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Abstract—Middleboxes have found widespread adoption in

today’s networks. They perform a variety of network functions

such as WAN optimization, intrusion detection, and network-

level firewalls. Processing packets to serve these functions often

require multiple middlebox resources, e.g., CPU and link band-

width. Furthermore, different packet traffic flows may consume

significantly different amounts of various resources, depending

on the network functions that are applied. Multi-resource fair

queueing is therefore needed to allow flows to share multiple

middlebox resources in a fair manner. In this paper, we clarify

the fairness requirements of a queueing scheme and present

Dominant Resource Generalized Processor Sharing (DRGPS), a

fluid flow-based fair queueing idealization that strictly realizes

Dominant Resource Fairness (DRF) at all times. As a form

of Generalized Processor Sharing (GPS) running on multiple

resources, DRGPS serves as a benchmark that practical packet-

by-packet fair queueing algorithm should follow. With DRGPS,

techniques and insights that have been developed for traditional

fair queueing can be leveraged to schedule multiple resources.

As a case study, we extend Worst-case Fair Weighted Fair

Queueing (WF

2
Q) to the multi-resource setting and analyze its

performance.

I. INTRODUCTION

Network appliances or “middleboxes” are ubiquitous today,
especially in enterprise networks and datacenters [1], [2].
These middleboxes perform a wide range of critical network
functions, including WAN optimization, intrusion detection,
as well as network-level and application-level firewalls. Many
middleboxes today already perform different network func-
tions for different traffic flows, e.g., WAN optimizations for the
inter-site flows and intrusion detection for the external flows.
Recent architecture innovations further advocate consolidating
more functions onto the same device – in the form of software-
defined middleboxes deployed in either commodity servers [1],
[3], [4] or IaaS cloud instances [2] – for better infrastructure
management and scalability.

Such a trend of function consolidation in middleboxes com-
plicates resource scheduling. Unlike basic forwarding, most
middlebox functions perform deep packet processing based on
the packet content, and therefore require a variety of hardware
resources, e.g., CPU, memory bandwidth, link bandwidth,
etc. Packet processing for these middlebox functions differs
significantly in terms of the required hardware resources. For
example, performing intrusion detection usually bottlenecks
on the CPU resources, while forwarding a large amount
of small packets via software routers congests the memory
bandwidth [5]. Thus, depending on the network functions
they go through, different traffic flows may consume vastly

different amounts of middlebox resources [6]. A fair queueing
algorithm is therefore highly desirable to schedule packets in a
way such that each flow receives predictable service isolation
independent of the other’s demand.

Although single-resource scheduling has been extensively
investigated in the past decades [7], multi-resource fair queue-
ing has largely been an uncharted territory. In fact, it remains
unclear what notion of fairness should a scheduling algorithm
pursue, and how the fairness of a given scheduling scheme
should be measured. To answer the questions above requires a
fair queueing benchmark, which also plays a central role in re-
source scheduling. Indeed, when there is only a single resource
to schedule (i.e., link bandwidth), Generalized Processor Shar-
ing (GPS) [8], [9] has been proposed as a benchmark. GPS
implements strict max-min fairness in the idealized fluid model
and guides the design of many packet-by-packet scheduling
schemes, including WFQ, WF2Q, SCFQ, SFQ, DRR, etc., all
of which are approximations to GPS in practice.

Despite the important role of a queueing benchmark, it
remains unclear what the benchmark is when multiple re-
sources are to be scheduled. It has been shown by Ghodsi
et al. [6] that naively extending GPS to schedule multiple
resources (e.g., per-resource fairness and bottleneck fairness)
will compromise service isolation, as the service received by
a flow may be strategically manipulated by another. Ghodsi et
al. further suggest a compelling packet-by-packet scheduling
alternative based on Dominant Resource Fairness (DRF) [10],
in which each flow receives roughly the same processing time
on its most congested resource. However, without specifying
a benchmarking scheme, it is unable to measure how good the
design is or if there is any room for improvement.

In search for such a fair queueing benchmark for multiple
resources, we apply the DRF notion to the idealized fluid flow
traffic environment where flows receive service in arbitrarily
small increments on all resources. The resulting idealization,
referred to as Dominant Resource GPS (DRGPS), allows flows
to receive equal service on their dominant resources at all
times. DRGPS offers perfect service isolation that is immune
to any strategic behaviours of flows, and is work conserving as
well. It hence serves as an attractive fair queueing benchmark
among various forms of multi-resource GPS (e.g., GPS with
per-resource fairness or bottleneck fairness). We also design
a simple algorithm that can accurately emulate DRGPS by
stamping service tags upon packet arrivals.

We believe in the importance of DRGPS in multi-resource
scheduling for a number of reasons. First, as a benchmark,



DRGPS can be used to measure the performance of a given
queueing scheme. We consider two fairness metrics, the Abso-
lute Fairness Bound (AFB) and the Relative Fairness Bound
(RFB). Though both can be similarly defined as in the single-
resource scenario [11], AFB might not be well justified under
the multi-resource setting and is usually hard to obtain. As
for RFB, we show that, counter-intuitively, a packet service
discipline may achieve better fairness performance in the
multi-resource setting as compared with the single-resource
counterpart.

More importantly, we see that DRGPS guides the design
of practical packet-by-packet service disciplines. With it,
techniques and insights that have been developed for fair
queueing (e.g., [11] Ch. 9) could be borrowed into multi-
resource scheduling design. We present our findings via both
high-level discussions and concrete case studies. We show that,
by emulating DRGPS, well-known fair queueing algorithms
such as WFQ [8], [9], WF2Q [12], and FQS [13] will have im-
mediate multi-resource extensions. Focusing on multi-resource
WF2Q only, we analyze its performance and derive novel
bounds on its fairness, measured by the multi-resource RFB.
Many practical considerations are also discussed in this paper.
Based on the insights derived from DRGPS, it is possible to
leverage the substantial effort that has been put forth on fair
queueing to the new, yet critical, multi-resource environment
in today’s networks.

II. FAIR QUEUEING AND ITS DESIGN OBJECTIVES

For a queueing discipline, one central issue to be addressed
is the notion of fairness. In essence, what queueing algorithm
is deemed to be fair? Despite the pioneering work of Ghodsi
et al. [6], the answer to this question remains fuzzy in the
middlebox environment, where traffic flows require multiple
hardware resources. In this section, we briefly review those
desired scheduling properties that are uniformly required in
the fair queueing literature [7], [8]. We extend them to
the multi-resource environment and define multi-resource fair
scheduling.

An essential property of fair queueing is to offer predictable
service isolation. In single-resource queueing, for example,
when link bandwidth is the only resource to schedule, each of
the n backlogged flows should receive 1/n bandwidth share.
Weighted fairness generalizes this property, such that each
flow i is assigned a weight wi and will receive wi/

P
j wj

bandwidth share.
Property 1 (Service isolation): Suppose there are n flows

that are backlogged. A multi-resource queueing scheme offers
predictable service isolation if for each flow i, the received
service is at least at the level when every resource is equally
allocated. Further, when flow i is assigned a weight wi, then
the received service is at least at the level when every resource
is allocated in proportion to the weight, i.e., flow i receives
wi/

P
j wj allocated share on each resource.

Note that, under multi-resource fair queueing, having the
same service share does not imply the same resource alloca-
tion, as resources that are allocated might not be fully utilized.
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Fig. 1. Packets may consume different amounts of resources, and may have
different processing rates on different resources.

P1

CPU
100%
0%

1 Time

P2

0 2

P1

Link
100%
0%

Time0 2

P2

1

3

3

...

...

(a) h100% CPU, 100% Linki.
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(b) h100% CPU, 50% Linki.

Fig. 2. Different resource allocations may lead to the same service for a
flow. (a) Throughput mismatch between CPU and link bandwidth in Fig. 1
makes it impossible to fully utilize the allocated link bandwidth. The received
service is 1 packet per time unit. (b) Reducing the bandwidth allocation to
50% will not reduce the received service.

To see this, consider a flow whose traffic needs encryption
before transmission, and hence more time is needed for the
CPU to process a packet than the link to transmit it. As shown
in Fig. 1, when 100% of each resource is applied, the CPU
processing time is twice the link transmission time. Consider
two allocations, one allocating h100% CPU, 100% Linki, the
other allocating h100% CPU, 50% Linki. As illustrated in
Figs. 2a and 2b, under two different allocations, the flow
receives the same service of 1 packet per unit time. For this
reason, to offer service isolation, it is not always necessary to
equally divide every resource among all traffic flows.

In fact, a naive scheduling scheme that equally divides
all resources among traffic flows (referred to as per-resource
fairness in [6]) is vulnerable to strategic behaviours. As noted
by Ghodsi et al. [6], by artificially inflating their demand for
resources they do not need, some flows may receive better
service, at the cost of other flows. To discourage such strategic
behaviours, we further require truthfulness in a scheduling
scheme.

Property 2 (Truthfulness): A multi-resource queueing
scheme is truthful if no flow can receive better service (i.e.,
finish faster) by misreporting the amount of resources it
requires.

Both service isolation and truthfulness have been noted by
Ghodsi et al. [6] as the design objective of fair queueing1.
While they ensure the basic requirements of fairness, we
believe resource utilization is another important dimension to
evaluate a fair queueing scheme. We therefore introduce work
conservation to reflect such a concern of queueing efficiency.

Property 3 (Work conservation): A multi-resource
queueing scheme is work conserving if no resource that
could be used to serve a busy flow is wasted in idle. In other

1Service isolation is defined in another form in [6], called share guarantee.
Our definition here is more intuitive and precise.
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Fig. 3. This schedule offers service isolation but is non-work-conserving.
Here, P1, P2,. . . are packets of flow 1, while Q1, Q2,. . . are packets of flow 2.

words, whenever there is a flow that is backlogged, at least
one resource is fully utilized.

One may conclude that work conservation is implied from
service isolation. However, this is not true. Consider two flows:
packets of flow 1 require 2 time units for CPU processing and
3 time units for link transmission, while packets of flow 2
requires 3 time units for CPU processing and 2 time units for
transmission. As shown in Fig. 3, the schedule in which flow 1
and 2 receive h1/3 CPU, 1/2 Linki and h1/2 CPU, 1/3 Linki
respectively offers service isolation, but it is not work con-
serving, since 1/6 CPU and 1/6 link bandwidth are wasted in
idle, even though flow 1 and 2 are backlogged.

Having all three properties above defines a fair queueing
scheme. When there is a single resource to schedule (i.e., link
bandwidth), all these requirements are perfectly met by GPS
[8], [9] in the idealized fluid model, which can then be used
as a fair queueing benchmark. Many well-known packet-by-
packet scheduling disciplines, such as WFQ, WF2Q, SCFQ,
SFQ, DRR, etc., are then designed to approximate GPS.

However, having multiple resources to schedule signifi-
cantly complicates the queueing design. In fact, Ghodsi et
al. [6] show that several natural scheduling algorithms for mid-
dleboxes, such as bottleneck fair queueing and per-resource
fair queueing, all fail to provide service isolation. Ghodsi et al.
then suggest a promising packet-based alternative that achieves
Dominant Resource Fairness (DRF) over time. However, it
remains largely unknown if there is a GPS-like idealized
schedule that can be used as a benchmark in the multi-resource
setting, without which one cannot properly evaluate what a
packet-based schedule should approximate. We answer this
question in the next section.

III. DOMINANT RESOURCE GPS (DRGPS)
In this section, we present Dominant Resource GPS

(DRGPS), a fluid flow-based service discipline that imple-
ments strict DRF allocation at all times. We show that DRGPS
possesses all important fairness properties given in the pre-
vious section, and hence serves as an ideal fair queueing
benchmark based on which practical packet-based scheduling
could be designed and measured.

A. Dominant Resource Fairness (DRF)

Since DRGPS is designed to implement DRF allocation,
we briefly review DRF and some relevant concepts. DRF was
originally designed for job scheduling in datacenters [10]. In
that setting, the equivalence of a flow is a computing job,
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Fig. 4. An example of a DRF allocation, under which the dominant shares
of two jobs are equalized.

and the equivalence of a packets is a job’s task. Running a
job’s task may consume multiple hardware resources, taking
up a fractional share of each of the resources. The dominant
resource of a job is the resource whose share by the job is
maximum among all resources consumed by the job. A job’s
dominant share is the share of its dominant resource. For
example, consider a computing cluster with 100 CPUs and
200 GB memory in total, and a job whose tasks require 30
CPUs and 40 GB memory. The dominant resource of this job is
CPU, and the associated dominant share is 3/10 (as compared
to 1/5 for memory).

The DRF allocation implements the max-min fairness on
every job’s dominant resource. It tries to “equalize” the
dominant share allocated to each job. As an example, we refer
to Fig. 4, where two jobs run tasks with resource profiles
h10 CPUs, 4 GBi and h2 CPUs, 16 GBi in a cluster with 100
CPUs and 200 GB memory. The dominant resource of job
1 is CPU while the dominant resource of job 2 is memory.
The DRF allocation then allocates h80 CPUs, 32 GBi to job
1 (i.e., 8 tasks) and h20 CPUs, 160 GBi to job 2 (i.e., 10
tasks), through which the dominant share of the two jobs is
equalized to 4/5. The attractiveness of DRF lies in a set of
highly desired fairness properties of the resulting allocation,
notably the share incentive, Pareto efficiency, truthfulness, and
envy-freeness [10], [14].

Achieving the DRF allocation via a queueing scheme im-
poses nontrivial challenges. As pointed out in [6], in datacenter
environments, it is typical to have many more resources than
active jobs, and one can simply divide resources across jobs.
However, this is not the case in a middlebox, where resources
are much fewer than the number of active flows, and must
be shared in time instead of space. We will discuss in the
following subsection how such a gap can be effectively bridged
via a multi-resource fluid flow model.

B. Multi-Resource Fluid Flow Model

In practice, resources are scheduled in sequence to process
a packet. For example, CPU is often scheduled first for
packet processing, followed by memory bandwidth, which
is consumed to forward processed packets to the Network
Interface Card (NIC), in which the link bandwidth is scheduled
for packet transmission.

Depending on the functions it goes through, a packet
may consume different amounts of middlebox resources, each
requiring different processing times. As shown in the previous



example of Fig. 1, for a packet that needs encryption before
transmission, the packet processing rate on CPU is only half
the rate on the link bandwidth. Such service mismatch makes it
impossible to fully utilize the link resource. We see in Fig. 2a
that even if 100% bandwidth is allocated for packet transmis-
sion, the link remains idle for 50% of the time. As a result,
the service received is bottlenecked on CPU. This implies
that allocating full link bandwidth for packet transmission
is unnecessary. Instead, if we only allocate 50% bandwidth
and assume that packets can be served in arbitrarily small
increments on the link resource, we will have a scheduling
outcome shown in Fig. 2b. We see that the received service
remains 1 packet per time and is the same as that in Fig. 2a.

Generally speaking, the discrepancy among processing rates
on different resources leads to allocation waste, as the received
service is bottlenecked by the minimum one across all re-
sources. Therefore, resources should be allocated in a way
such that packets are processed at the same rate. This can
be exactly realized in the multi-resource fluid model, where
packets receive the service in infinitesimally small increments
on every resource.

Formally, given some packet, let ⌧r be the processing time
on resource r when 100% of resource r is allocated to process
it. The full service rate on resource r is then 1/⌧r. Now
let fr be the share (fraction) of resource r allocated. The
corresponding service rate on resource r is fr/⌧r. A non-
wasteful allocation should have a uniform service rate across
all resources, i.e.,

fr/⌧r = fr0/⌧r0 (1)

for all r and r0. In the previous example, h⌧
1

, ⌧
2

i =

h1 CPU time, 0.5 Link timei (see Fig. 1). The allocation
h100% CPU, 50% Linki in Fig. 2b is non-wasteful with a
uniform service received on both CPU and link bandwidth
(i.e., 1 packet per time).

Here we make a key observation on non-wasteful alloca-
tions. Since resources are processed at a uniform service rate,
it is equivalent to considering all of them to be scheduled
in parallel. Fig. 5 shows an equivalent representation of
Fig. 2b, where both CPU and link bandwidth are scheduled
simultaneously. Note that such a parallel resource consumption
model is only possible in the idealized multi-resource fluid
model. With it, resource scheduling in time has an equivalent
representation of resource allocation in space, which we will
use in the next subsection.

C. Dominant Resource Generalized Processor Sharing

DRGPS implements exact DRF allocation in the fluid
model, at all times. In particular, for any packet, its dominant
resource is simply the one that needs the most time to process
when using 100% of the resource, i.e., the one with the
maximum processing time ⌧r. In Fig. 1, both P1’s and P2’s
dominant resource is CPU. The dominant share is then defined
as the fraction of the dominant resource allocated, and is 100%
for P1 and P2 in Fig. 5. At any given time, DRGPS seeks to
“equalize” the dominant share of packets across all flows (with
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Fig. 5. An equivalent view of Fig. 2b, where resources are scheduled in
parallel.

TABLE I
RESOURCE PROFILES OF PACKETS IN TWO FLOWS.

Packet Flow Arrival Time hCPU,Linki
P1 Flow 1 0 h4, 2i
Q1 Flow 2 1 h1, 1i
Q2 Flow 2 2 h1, 3i

appropriate weights in the case of weighted fairness), leading
to an exact DRF allocation in the fluid flow model.

As an example, consider two equally weighted flows requir-
ing both CPU and link bandwidth. Flow 1 has one packet P1
to serve at time 0, while flow 2 has two, Q1 and Q2, arriving at
times 1 and 2, respectively. P1’s resource profile is h4, 2i. That
is, it takes 4 units of time for CPU to process P1, and 2 for
Link, both working with full utilization. The resource profiles
of Q1 and Q2 are h1, 1i and h1, 3i, respectively. Table I gives
a brief summary.

The resulting DRGPS allocation over time is given in
Table II and is also depicted in Fig. 6. At time 0, only
P1 is ready for service. Based on its resource profile,
DRGPS allocates 100% CPU and 50% link bandwidth (i.e.,
h1 CPU, 1/2 Linki), leading to a maximum uniform service
rate 1/4. This allocation remains until time 1, at which time
Q1 is ready for flow 2, competing with P1 for both CPU
and link bandwidth. Since CPU is the dominant resource of
both packets, it is evenly allocated to each of them. As a
result, P1 receives h1/2 CPU, 1/4 Linki while Q1 receives
h1/2 CPU, 1/2 Linki, where the link bandwidth is allocated
in proportion to the resource profile of the two packets.
With this allocation, it takes 2 time units to serve Q1.
Hence, at time 3, Q2 replaces Q1 and competes with P1
for resources. Unlike P1, Q2’s dominant resource is the link
bandwidth. DRGPS then allocates h2/3 CPU, 1/3 Linki to P1
and h2/9 CPU, 2/3 Linki to Q2, under which their dominant
shares are equalized and the throughput is maximized. Such an
allocation maintains until P1 gets fully served at time 6. From
then on, Q2 is the only packet to serve. It is then allocated
h1/3 CPU, 1 Linki and finishes at time 7.

We now formalize the description of DRGPS. Let us define
B(t) as the set of flows that are backlogged at time t. These
flows are competing for m middlebox resources. For flow i 2
B(t), let wi be its weight, and h⌧i,1, . . . , ⌧i,mi be the resource
profile of its packet currently being served, where ⌧i,r is the
processing time on resource r (assuming full utilization). The



TABLE II
THE RESULTING DRGPS SCHEDULING FOR THE EXAMPLE OF TABLE I.

Time Interval

Flow 1 Flow 2

Packet Allocation Packet Allocation

[0, 1) P1 h1, 1/2i N/A N/A
[1, 3) P1 h1/2, 1/4i Q1 h1/2, 1/2i
[3, 6) P1 h2/3, 1/3i Q2 h2/9, 2/3i
[6, 7) N/A N/A Q2 h1/3, 1i
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Fig. 6. An pictorial illustration of DRGPS for the example of Table I.

dominant resource of this packet is denoted as

r⇤i = argmax

r
⌧i,r . (2)

With DRGPS, the current packet in flow i receives the DRF
allocation hf t

i,1, . . . , f
t
i,mi, where f t

i,r is the share of resource r
allocated at time t. The computation of hf t

i,1, . . . , f
t
i,mi follows

directly from [10], [14]. In particular, when ⌧i,r > 0 for all
flow i and resource r, the resulting dominant share has a
simple form:

f t
i,r⇤i

=

wi

maxr
P

j2B(t) wj ⌧̄j,r
, (3)

where ⌧̄j,r = ⌧j,r/⌧j,r⇤j is the normalized processing time
on resource r for flow j. We see that all flows’ normalized
dominant shares are equalized under this allocation, i.e.,

f t
i,r⇤i

/wi = f t
j,r⇤j

/wj , 8i, j 2 B(t) . (4)

The share of a non-dominant resource r is determined
based on the dominant share as follows. Given an allocation
hf t

i,1, . . . , f
t
i,mi, the service received (i.e., processing rate) sti

is bounded by the minimum one on all resources, i.e.,

sti(hf t
i,1, . . . , f

t
i,mi) = min

r
f t
i,r/⌧i,r . (5)

To avoid unnecessary allocation waste, one should ensure that

f t
i,r/⌧i,r = f t

i,r0/⌧i,r0 , (6)

for all resource r and r0. Now taking r0 = ri⇤ , we have

f t
i,r = f t

i,r⇤i
⌧̄i,r, for all r. (7)

Next, we verify that DRGPS possesses all desired fairness
properties mentioned in Sec. II. Therefore, DRGPS offers an
ideal fair queueing benchmark in the multi-resource setting.

First, it offers service protection.
Proposition 1 (Service isolation): Under DRGPS, at any

given time t, the service received by a backlogged flow is
at least at the level that it would have received by allocating

resources in proportion to its weight, i.e., for all flow i 2 B(t),

sti(hf t
i,1, . . . , f

t
i,mi) � sti

 *
wiP
j wj

, . . . ,
wiP
j wj

+!
. (8)

Second, no scheduler manipulation is possible in DRGPS:
Proposition 2 (Truthfulness): Under DRGPS, no flow can

receive better service by misreporting the amount of resources
it requires. Formally, for any flow i 2 B(t), let hf t

i,1, . . . , f
t
i,mi

be the resulting allocation when i truthfully reports its packet
profile h⌧i,1, . . . , ⌧i,mi, and let h ˆf t

i,1, . . . , ˆf
t
i,mi be the resulting

allocation when i misreports. We then have

sti(hf t
i,1, . . . , f

t
i,mi) � sti(h ˆf t

i,1, . . . , ˆf
t
i,mi) . (9)

The proofs of Proposition 1 and 2 follow directly from the
properties of sharing incentive and strategy-proofness of the
DRF allocation in [14].

Third, DRGPS is work conserving:
Proposition 3 (Work conservation): Under DRGPS, at

least one resource is fully utilized when there is a packet that
has not yet finished service. Formally, at any time t when
B(t) 6= ;, there exists a resource r, such that

X

i2B(t)

f t
i,r = 1 . (10)

Proof: The proof can be obtained from combining the
Pareto optimality of DRF [14], and the work of Gutman et
al. [15] (Definitions 7, 8, 9 and Proposition 3). The details are
omitted due to space limitation.

Other beneficial properties of DRGPS includes envy-
freeness, that no flow prefers the other’s service allocation to
its own (assuming equal weight), single-resource fairness, that
DRGPS reduces to GPS when scheduling a single resource,
and population monotonicity [10], [14], that a flow will not
see the decrease of its service when other flows are finished
and relinquish their required resources.

D. Emulating DRGPS in Real-Time

So far, we have presented the theoretical model of DRGPS.
As we will show in Sec. V, DRGPS can also be used to
design practical packet-by-packet queueing schemes. A simple
algorithm is therefore needed to accurately emulate DRGPS.
Similar to GPS, such an emulation can be achieved based on
the evaluation of a time function that represents the progress of
work in the system. This function v(t), called virtual time, has
a rate of increase in time equal to that of the normalized service
received by any backlogged flow on the dominant resource,
i.e.,

v0(t) = f t
i,r⇤i

/wi, 8i 2 B(t) . (11)

Below we provide the formal definition.
Definition 1: The virtual time of DRGPS is defined as the

function v(t) which satisfies the following:

v(t) = 0, if B(t) = ; or t = 0 ,

d

dt
v(t) =

1

maxr
P

j2B(t) wj ⌧̄j,r
, o.w. (12)



The definition above indicates that, when there is no back-
logged flow in the system, the virtual time is reset to 0, which
is equivalent to setting t = 0. It is hence without loss of
generality to focus on the busy period, in which there are
always packets to process, i.e., B(t) 6= ; for all t in the period.

We now consider a flow i and its sequence of packets.
Denote the kth packet of the sequence by pki , its arrival time
by aki , and the time it finishes service under DRGPS by dki .
Let h⌧ki,1, . . . , ⌧ki,mi be the packet’s profile, where ⌧ki,r is the
required processing time on resource r. We further define Sk

i

as the virtual time when packet pki starts to receive service,
and F k

i as the virtual time when pki finishes service, i.e.,

F k
i = v(dki ), k = 1, 2, . . . (13)

We refer to Sk
i and F k

i as the virtual starting and finishing
times of packet pki , respectively. The following proposition
reveals their relationship.

Proposition 4: Under DRGPS, for every flow i, its virtual
starting and finishing times satisfy the following relationship:

Sk
i = max{F k�1

i , v(aki )} ,

F k
i = ⌧ki,rk⇤

i
/wi + Sk

i ,
(14)

where F 0

i = 0 for all flow i.
Proof: Let Ti(t1, t2) be the total processing time flow i

receives in the time interval (t
1

, t
2

). Let bki be the time that
pki starts to receive service, i.e.,

bki = max{aki , dk�1

i } , (15)

where we define d0i = 0. Note that all of the previous packets
of flow i are completely served by bki . We have

⌧ki,rk⇤
i
/wi = Ti(b

k
i , d

k
i )/wi

= v(dki )� v(bki ) ,
(16)

where the last equality holds because flow i is backlogged
during (bki , d

k
i ). By the definition of v(t), we see that it is

increasing during the busy period. Therefore, from (15), we
have

v(bki ) = max{v(aki ), v(dki )} . (17)

Substituting (17) to (16), we see the statement holds.
Proposition 4 provides a simple iterative algorithm to ac-

curately emulate DRGPS in real-time. Upon the arrival of
each packet, two service tags, the virtual starting time and
the virtual finishing time, are stamped, with their values
iteratively computed from (14). These service tags contain all
the scheduling information of a packet in the DRGPS system
(i.e., when the packet gets served and when it finishes) with
which the scheduling details are easily reconstructed.

Note that though DRGPS can be accurately emulated, it
cannot be implemented unless flows are served in arbitrarily
small increments. In contrast, practical service disciplines must
schedule packets as discrete entities. Under this constraint,
how to closely approximate DRGPS is a major challenge. This
challenge echos the significant efforts that have been put forth
to approximate GPS in the single-resource setting. We see

in the next section that, with DRGPS, these efforts can be
leveraged to schedule multiple resources.

IV. PACKET-BASED MULTI-RESOURCE FAIR QUEUEING

To closely approximate DRGPS, practical packet-by-packet
queueing scheme should schedule packets in a way such that
the DRF allocation is achieved over time. Two fundamental
questions therefore arise: (1) How do we measure the per-
formance gap between DRGPS and a packet-based scheme?
(2) How can a packet-by-packet alternative be designed to
closely track DRGPS? We take some initial steps towards
answering these questions, where we start off by elaborating
the performance measures.

A. Fairness Measures

Fairness is our primary concern. When there is a single
resource to schedule, two fairness metrics, Absolute Fairness
Bound (AFB) and Relative Fairness Found (RFB), are widely
adopted in the fair queueing literature [11]. Both can be
extended to the multi-resource setting.

Absolute Fairness Bound (AFB): AFB compares the work
progress of a packet-by-packet queueing scheme (real system)
with that in a referencing GPS system that receives the same
packet arrival process as in the real system. For any given
flow, AFB compares the service this flow receives in both the
real system and the referencing GPS system. The maximum
service gap is then used as a metric to measure the fairness
of a real system [11].

This idea may be directly extended to the multi-resource
setting, where a referencing DRGPS is maintained to track
the service received, which is then used to compare with
the service received in the real system. However, such a
comparison may be unfair. Since resources are processed in
parallel under DRGPS, its work progress may be far ahead
of that in real systems, in which resources are scheduled
in sequence. As a result, with AFB, some times it is hard
to tell if the discrepancy of work progress on the dominant
resource is due to unfairness of the scheduling algorithm itself
or the intrinsic advantage of the parallel resource processing
model adopted in DRGPS. Moreover, AFB is usually hard to
obtain, as it requires more involved analysis, even in the single-
resource setting [11]. It is hence less popular as compared with
RFB in the fair queueing literature [16], [7], [17].

Relative Fairness Bound (RFB): RFB is a another widely
adopted fairness metric in the fair queueing literature [16],
[11]. Without maintaining a referencing GPS system, RFB
measures the fairness of a real system by bounding the gap
between service received by a pair of backlogged flows. This
idea can also be naturally extended to the multi-resource
setting, which we shown below.

From the perspective of DRGPS, a service discipline is fair
if it equalizes all flows’ service received on their dominant
resources (see (4)) in all time intervals. This is equivalent
to allocating equal processing time on the dominant resource
across backlogged flows. Based on this intuition, we define
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(b) Service on the dominant resource.

Fig. 7. Even packets are scheduled as entities, the gap of service that two
flows received on their dominant resources could be 0.

RFB as the maximum gap of the normalized service received
on the dominant resource between two backlogged flows.

Definition 2: For any packet arrival process, let Ti(t1, t2)
be the aggregate service (processing time) flow i receives on
its dominant resource in the time interval (t

1

, t
2

). Let B(t
1

, t
2

)

be the set of flows that are backlogged in (t
1

, t
2

). We define
the Relative Fairness Bound (RFB) as

R = sup

t1,t2;i,j2B(t1,t2)

����
Ti(t1, t2)

wi
� Tj(t1, t2)

wj

���� . (18)

RFB is well justified in the multi-resource setting. The
service gap accurately reflects the fairness of the scheduler.
Intuitively, RFB measures the degree to which the DRF
allocation is violated. The smaller the measure is, the more
closely the scheme approximates DRGPS, and the fairer the
scheduler is. As an extreme example, we see that the RFB of
DRGPS is 0.

Proposition 5: The RFB of DRGPS is 0. In particular, we
have

Ti(t1, t2)

wi
=

Tj(t1, t2)

wj
, (19)

for any two flows i, j 2 B(t
1

, t
2

),
Proof: It is easy to verify that under DRGPS, for any

flow i, we have

Ti(t1, t2) =

Z t2

t1

f t
i,r⇤i

dt . (20)

By (4), we see that for any two flows i, j 2 B(t
1

, t
2

),

Ti(t1, t2)

wi
� Tj(t1, t2)

wj
=

Z t2

t1

 
f t
i,r⇤i

wi
�

f t
j,r⇤j

wj

!
dt = 0, (21)

for all t. This implies that the RFB of DRGPS is 0.
There is an important result regarding RFB in the tra-

ditional fair queueing literature. The well-known work of
Golestani [16] shows that no packet-by-packet queueing
scheme can achieve zero RFB, as packets are scheduled as
discrete entities. Golestani further gives a lower bound on
the maximum service gap between a pair of busy flows. This
result, however, no longer holds in the multi-resource setting,
which we show via a counter-example.

Consider two equally weighted traffic flows that keep send-
ing packets, where flow 1 sends P1, P2, . . . while flow 2 sends
Q1, Q2, . . . . Except packet P1, which requires 1 time unit
for CPU processing and 2 for link transmission, each of the
other packets requires 2 time units on both CPU and link

transmission. In this case, we can view link bandwidth as
the dominant resource of flow 1, while CPU is the dominant
resource of flow 2. As illustrated in Fig. 7a, if flow 1 and
flow 2’s packets are scheduled alternately, then both flows will
receive exactly the same amount of service on their dominant
resources at all times (see Fig. 7b), i.e.,

T
1

(t
1

, t
2

) = T
2

(t
1

, t
2

) . (22)

It is easy to see that RFB of the given schedule is 0.
This is a pleasant surprise. The example above indicates that

under some circumstance, scheduling multiple resources may
be “fairer” than scheduling a single one. The key reason here
is that, even when packets are scheduled as discrete entities,
two flows can receive service on their dominant resources in
parallel, which is impossible under the single-resource setting.
This demonstrates the significant difference between single-
resource and multi-resource scheduling.

Despite such difference, with DRGPS, the insights and
techniques derived for single-resource queueing could still be
leveraged in the multi-resource scenario. We briefly discuss
this in the next subsection.

B. Packet-By-Packet Scheduling Based on DRGPS

A significant benefit of the idealized DRGPS model is that
it enables us to leverage the extensive fair queueing literature
to design packet-by-packet scheduling algorithms. Below we
give high-level discussions on several design approaches. A
detailed case study is deferred to Sec. V.

As an analogy to the single-resource fair queueing, there
are three potential approaches for packet-based scheduling to
approximate DRGPS. First, similarly to [8], [13], [9], [12], we
can emulate DRGPS in the background, using the algorithm
in Sec. III-D, and serve packets by referencing the algorithm’s
scheduling results. Just as in the single-resource case, multiple
scheduling choices are available. For example, packets can be
scheduled based on either the order of starting time (e.g., FQS
[13]) or finishing time (e.g., WFQ [8], [9]) in the referencing
DRGPS system. A more complicated scheduling algorithm
is also possible. For example, similarly to WF2Q [12], an
admission control scheme might be applied when multiple
packets are available to schedule – those that are not yet served
in the referencing DRGPS system are ineligible for scheduling.

Second, algorithms that emulate DRGPS (or GPS) are
usually competitive in terms of both fairness and delay, but
they might suffer from high computational complexity in the
emulation process. A well-known approach to alleviate this
difficulty in the fair queueing literature is to estimate the
work progress of GPS based on packets that are currently
served (e.g., SCFQ, SFQ, etc.). Similar approaches can also
be adopted in the multi-resource setting. Since the main com-
plexity of emulating DRGPS is contributed by evaluating the
virtual time defined in (12), the key challenge is to efficiently
estimate it. The insights derived for the single-resource case
can be applied. In fact, the scheduling discipline proposed in
[6] may be considered to belong to this category of design,
although it directly extends SFQ without referencing DRGPS.



Finally, another line of popular scheduling schemes serve
flows in a round-robin fashion (e.g., DRR [18] and SRR
[19]), such that their received services are roughly equalized.
These algorithms could also be extended to the multi-resource
setting. Flows are still served round-robin, but the objective
is to roughly equalize the service received on their dominant
resources.

Though all three approaches above could be potentially
applied to designing packet-by-packet fair queueing schemes,
due to the space constraint, we only focus on multi-resource
WF2Q as a case study in the next section.

V. A CASE STUDY: DOMINANT RESOURCE WF2Q

As a case study, we extend WF2Q to the multi-resource
setting and analyze its performance, through which we demon-
strate the significance of DRGPS by showing that (1) how
a packet-based queueing scheme could be designed based
on DRGPS and (2) how its performance is measured using
the metrics proposed in the previous section. We start by
elaborating on Multi-Resource WF2Q.

A. Dominant Resource WF2Q

Similar to conventional WF2Q [12], Multi-Resource WF2Q
(DRWF2Q) emulates DRGPS in the background and schedules
packets based on the order of their finishing times in the
referencing DRGPS system. In particular, upon the arrival of
packet pki (i.e., the kth packet in flow i), two service tags, the
virtual starting time Sk

i and finishing time F k
i , are stamped,

with their values iteratively computed from (14). Whenever
there is a scheduling opportunity at time t, packets that already
start service under DRGPS are eligible to schedule, i.e., those
with Sk

i  v(t), where v(t) is the virtual time defined in (12).
Among these packets, the one that finishes the earliest (i.e.,
having the smallest F k

i ) is scheduled.
For example, consider two equally weighted flows that

keep sending packets. Flow 1 sends P1, P2, . . . , each with
the same resource profile h1 CPU time, 2 Link timei, while
flow 2 sends Q1, Q2, . . . , each with the same profile
h3 CPU time, 1 Link timei. Note that the two flows have
different dominant resources. Fig. 8a shows the scheduling
outcome under DRGPS, based on which, the scheduling
results of DRWF2Q are computed and illustrated in Fig. 8b.
Consider time 5, at which P2 finishes its service on CPU
under DRWF2Q. Both Q2 and P3 are available for service
with the same finishing time under DRGPS. However, only
Q2 is eligible to be scheduled because at this time, the service
for P3 has not yet started under DRGPS.

In this example, DRWF2Q is shown to closely
track the progress of DRGPS, just like WF2Q does
GPS. Over time, the service received by flow 1
and flow 2 are h1/3 CPU time, 2/3 Link timei and
h2/3 CPU time, 2/9 Link timei, respectively, which are
exactly the same as that under DRGPS. A more general
analysis is presented in the next subsection.
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Fig. 8. An example of DRWF2Q, where packets are scheduled based on the
order of their finishing time in the referencing DRGPS system.

B. Performance Analysis

We now analyze the fairness performance of DRWF2Q,
using the extended RFB metric defined in Sec. IV.

Proposition 6: Under DRWF2Q, for any two flows i and
j that are backlogged in (t

1

, t
2

), we have
����
Ti(t1, t2)

wi
� Tj(t1, t2)

wj

����  4max

⇢
⌧max

i

wi
,
⌧max

j

wj

�
. (23)

Proof: Let (t, ¯t) � (t
1

, t
2

) be the largest time interval
during which both flows are backlogged. That is, before time
t (after time ¯t), either flow i or j is inactive. For any time
t 2 (t, ¯t), we claim

����
Ti(t, t)

wi
� Tj(t, t)

wj

����  2max

⇢
⌧max

i

wi
,
⌧max

j

wj

�
. (24)

Once (24) is proved, we see the statement holds by noting
Tl(t1, t2) = Tl(t, t2)� Tl(t, t1), l = 1, 2.

Suppose at time t, the kith packet of flow i and the kj th
packet of flow j are being served, which are denoted as pki

i

and p
kj

j , respectively. Let B(p) and E(p) be the starting and
finishing times of packet p in the referencing DRGPS system,
respectively. Also, let T ⇤

i (a, b) be the aggregate service flow
i receives on its dominant resource in (a, b) under DRGPS.
Finally, let ¯ti and ¯tj satisfy the following relationships:

Ti(t, t) = T ⇤
i (t, ¯ti) ,

Tj(t, t) = T ⇤
j (t, ¯tj) .

(25)

To show (24), it is equivalent to showing
����
T ⇤
i (t, ¯ti)

wi
�

T ⇤
j (t, ¯tj)

wj

����  2max

⇢
⌧max

i

wi
,
⌧max

j

wj

�
. (26)



Without loss of generality, we assume packet pki
i finishes

earlier than packet pkj

j under DRGPS, i.e.,

E(pki
i )  E(p

kj

j ) . (27)

It suffices to consider the following two cases.
Case 1: B(pki

i ) � B(p
kj

j ). In this case, we have

B(p
kj

j )  ¯tl  E(p
kj

j ), l = i, j. (28)

As a result,
����
T ⇤
i (t, ¯ti)

wi
�

T ⇤
j (t, ¯tj)

wj

���� =
����
T ⇤
j (t, ¯ti)

wj
�

T ⇤
j (t, ¯tj)

wj

����


T ⇤
j (t, E(p

kj

j ))� T ⇤
j (t, B(p

kj

j ))

wj

 ⌧max

j /wj ,

where the equality holds because of Proposition 5, and the
first inequality is derived from (28).

Case 2: B(pki
i ) < B(p

kj

j ). We consider two sub-cases.

Sub-Case 1: E(p
kj

j )  E(pki+1

i ). In this case, we have

B(pki
i )  ¯tl  E(pki+1

i ), l = i, j .

Hence,
����
T ⇤
i (t, ¯ti)

wi
�

T ⇤
j (t, ¯tj)

wj

���� 
T ⇤
j (t, E(pki+1

i ))� T ⇤
j (t, B(pki

i ))

wj

 2⌧max

j /wj .

Sub-Case 2: E(p
kj

j ) > E(pki+1

i ). In this case, we must
have

B(p
kj

j )  E(pki
i ) . (29)

Otherwise, we will have

B(p
kj

j ) > E(pki
i ) = B(pki+1

i ), (30)

where the last equality holds since flow i is busy. In other
words, packet pki+1

i starts earlier than packet p
kj

j under
DRGPS, which implies that when packet p

kj

j is scheduled
under DRWF2Q, packet pki+1

i is also eligible for service. This
contradicts the principle of DRWF2Q, as packet pki+1

i finishes
earlier than p

kj

j and should be served before p
kj

j .
With (29), we derive as follows:
����
T ⇤
i (t, ¯ti)

wi
�

T ⇤
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wj

���� 

�����
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i (t, E(pki
i ))

wi

�����

+

�����
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�

T ⇤
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�����

 T ⇤
i (t, E(pki

i ))

wi
� T ⇤

i (t, B(pki
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wi

+

T ⇤
j (t, E(p

kj

j ))

wj
�

T ⇤
j (t, B(p

kj

j ))

wj

 ⌧max

i /wj + ⌧max

j /wj ,

where the second inequality follows from (29).
Proposition 6 directly leads to the following corollary.
Corollary 1 (RFB): The RFB of DRWF2Q is

R = 4max

i

⇢
⌧max

i

wi

�
. (31)

It is worth mentioning that the analysis above does not make
any assumptions on the resource requirement patterns of a
flow. In particular, a flow may change its dominant resource
at any time and on any packet. Note that this is not the case
in the analysis of [6] for its SFQ scheme, which holds only
when each flow has a fixed dominant resource throughout the
backlog period.

Though the case study above only focuses on WF2Q, by
emulating DRGPS, queueing schemes such as WFQ [8], [9]
and FQS [13] will have immediate multi-resource extensions.
Similar analysis can also be applied to these algorithms.

VI. DISCUSSION AND FUTURE WORK

In this section, we discuss some practical concerns that are
important for real-world multi-resource fair queueing. We also
share our views on some possible future directions.

First, to accurately approximate DRGPS, the system de-
signer needs to know the processing time required by a packet
on each resource. This information can be obtained either
by packet profiling, before the packet is processed, or by
monitoring resource usage during packet processing. However,
both are expensive to implement for high-speed networks.
The former requires deep packet inspection, while the latter
needs to maintain a resource monitor. Note that none of these
approaches is needed for conventional fair queueing, for which
the only information required is the packet size and is available
in the packet header.

A possible solution is to adopt some simple estimation of
the processing time based on the packet size only. Since the
transmission time can be accurately inferred from the packet
size, such estimation is needed only for the other resources.
For example, CPU and memory bandwidth are the two most
commonly considered resources in middleboxes. The experi-
ment in [6] reveals that the processing times associated with
these two resources may be approximated by linear functions
of the packet size, suggesting that a simple estimation model
could be sufficient in practice.

Second, with increasingly common deployment of software-
defined middleboxes on commodity servers, the work com-
plexity of a queueing scheme becomes a more important con-
cern. Algorithms that require emulating DRGPS might not be
appropriate choices due to their high complexity. In such cases,
simpler scheduling algorithms with constant work complexity,
such as DRR [18], may find new application scenarios in
the multi-resource setting. The design and evaluation of these
algorithms against DRGPS could be fertile ground for future
research.

Third, besides fairness, packet delay is also an important
concern for a queueing scheme. Traditional fair queueing
literature has suggested a variety of techniques to bound the



end-to-end delay, in both theory and practice. However, it is
unclear if these approaches can be leveraged in the multi-
resource middlebox scenario.

Finally, in some scenarios, fairness may not be the pri-
mary concern. Instead, a queueing scheme with high resource
utilization might be preferred. More generally, there might
be some fairness-efficiency trade-off desired by a network
operator. Despite recent theoretical works [20], it remains
unknown how such trade-off can be implemented via a fair
queueing scheme. New theoretical model as well as system
designs are therefore required.

VII. RELATED WORK

Service isolation and work conservation are two essential
properties desired by fair queueing schemes [11]. GPS was
proposed based on the fluid model and serves as an idealized
benchmark for which all practical queueing schemes should
approximate. GPS plays a central role in the fair queue-
ing literature. Many well-known packet-by-packet scheduling
schemes, such as WFQ [8], [9], WF2Q [12], and FQS [13],
schedule packets based on emulating GPS. Other popular
queueing alternatives, such as SCFQ [16], SFQ [17], and DRR
[18], are also designed to approximate the work progress of
GPS.

Despite the extensive studies on scheduling link bandwidth,
multi-resource fair queueing remains at a nascent stage. Gh-
odsi et al. [6] are the first to investigate this problem. Their
design, referred to as DRFQ, borrows the intuition of DRF
allocation, and schedules packets in a way such that flows
receive roughly the same processing time on their most con-
gested resources. Despite this seminal work, it remains unclear
what queueing scheme is fair and how multi-resource fair
queueing should be generally designed. The main obstacle is
the lack of a GPS-like queueing benchmark, which motivates
our work.

As for the notion of fairness in multi-resource allocation,
Ghodsi et al. [10] proposed the DRF notion to equalize the
dominant share of all users and showed a number of desired
fairness properties possessed by the resultant allocation. As a
significant step forward in multi-resource allocation, DRF has
quickly attracted substantial attention and has been generalized
to several new dimensions. Some notable works include Joe-
Wong et al. [20], where the DRF measure is incorporated to
a unifying framework to capture fairness-efficiency trade-offs,
and Parkes et al. [14], where DRF is extended to include the
case of having zero demand on certain resources, weighted
user endowments, and indivisible tasks. These works are
orthogonal and complementary to our investigation into multi-
resource fair queueing.

VIII. CONCLUDING REMARKS

Middleboxes apply complex network functions in packet
processing. Depending on the functional modules the packets
must go through, different traffic flows may require vastly
different amounts of various resources, including CPU cycles,
memory bandwidth, and link bandwidth. In this paper, we

generalize the conventional GPS fair scheduling algorithm to
the multi-resource setting. The resultant DRGPS offers perfect
service isolation that is immune to any strategic behaviours
and is work conserving as well. It hence serves as an ide-
alized fair queueing benchmark for which packet-by-packet
scheduling schemes should approximate. More significantly,
with DRGPS, many techniques and insights that have been
developed for conventional fair queueing can also be adapted
to design multi-resource packet-based scheduling disciplines.
We have demonstrated how this can be achieved under the
proposed DRGPS framework. As a case study, we have
designed the DRWF2Q scheme based on DRGPS and analyzed
its fairness performance.
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