formulate the problem of joint batch sizing, task
placement and routing as a nonconvex optimization problem.
We solve it with an efficient heuristic algorithm, decoupling
path selection and batch sizing into two alternately solved

B D

A

10 M
bps 2 Mbps

C

10 Mbps 10 M
bps

10
 M

bp
s

(a)

5 Mb

5 M
b

5 M
b

10 Mbps
B D

A

10 M
bps 2 Mbps

C

10 Mbps 10 M
bps

10
 M

bp
s

(b)

≤ 10 Mb

5 M
b

5 M
b

10 Mbps

Fig. 1. The topology of a motivating example. Red lines represent bottleneck
links.

subproblems. Given a certain batch size, we also describe
how to estimate the output rate for each query as well as the
network usage on each link based on statistical learning. Such
estimation will serve as the input to the joint batch sizing and
routing problem.

Second, we evaluated the performance of the proposed
framework through real-world experiments conducted on a
cluster of Amazon EC2 instances, with pre-specified band-
width capacities between different instances to emulate a
bandwidth-limited environment in wide area networks. We
have also used container-based virtualization and Docker
Swarms to ensure the concurrent execution of tasks from co-
existing Spark Streaming jobs in the shared emulated environ-
ment. By running 20 coexisting streaming WordCount queries
based on a real-world dataset, we show that through data-
driven machine intelligence, our extended wide-area Spark
Streaming framework leads to a significantly higher query rate
(i.e., lower batch size) while reducing the processing latency—
especially the tail latency—of each micro-batch.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We first motivate the importance of intelligent data routing
and task scheduling in wide area networks using a simple
example in Fig. 1. In this example, a streaming query needs
to compute certain statistics based on the micro-batches gen-
erated on nodes A, B and C, and display the computed result
at node D once every 1 second, i.e., the batch size is 1 second.
With its data locality mechanism, as shown in Fig. 1 (a), Spark
Streaming will first perform local computation to generate the
intermediate result on each of the input nodes A, B and C.
The intermediate results are then sent to node D for reduction
into the final result. Suppose the size of intermediate data per
batch after local computation is 5 Mbits on each input node.
Obviously, with the bottleneck link A → D, the processing
time of each micro-batch is at least 2.5 seconds, which is the
time for the straggler node A to transfer its intermediate data to
node D. This cannot meet the per batch deadline of 1 second.

A better solution, as shown in Fig. 1 (b), is for node A to use
the detour path A → B → D to transfer its intermediate data
to avoid the bottleneck link. Moreover, we can further place an
additional reduce task in node B to merge the intermediate data
from nodes A and B into 10 Mbits or less. This scheme will
lead to a processing time per micro-batch of less than 1 second,

meeting the per batch deadline. This example suggests that
Spark Streaming is not always optimal in wide area networks.

We formulate a joint problem of automatic micro-batch
sizing, task placement and routing for multiple concurrent
streaming queries on the same wide area network. Such a
joint problem will be formulated as a nonconvex optimization
problem. Note that task placement may be implicitly decided
by the routing path selection. The problem we will formulate
is bi-convex in terms of routing path selection and batch sizing,
i.e., given one set of variables fixed, the optimization of the
other set is a convex problem.

We use a graph G = (V,E) to represent a network of geo-
distributed node, N = |V | being the number of nodes. Each
node may consist of multiple co-located servers and can host
multiple Spark workers. Let Ce be the available bandwidth
on each link e ∈ E. Suppose there are Q streaming analytics
queries on G. Each query i monitors the data generated from
a set of source nodes Si ⊂ V , and collects output at a
single destination node Di ∈ V . Each query i has a batch
interval τi (in terms of seconds), specifying how frequently
new data should be processed in query i. The batch interval
τi corresponds to the batch size in Spark Streaming.

Let Mi(τi) denote the output size of query i per batch at
the collecting node Di as a function of the batch interval τi.
Then, given the data generation rate rvi at each source v ∈ Si
of query i, the amount of output per batch Mi(τi) is a function
of the amount of total input data generated in this batch, i.e.,

Mi(τi) = Ui

(∑
v∈Si

rviτi

)
,

where Ui is a function that can be learned from the data
characteristics of each particular application, which we will
illustrate in Sec. III. Also, we will show that Ui is often a
linear function based on some real-world data, although our
algorithm does not rely on the linearity assumption.

We can then define the goodput of query i given τi as

Ri(τi) :=Mi(τi)/τi,

which is the rate at which useful information is collected by
query i at the collecting node. Assume the batch size τi of
each query i has a lower bound τ li .

Now consider a particular query i with source nodes Si ⊂ V
and destination node Di ∈ V . For each source v ∈ Si, it is
easy to enumerate all the paths, denoted by the set Pvi, from
v to Di. Choosing one path for each source and combining
them over all the sources in query i will lead to a tree from the
sources Si to Di. For query i, we denote all these feasible trees
as Ti1, . . . , TiJi , where each Tij is an aggregation tree from
sources Si to Di. We only consider trees up to two hops to
limit the propagation delay and variable space. By considering
trees instead of paths, we can perform data aggregation (e.g.,
ReduceByKey, Union, Join, etc.) at an intermediate node if
two paths pv1,i and pv2,i of two source nodes v1 and v2 in
query i shares a link.

We then need to derive the throughput incurred on link e due
to each selected aggregation tree, in order to avoid violating

the bandwidth constraints. Similar to Mi(τi) defined above,
let Me

ij(τi) denote the amount of data transmitted on link e
for query i if tree Tij is selected. Just like Mi(τi), Me

ij(τi)
can also be learned as a function of τi, i.e.,

Me
ij(τi) = Ui

(∑
v∈Si

⋂
Descendants of e in Tij

rviτi

)
.

Similar to the goodput Ri(τi), if tree Tij is selected, the
throughput on link e due to query i is given by

Reij(τi) :=Me
ij(τi)/τi.

Our objective is to jointly select for each query i, i =
1, . . . , Q, the optimal aggregation tree as well as its opti-
mal batch size τi, in order to maximize the total goodput∑Q
i=1Ri(τi) of information. Let xij ∈ {0, 1} represent tree

selections, where xij = 1 indicates that tree Tij is selected
and xij = 0 indicates otherwise. Then, our problem is to find
{xij} and {τi} by solving the following problem:

maximize
{xij},{τi}

Q∑
i=1

Ri(τi) (1)

subject to
Q∑
i=1

∑
j:e∈Tij

Reij(τi) · xij ≤ Ce, ∀e ∈ E, (2)

ki∑
j=1

xij = 1, i = 1, . . . , Q, (3)

xij ∈ {0, 1}, j = 1, . . . , Ji, i = 1, . . . , Q, (4)

τi ≥ τ li , i = 1, . . . , Q, (5)

where constraints (3) and (4) require that only one tree be
chosen for each query, while constraint (2) ensures that the
total throughput on link e will not exceed the link capacity Ce
(or the allotment to the application set by the administrator).
Since Reij(·) and Ri(·) can be learned from data offline, they
serve as predetermined basis functions in problem (1).

III. SOLUTION AND ALGORITHMS

In this section, we present a heuristic algorithm to solve the
optimization problem (1) and describe how to learn the basis
functions Reij(·) and Ri(·)) from trace data.

Assuming the basis functions Reij(·) and Ri(·) are learnt,
problem (1) is a hard non-convex problem, since there is a
multiplication between Reij(τi) and xij that leads to non-
convexity in the constraints. Hence, we solve Problem 1 by
proposing a heuristic algorithm which decouples path selection
and batch sizing. The key idea is to alternately solve two
subproblems, for tree selection and batch sizing, respectively.

Our heuristic algorithm is summarized in Algorithm 1.
Specifically, it initially chooses the direct path for each
query i and initializes {xij} accordingly. In each iteration,
it solves two subproblems alternately: it first maximizes the
total goodput

∑Q
i=1Ri(τi) over {τi} while keeping the path

selection {xij} fixed; it then maximizes the aggregate residual
network bandwidth by adjusting the path selection {xij} while
keeping the batch sizes {τi} fixed. For the path selection

Algorithm 1 Iterative alternated optimization for Problem (1).
1: Input: Basis functions {Ri(·)}, {Reij(·)}; link capacities
{Ce}.

2: Output: {xkij}, {τki } when the algorithm stops.
3: k := 0. Initialize {x0ij} by choosing the direct path for

each query i.
4: Solve the following subproblem to obtain {τki }:

maximize
{τi}

Q∑
i=1

Ri(τi) (6)

subject to
Q∑
i=1

∑
j:e∈Tij

Reij(τi) · xkij ≤ Ce, ∀e ∈ E,

τi ≥ τ li , i = 1, . . . , Q.

5: Solve the following subproblem to obtain {xk+1
ij }:

maximize
{xij :0≤xij≤1}

∑
e∈E

(
Ce −

Q∑
i=1

∑
j:e∈Tij

Reij(τ
k
i) · xij

)
(7)

subject to
ki∑
j=1

xij = 1, i = 1, . . . , Q,

6: k := k + 1. Repeat Steps 4-5 until the stop criterion is
met.

7: For each particular query i, round the largest xij to 1 and
the remaining x′ijs to 0.

subproblem, x′ijs are first relaxed to fractional numbers and
finally rounded to 0 or 1, such that each query only chooses
a single aggregation tree. The intuition is that we should
minimize the batch sizes when the path selection is fixed
and should create more residual bandwidth by adjusting path
selection when the batch sizes are fixed.

It is worth noting that the subproblems involved in Steps
4 and 5 of Algorithm 1 and be efficiently solved by standard
optimization techniques or linear programming.

Now we describe the procedure to learn the basis functions,
which are required as the input to Algorithm 1. As has been
shown in Sec. II, the basis functions Ri(·) and Reij(·) depend
on the input-output relationship Ui in a particular application
as well as data generation rates rvi, which can be monitored
at each input source v.

For a variety of typical queries, the input-output relationship
U actually demonstrates an approximately linear and stable
shape over different input sizes [3], and thus can be readily
profiled in advance. For example, WordCount calculates the
count of each distinct word in documents, where the number
of distinct words linearly increases with the arrival of input
documents. This is true at least in the regime of micro-batches,
as we will verify by profiling real Wikipedia data. Grep finds
all the input strings that match a particular pattern, e.g., all
the lines containing a specific word in system logs. Again,

0 10 20 30 40 50
0

5

10

15

20

Input Data Size (MB)

O
u

tp
u

t
D

a
ta

 S
iz

e
 (

M
B

)

Fig. 2. The input-output relationship of WordCount based on 12 GB of
Wikipedia data. Linear regression reveals the fit of the model for the output
size U(I) = 0.40I + 0.43 as a function of the input size I .

more lines will match the pattern as more input logs become
available. The Top-k Count gathers the counts of the most
popular k elements (e.g., URL, keywords), and thus the output
remains constant as the input data size increases.

In fact, in Facebook’s big data analytics cluster, the ratio
of intermediate to input data sizes is 0.55 for a median query,
with 24% of queries even having this ratio greater than 1 [4].
Since Spark Streaming is based on micro-batches, it exhibits
a similar input-output scaling pattern, although in the regime
of small batch sizes.

The particular U can be learned for each application either
based on benchmarking data or adaptively from past data
during runtime. Here we specifically characterize the input-
output relationship U of WordCount, which is a widely used
benchmarking query for big data platforms, based on a pub-
licly available 12 GB text dataset from Wikipedia [5]. To focus
on the micro-batch regime, we split the Wikipedia dataset into
small chunks of different sizes ranging from 5–50 MB, and
randomly choose 10 chunks of each size to serve as the inputs
of WordCount in Spark. We perform a linear regression for the
input-output relationship and show it in Fig. 2. We can observe
that the output size is approximately U(I) = 0.40I+0.43 for
an input size I between 5 MB and 50 MB, a range compatible
to micro-batches in streaming analytics.

If Ui is linear, Mi(τi) is linear in τi, and Ri(τi) :=
Mi(τi)/τi will be a linear function of the query frequency
1/τi. Similarly, Reij(τi) is linear in 1/τi. Therefore, in this
case, Problem (6) can be converted to a linear program.

IV. PERFORMANCE EVALUATION

We conducted real-world experiments to evaluate our ex-
tended Spark Streaming framework in an emulated bandwidth-
constrained environment on Amazon EC2 instances. We com-
pare the proposed Wide-area Spark Streaming to the original
Spark Streaming with a data locality mechanism.

A. Experimental Setup

Testbed Setup: We build a testbed of 7 compute instances
in the US East region on Amazon EC2 with controllable
inter-instance bandwidth constraints. Since the cost of storage

Node
A

Node
B

Node
D

Node
E

Node
C

20 Mbps

30 Mbps 5 Mbps

10 M
bps 15 Mbps

25 M
bps

30
 M

bp
s 35 M

bps

25
 M

bp
s

25 Mbps

Node
F

30 Mbps

25
 M

bp
s

25 Mbps

15
 M

bp
s 5 M

bps

Manager
 Node

Fig. 3. The WAN emulation testbed launched for streaming experiments.

and processors is decreasing at a faster pace than that of
provisioning bandwidth [6], [7], bandwidth is more likely to
become the bottleneck in wide area streaming analytics. We
therefore use c3.8xlarge instances to emulate adequate com-
pute and memory resources. Each c3.8xlarge has 32 vCPUs
and 64 GB memory. To emulate the bandwidth constraints
that would exist in wide area networks, we leverage Linux
Traffic Control to limit the link bandwidth between compute
instances. Detailed bandwidth connections are shown in Fig.
3, where the link bandwidth is chosen from 5 to 35 Mbps at
random. Even though each compute instance we launched is
not as large as a commodity datacenter, we believe that the
testbed can faithfully emulate the bandwidth bottlenecks in a
wide area network.

Deployment: To emulate a multi-user environment, where
each user runs a separate streaming query, we leverage Docker
to deploy Spark Streaming clusters on the launched testbed.
Docker is a widely used technique to automate the deployment
of software applications in a lightweight, portable, and self-
sufficient way. Specifically, we use Docker Swarm to turn a
pool of hosts into a single virtual host, as shown in Fig. 4.
Then, we deploy a Spark cluster for each user by launching
a set of containers in the virtual host. In such a case, each
user can run its respective streaming query independently
in its own Spark cluster (consisting of containers located
in all 7 instances), while different Spark clusters will run
simultaneously and share the network.

Workloads: We use 20 recurring WordCount queries for
testing, as WordCount is a typical streaming query used in the
benchmarking of big data processing systems. For each query,
there are two input sources placed on two randomly chosen
nodes and there is one randomly chosen output node where
the query is answered. In addition, the input data generation
rate for each input source is uniformly chosen from 1 to 5

A Single, Virtual Host via Docker Swarm

Manager

Node

Swarm

Manager
Node A

Swarm

Worker
Node F

Swarm

Worker

Spark Master1

…

Spark Worker1.1

…

Spark Worker1.6

…

Overlay Network Spark1

…

…

…

…Spark Master2 Spark Worker2.1 Spark Worker3.6

Spark Master20 Spark Worker20.1 Spark Worker20.6

Overlay Network Spark2

Overlay Network Spark20

Fig. 4. Deploying wide area streaming on the launched cluster via Docker.

TABLE I
INPUT DATA GENERATION RATES USED IN OUR EXPERIMENT.

Query 1 Query 2 Query 3 Query 4 Query 5
Input 1 1 Mbps 2 Mbps 5 Mbps 2 Mbps 2 Mbps
Input 2 4 Mbps 2 Mbps 1 Mbps 4 Mbps 1 Mbps

Query 6 Query 7 Query 8 Query 9 Query 10
Input 1 2 Mbps 4 Mbps 4 Mbps 2 Mbps 2 Mbps
Input 2 4 Mbps 3 Mbps 2 Mbps 1 Mbps 3 Mbps

Query 11 Query 12 Query 13 Query 14 Query 15
Input 1 2 Mbps 5 Mbps 1 Mbps 2 Mbps 1 Mbps
Input 2 2 Mbps 2 Mbps 4 Mbps 2 Mbps 2 Mbps

Query 16 Query 17 Query 18 Query 19 Query 20
Input 1 2 Mbps 1 Mbps 5 Mbps 1 Mbps 2 Mbps
Input 2 3 Mbps 2 Mbps 2 Mbps 4 Mbps 4 Mbps

Note: each query has two input sources, and two corresponding input data
generation rates.

Mbps, as shown in Table I.

B. Batch Sizing and Evaluation Methodology

In our experiments, we compare the following two versions
of Spark Streaming systems, which represent different meth-
ods to make routing and batch sizing decisions:

Wide-area Spark Streaming: use the proposed Algo-
rithm 1 to jointly determine the proper batch size τBW for each
query as well as the routing paths, i.e., the aggregation tree,
for each query. Enforce scheduling decisions by modifying
application workflows.

Original Spark Streaming: each input source node of a
query sends its locally aggregated input data to the central
collecting site, where the data is further processed and aggre-
gated to produce final query output. We run Algorithm 1 with
such direct path selection for each query to obtain its optimal
batch sizes. The built-in data locality mechanisms in Spark are
used to enforce all the reduce tasks be placed at the output
node. This strategy represents a common industrial practice
conforming to data locality.

With bandwidth constraints, the computed batch size for
Wide-area Spark Streaming is significantly smaller than that
for Original Spark Streaming for each query. This implies
that Wide-area Spark Streaming, which intelligently selects
detours to avoid bottleneck links, can support a potentially
higher query rate in this bandwidth-constrained scenario.

For validation and performance evaluation, we run all
queries for a period of 5 minutes under both Wide-area Spark
Streaming and Original Spark Streaming strategies to measure
the processing time per batch.

C. Experimental Results

The processing time per micro-batch is the most important
performance metric for streaming queries, involving both the
computation time and shuffling time. The latter may include
the time to transfer data in WANs. We show the average
and 95-th percentile processing time per micro-batch for each
query in Fig. 5. It is clear that for Query 1, 5, 8, 9, 10, 14,
15 and 17, Wide-area Spark Streaming achieves smaller batch
processing times, as compared to Original Spark Streaming.
We can further observe that there is not much difference
for the remaining queries, in terms of the batch process-
ing time. Wide-area Spark Streaming intelligently leverages
high-bandwidth detoured paths to serve distributed streaming
queries, leading to a higher query rate and reduced processing
times. The above results also verify that our launched testbed
on the Amazon EC2 platform with Docker-based deployment
is appropriate to evaluate Wide-area Spark Streaming.

V. RELATED WORK

Geo-distributed data analytics has become an active research
topic recently. Existing work mainly falls into two categories:

Batch processing in the wide area. Geode [8], [9] and
Pixida [10] are proposed to reduce cross-datacenter traffic by
optimizing the query execution plan, data replication and task
scheduling. Flutter [11] and Iridium [3] aim to reduce the
job completion time by moving reduce tasks close to data.
In contrast, our work focuses on streaming analytics, instead
of batch processing.

Stream processing in wide area. A number of new
streaming computing engines for large-scale stream processing
are presented in recent literature [1], [7], [12]–[16]. Some of
them [1], [12], [14] focus on providing fault-tolerant streaming
services, which are orthogonal to our concerns of bandwidth
variations on WAN links with scarce bandwidth. The most
related work is JetStream [7], while our work is different from
it. Though we both care the bandwidth constraints, the strategy
of aggregation and degradation leveraged in JetStream trades
accuracy for reducing data size while our work preserves the
data fidelity. Regarding batch-sizing in streaming processing,
Das et al. [17] have designed a control algorithm to automat-
ically adapt batch size to make sure that the batched data can
be processed as fast as they arrived. It is implemented within
a datacenter which available bandwidth is consistently high.
However, our work faces to WAN links.

Task scheduling. There is a recent trend to enhance the
performance of distributed jobs by carefully scheduling tasks
[18]–[21]. These work intended to accomplish different goals.
For example, Quincy [18] took data locality into consideration
to reduce job completion time; Delay Scheduling [19] bal-
anced the locality and fairness. However, our work builds upon
the default Spark scheduler [19], and seamlessly combines

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Query Index

10 1

100

101

102

103
Ba

tc
h

Pr
oc

es
sin

g
Ti

m
e

(s
)

Wide-area Spark Streaming (Average)
Wide-area Spark Streaming (95th percentile)

Original Spark Streaming (Average)
Original Spark Streaming (95th percentile)

Fig. 5. The average and 95th percentile processing time per batch for each of the 20 queries.

routing and batch sizing to optimize the process time of
streaming query applications.

VI. CONCLUDING REMARKS

This paper addresses the challenging problem of automated
data routing and batch sizing for running Spark Streaming
in wide area networks where the bandwidth is not always
sufficient and varies significantly among different WAN links.
To jointly select the best path and batch sizes, we formulate a
nonconvex optimization, and solve it by decoupling routing
and batch sizing into two alternately solved subproblems.
Our algorithm can take advantage of detoured route with
higher bandwidth to effectively reduce the processing time of
each micro-batch. Extensive performance evaluation based on
experiments conducted on an Amazon EC2 cluster implies that
our solution can support higher query response rates, a larger
query output rate, with significantly reduced tail processing
latencies.

REFERENCES

[1] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Dis-
cretized Streams: Fault-Tolerant Streaming Computation at Scale,” in
Proc. Twenty-Fourth ACM Symposium on Operating Systems Principles,
2013.

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-Memory Cluster Computing,” in Proc.
USENIX NSDI, 2012.

[3] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl,
and I. Stoica, “Low Latency Geo-Distributed Data Analytics,” in Proc.
ACM SIGCOMM, 2015.

[4] Y. Yu, P. K. Gunda, and M. Isard, “Distributed Aggregation for Data-
parallel Computing: Interfaces and Implementations,” in Proc. ACM
SOSP, 2009.

[5] “Wikipedia,” https://en.wikipedia.org/wiki/Main_Page.
[6] Y. M. Chen, L. Dong, and J.-S. Oh, “Real-Time Video Relay for

UAV Traffic Surveillance Systems through Available Communication
Networks,” in 2007 IEEE Wireless Communications and Networking
Conference, 2007.

[7] A. Rabkin, M. Arye, S. Sen, V. S. Pai, and M. J. Freedman, “Aggregation
and Degradation in Jetstream: Streaming Analytics in the Wide Area,”
in Proc. USENIX NSDI, 2014.

[8] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Padhye, and
G. Varghese, “Global Analytics in the Face of Bandwidth and Regulatory
Constraints,” in Proc. USENIX NSDI, 2015.

[9] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, K. Karanasos,
J. Padhye, and G. Varghese, “WANalytics: Geo-Distributed Analytics
for a Data Intensive World,” in Proc. ACM SIGMOD International
Conference on Management of Data, 2015.

[10] K. Kloudas, M. Mamede, N. Preguiça, and R. Rodrigues, “Pixida:
Optimizing Data Parallel Jobs in Wide-Area Data Analytics,” Proc.
VLDB Endow., vol. 9, no. 2, Oct. 2015.

[11] Z. Hu, B. Li, and J. Luo, “Flutter: Scheduling Tasks Closer to Data
Across Geo-Distributed Datacenters.”

[12] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax,
S. McVeety, D. Mills, P. Nordstrom, and S. Whittle, “MillWheel: Fault-
Tolerant Stream Processing at Internet Scale,” in Very Large Data Bases,
2013.

[13] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulka-
rni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, and
D. Ryaboy, “Storm@Twitter,” in Proc. ACM SIGMOD, 2014.

[14] J. H. Hwang, U. Cetintemel, and S. Zdonik, “Fast and Reliable Stream
Processing over Wide Area Networks,” in Proc. IEEE International
Conference on Data Engineering Workshop, 2007.

[15] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and
M. Seltzer, “Network-Aware Operator Placement for Stream-Processing
Systems,” in Proc. IEEE International Conference on Data Engineering,
2006.

[16] B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin, and L. Zhou, “Comet:
Batched Stream Processing for Data Intensive Distributed Computing,”
in Proc. ACM SoCC, 2010.

[17] T. Das, Y. Zhong, I. Stoica, and S. Shenker, “Adaptive Stream Processing
Using Dynamic Batch Sizing,” in Proceedings of the ACM Symposium
on Cloud Computing, ser. Proc. ACM SoCC, 2014.

[18] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg, “Quincy: Fair Scheduling for Distributed Computing Clusters,” in
Proc. ACM SIGOPS, 2009.

[19] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay Scheduling: A Simple Technique for Achieving
Locality and Fairness in Cluster Scheduling,” in Proc. ACM EuroSys,
2010.

[20] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: Dis-
tributed, Low Latency Scheduling,” in Proc. ACM SOSP, 2013.

[21] X. Ren, G. Ananthanarayanan, A. Wierman, and M. Yu, “Hopper:
Decentralized Speculation-Aware Cluster Scheduling at Scale,” in Proc.
ACM SIGCOMM, 2015.

