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Abstract—Infrastructure-as-a-Service clouds offer diverse pric-
ing options, including on-demand and reserved instances with
various discounts to attract different cloud users. A practical
problem facing cloud users is how to minimize their costs by
choosing among different pricing options based on their own
demands. In this paper, we propose a new cloud brokerage service

that reserves a large pool of instances from cloud providers and
serves users with price discounts. The broker optimally exploits
both pricing benefits of long-term instance reservations and
multiplexing gains. We propose dynamic strategies for the broker
to make instance reservations with the objective of minimizing
its service cost. These strategies leverage dynamic programming
and approximate algorithms to rapidly handle large volumes of
demand. Our extensive simulations driven by large-scale Google
cluster-usage traces have shown that significant price discounts
can be realized via the broker.

I. INTRODUCTION

Infrastructure-as-a-Service (IaaS) cloud enables IT services
to elastically scale computing instances to match their time-
varying computational demands. Thanks to the economies of
scale, an IaaS cloud is capable of offering such on-demand
computational services at a low cost [1]. Cloud users usually
pay for the usage (counted by the number of instance-hours in-
curred) in a pay-as-you-go model, and are therefore freed from
the prohibitive upfront investment on infrastructure, which is
usually over-provisioned to accommodate peak demands.

A cloud provider prefers users with predictable and steady
demands, which are more friendly to capacity planning. In
fact, most cloud providers offer an additional pricing option,
referred to as the reservation option, to harvest long-term risk-
free income. Specifically, this option allows the user to prepay
a one-time reservation fee and then to reserve a computing
instance for a long period (usually in the order of weeks,
months or years), during which the usage is either free or
charged under a significant discount [2], [3], [4]. If fully
utilized, such a reserved instance can easily save its user more
than 50% of the expense.

However, whether and how much a user can benefit from
the reservation option critically depends on its demand pattern.
Due to the prepayment of reservation fees, the cost saving
of a reserved instance is realized only when the accumulated
instance usage during the reservation period exceeds a certain
threshold (varied from 30% to 50% of the reservation period).
Unless heavily utilized, the achieved saving is not significant.
For this reason, users with sporadic and bursty demands only
launch instances on demand.

Broker

User

User

User

IaaS Cloud 
Providers

Reserved/On-demand
Instances

"On-demand"
Instances

. . .
. . .

Broker cost User cost

Fig. 1. The proposed cloud broker. Solid arrows show the direction of
instance provisioning; dashed arrows show the direction of money flow.

Unfortunately, on-demand instances are economically inef-
ficient to users, not only because of the higher rates, but also
because there is a fundamental limit on how small the billing
cycle can be made. For example, Amazon Elastic Compute
Cloud (EC2) charges on-demand instances based on running
hours. In this case, an instance running for only 10 minutes
is billed as if it were running for a full hour [2]. Similar
limitations are also imposed by other cloud providers, e.g.,
[3], [4]. Such billing inefficiency becomes more salient when
longer billing cycles are employed (e.g., in VPS.NET [5], even
a single hour is charged at a daily rate) and user demands are
sporadic, with a substantial amount of partial usage.

In general, to what extent a cloud user can enjoy cost
savings due to reservation, while avoiding its inefficiency due
to coarse-grained billing cycles, is limited by its own demand
pattern. A natural question arises: Can we go beyond this
limitation to further lower the cost for all cloud users? In
particular, can users with arbitrary demand pattern benefit from
reservation options while reducing the costs of instance-hours
that are not fully utilized?

In this paper, we propose a cloud brokerage service to
address these challenges. As illustrated in Fig. 1, instead of
trading directly with cloud providers, a user will purchase
instances from the cloud broker, who has reserved a large pool
of instances from the cloud providers to serve a major part
of the incoming user demand, while accommodating request
bursts by launching on-demand instances. From the perspec-
tive of users, their behavior resembles launching instances
“on demand” provided by the broker, yet at a lower price.
Intuitively, the cloud broker leverages the “wholesale” model
and the pricing gap between reserved and on-demand instances
to reduce the expenses for all the users. More importantly,
the broker can optimally coordinate different users to achieve
additional cost savings, with the following benefits.
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Fig. 2. The broker can time-multiplex partial usage from different users
in the same instance-hour. In this case, serving two users only takes one
instance-hour, instead of two.

Better exploiting reservation options: The broker aggre-
gates the demand from a large number of users for service,
smoothing out individual bursts in the aggregated demand
curve, which is more stable and suitable for service through
reservation. In contrast, individual users usually have bursty
and sporadic demands, which are not friendly to the reserva-
tion option.

Reducing wasted cost due to partial usage: Partial usage
of a billing cycle always incurs a full-cycle charge, making
users pay for more than what they use. As illustrated in Fig. 2,
without the broker, Users 1 and 2 each has to purchase one
instance-hour, and pays the hourly rate even if it only uses the
hour partially. In contrast, the broker can use a single instance-
hour to serve both users by time-multiplexing their usage,
reducing the total service cost by one half. Such a benefit
can be realized at the broker by scheduling the aggregated
user demands to the pooled instances.

Enjoying volume discounts: Most IaaS clouds offer signif-
icant volume discounts to those who have purchased a large
number of instances. For example, Amazon provides 20% or
even higher volume discounts in EC2 [2]. Due to the sheer
volume of the aggregated demand, the cloud broker can easily
qualify for such discounts, which further reduces the cost of
serving all the users.

It is through all the mechanisms above that the broker
reduces the expenses for cloud users, while turning profits for
itself. However, a major challenge in operating such a broker is
the decision on how many instances the broker should reserve,
how many instances it should launch on demand, and when
to reserve, as the demands change dynamically over time. To
solve this challenge, we formulate the problem of dynamic
instance reservation given user demand data, and derive the
optimal reservation strategy via dynamic programming. Un-
fortunately, such dynamic programming is computationally
prohibitive. We propose two efficient approximate algorithms
that we prove to offer worst-case cost guarantees. We also
propose an effective online algorithm that makes reservation
decisions without having access to future demand information.

We conduct large-scale simulations driven by 180 GB of
Google cluster usage traces [6] involving over 900 cloud
users’ workload in a recent month. We empirically evaluate
the aggregate and individual cost savings brought forth by
the broker, under the proposed reservation strategies. Our
results suggest that the broker is the most beneficial for
users with medium demand fluctuations, reducing their total
expenses by more than 40%. As for general users, 70% of

them receive discounts more than 25%. Such cost savings are
more significant in IaaS clouds employing longer reservation
periods or longer billing cycles (e.g., [5]).

II. DYNAMIC RESOURCE RESERVATION

In this section, we briefly review the prevalent cloud pricing
schemes and formulate the broker’s optimal instance reserva-
tion problem to satisfy given demands, with an objective of
cost minimization.

A. Prevalent Cloud Pricing Schemes

Most IaaS clouds provide users with multiple purchasing
options, including on-demand instances, reserved instances,
and other instance types [2], [3], [4]. On-demand instances
allow users to pay a fixed rate in every billing cycle (e.g.,
an hour) with no commitment. For example, if the hourly
rate of an on-demand instance is p, an instance that has run
for n hours is charged n · p. As another purchasing option, a
reserved instance allows a user to pay a one-time fee to reserve
an instance for a certain amount of time, with reservation
pricing policies subtly different across cloud providers. In most
cases, the cost of a reserved instance is fixed. For example,
in [3], [4], [5], the cost of a reserved instance is equal to
the reservation fee. As another example, in Amazon EC2
[2], the cost of a Heavy Utilization Reserved Instance is
billed as a reservation fee plus a heavily discounted hourly
rate charged over the entire reservation period, no matter
whether the instance is used or not. EC2 also offers other
reservation options (e.g., Light/Medium Utilization Reserved
Instances), with cost dependent on the actual usage time of
the reserved instance. Throughout the paper, we limit our
discussions to reservations with fixed costs, which represent
the most common cases in IaaS clouds.

B. The Instance Reservation Problem

The broker asks cloud users to submit their demand es-
timates over a certain horizon, based on which dynamic
reservation decisions are made. Note that even if a user trades
directly with cloud providers, it needs to estimate its future
demand to decide how many instances to reserve at a particular
time. In the case where users are unable to estimate demand
at all, we propose an online reservation strategy in Sec. IV-C
to make decisions based on history.

Suppose cloud users submit to the broker their demand
estimates up to time T into the future (in terms of billing
cycles). The broker aggregates all the demands. Suppose it
requires dt instances in total to accommodate all the requests
at time t, t = 1, 2, . . . , T . The broker makes a decision to
reserve rt instances at time t, with rt � 0. Each reserved
instance will be effective from t to t+ ⌧ �1, with ⌧ being the
reservation period.

At time t, denote the number of reserved instances that
remain effective by nt =

Pt
i=t�⌧+1 ri. Note that these nt

reserved instances may not be sufficient to accommodate
the aggregate demand dt. The broker thus needs to launch
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Fig. 3. State illustration. The reservation period is ⌧ = 4. All four
reservations are highlighted as the shaded area. At stage 2, s2 = (2, 2, 2, 1).

(dt � nt)
+ additional on-demand instances at time t, where

we denote by X+
:= max{0, X}.

Let � denote the one-time reservation fee for each reserved
instance, and p denote the price of running an on-demand
instance per billing cycle. Then, the total cost to accommodate
all the demands d1, . . . , dT is

PT
t=1 rt� +

PT
t=1(dt � nt)

+p , (1)

where the first term is the total cost of reservations and the
second is the cost of all on-demand instances. The broker’s
problem is to make dynamic reservation decisions r1, . . . , rT
to minimize its total cost, i.e.,

min

{r1,...,rT }
cost =

PT
t=1 rt� +

PT
t=1(dt � nt)

+p ,

s.t. nt =
Pt

i=t�⌧+1 ri, 8t = 1, . . . , T .
(2)

Problem (2) is integer programming. In general, complex
combinatorial methods are needed to solve it.

III. DYNAMIC PROGRAMMING: OPTIMALITY AND
LIMITATIONS

In this section, we resort to dynamic programming to
characterize the optimal solution to problem (2). Using a
set of recursive Bellman equations, the original combinatorial
optimization problem can be decomposed into a number
of subproblems, each of which can be solved efficiently.
However, we also point out that computing such a dynamic
programming is practically infeasible, and is highly inefficient
to handle a large amount of data.

A. Dynamic Programming Formulation

We start by defining stages and states. The decision problem
(2) consists of T stages, each representing a billing cycle. A
state at stage t is denoted by a ⌧ -tuple st := (xt

1, . . . , x
t
⌧�1),

where xt
i denotes the number of instances that are reserved

no later than t and remain effective at stage t + i, for i =

1, . . . , ⌧�1. Here, we use a ⌧ -tuple to represent a state because
no instance reserved before or at stage t will remain effective
after stage t+ ⌧ � 1. And it is easy to check that xt

1 � · · · �
xt
⌧�1. For example, in Fig. 3, three instances are reserved at

stage 1, 2, and 3, respectively, with a reservation period ⌧ = 4.
We see that at stage 2, s2 = (2, 2, 1), where the first element
is 2 because two instances are reserved no later than stage 2
and remain effective at stage 3.

We note that given state st�1 := (xt�1
1 , . . . , xt�1

⌧�1) at the
previous stage, the current state st := (xt

1, . . . , x
t
⌧�1) is
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x

t
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independent of the states st�2, st�3, . . . In fact, st can be
characterized by st�1, with state transition equations

xt
i = xt�1

i+1 + xt
⌧�1, i = 1, . . . , ⌧ � 2. (3)

To see the rationale behind (3), let us consider a state st in
Fig. 4. At stage t+ ⌧ � 1, there are xt

⌧�1 reservations that re-
main effective. Clearly, all these reservations are made at stage
t (because the reservations made before stage t have all expired
at t+ ⌧ � 1), i.e., rt = xt

⌧�1. These xt
⌧�1 reserved instances

(the shaded area in Fig. 4) will add to the effective reservations
starting from stage t. Since st�1 := (xt�1

1 , . . . , xt�1
⌧�1), we

know that at stage t + i, there remain xt�1
i+1 effective reser-

vations made before t, i = 1, . . . , ⌧ � 2. Adding the xt
⌧�1

instances reserved at stage t leads to xt
i = xt�1

i+1 + xt
⌧�1

instances that are reserved no later than stage t and remain
effective at stage t+ 1.

Define V (st) as the minimum cost of serving the demands
d1, . . . , dt up to stage t, conditioned on that state st is reached
at stage t. Then we have the following recursive Bellman
equations:

V (st) = min

st�1

�
V (st�1) + c(st�1, st)

 
, t > 0, (4)

where the minimization is over all states st�1 that can transit
to st following (3). In (4) the minimum cost of reaching st is
given by the minimum cost of reaching a previous state st�1

plus a transition cost c(st�1, st), minimized over all possible
previous states st�1. The transition cost is defined as

c(st�1, st) := �xt
⌧�1 + p(dt � xt�1

1 � xt
⌧�1)

+ , (5)

where the transition from st�1 to st follows (3).
The rationale of (5) is straightforward. As has been noted,

xt
⌧�1 instances are reserved at stage t, and xt�1

1 instances are
reserved before t and remain effective at t. To accommodate
the demand dt at stage t, the broker needs to launch (dt �
xt�1
1 � xt

⌧�1)
+ on-demand instances. As a result, the broker

pays �xt
⌧�1 to reserve the xt

⌧�1 instances, and p(dt � xt�1
1 �

xt
⌧�1)

+ for on-demand instances, leading to a transition cost
of (5).

The boundary conditions of (4) are given by

V (s0) := �x0
1, for all s0 := (x0

1, . . . , x
0
⌧�1) , (6)

since an initial state s0 := (x0
1, . . . , x

0
⌧�1) indicates that the

broker has already reserved x0
1 instances at the beginning (time

1) and paid �x0
1.
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Fig. 5. The Periodic Decisions algorithm, with � = $2.5 and p = $1. The
algorithm is (a) optimal when T  ⌧ , (b) not optimal when T > ⌧ .

Through the analysis above, we have converted problem (2)
into an equivalent dynamic programming problem defined by
(3), (4), (5), and (6).

B. The Curse of Dimensionality
Although the dynamic programming presented above is

optimal, it is computationally infeasible for large data. This
is because to derive the minimum cost V (sT ), one has
to compute V (st) for all states st. Since each state st is
defined as a high dimensional tuple (xt

1, . . . , x
t
⌧ ), there exist

exponentially many such states. Therefore, going through all
of them results in exponential time complexity. Also, since
the computed V (st) has to be stored for every state st, the
space complexity is exponential as well. This is known as the
curse of dimensionality suffered by high-dimensional dynamic
programming [7].

A classical method to handle the curse of dimensionality is
to use Approximate Dynamic Programming (ADP) [7]. ADP
estimates the minimum cost at each state first and refines
such estimates in an iterative fashion. It is known that ADP
converges to the optimal solution if the initial estimates are
“optimistic”, i.e., the estimates are even better than the actual
optimal solution [7]. However, the more optimistic the initial
estimates are, the slower the convergence will be. Through
extensive simulations, we find that even by setting some
“smart” initial estimations, the convergence speed of ADP is
still not satisfactory to handle the large amount of demand
data in our problem. Refer to our technical report [8] for a
more detailed discussion and simulation results.

IV. APPROXIMATE ALGORITHMS

To overcome the prohibitive complexity of dynamic pro-
gramming, in this section, we develop approximate algorithms
to solve (2). These algorithms are highly efficient and are
proved to have worst-case performance guarantees. Further-
more, we also propose an online reservation strategy which
can be applied when future demand data is not available.

A. A 2-Competitive Heuristic with Short-Term Predictions
First, we present a simple heuristic that relies on short-

term demand estimations and in the worst case, incurs twice
the minimum cost, given arbitrary demands. We start off by
dividing the demands into levels. Let ¯d := maxt dt be the peak
demand. As shown in Fig. 5a, the total demands are divided

Algorithm 1 Heuristic: Periodic Decisions
1. Segment T into intervals {Ii}, each with length ⌧ .
2. for all intervals Ii do
3. Reserve l instances at the beginning of this interval,

such that ui
l � �/p > ui

l+1, where ui
l :=

P
t2Ii

dlt is
the utilization of level l in interval i.

4. end for

into ¯d = 5 levels, with level 1 being the bottom (labeled as
“L1” in Fig. 5a) and level ¯d being the top. Define dlt as the
demand at time t in level l, such that dlt = 1 if dt � l, and
dlt = 0 otherwise. For example, in Fig. 5a, level 3 has demands
only at time 3 and 5 (i.e., d33 = d35 = 1).

We now consider a special case, when all given demands
are within a single reservation period, i.e., T  ⌧ . In this
case, it is sufficient to make all the reservations at time 1,
since a reservation made anytime will remain effective for the
entire horizon T . The question becomes how many instances
to reserve at time 1.

Initially, we consider the first reserved instance that will
be used to serve demands in level 1. Define utilization u1 as
the number of billing cycles where this reserved instance will
be used. It is easy to check u1 =

PT
t=1 d

1
t . The use of this

reserved instance will be well justified if the reservation fee
satisfies �  pu1; otherwise, launching it on demand would
be more cost efficient.

Next, suppose l � 1 instances are already reserved in the
bottom l�1 levels. We check if an instance should be reserved
in level l. Define utilization ul as the number of billing cycles
where the lth reserved instance will be used, i.e.,

ul :=
PT

t=1 d
l
t, l > 0 . (7)

For convenience, we let u0 := +1 (for reasons that will
be clear later). Again, the broker will adopt the lth reserved
instance only if �  pul. Noting that ul is non-increasing in l,
we obtain a very simple optimal algorithm: reserve l instances
at time 1, such that ul � �/p > ul+1.

Fig. 5a shows an example with � = $2.5 and p = $1. To
run the algorithm, we first plot the demand curve dt. We find
ul is the intersection area of a horizontal stripe in level l with
the area below dt, e.g., u3 = 2, as shown by the shaded area.
In this case, the optimal strategy is to reserve 2 instances in the
bottom 2 levels, as u2 = 3 > 2.5 = �/p while u3 = 2 < �/p.

When demands last for more than one reservation period,
i.e., T > ⌧ , a natural idea is to extend the algorithm above
by letting the broker make periodic decisions. We segment
the time axis into intervals, each with the same length as the
reservation period ⌧ . The broker makes decisions for each
⌧ -interval separately, only at the beginning of that interval,
by running the algorithm above. This leads to the Periodic
Decisions algorithm described in Algorithm 1. Algorithm 1 is
highly efficient, requiring only O(

¯dT ) time and O(T ) space.
Besides, Algorithm 1 only requires demand estimations in the
incoming interval (reservation period), and is suitable for users
that can only make short-term predictions.



Algorithm 1 is not optimal, as reservations are placed only
at the beginning of each interval. For example, in Fig. 5b,
Algorithm 1 launches all instances on demand, incurring a cost
of $11. However, the optimal strategy is to reserve 2 instances
at the beginning of time 6, with a lower total cost of $10 =
2.5 ⇥ 2 + 5. The following theorem bounds the worst-case
performance of Algorithm 1.

Proposition 1: Algorithm 1 is 2-competitive. That is, for
any demands, the cost incurred by Algorithm 1 is no more
than twice the minimum cost obtained in Sec. III.

Proof: Divide time into non-overlapping intervals {Ik},
each of length ⌧ . Let Ik := [lk, hk] be the kth interval from
lk = (k� 1)⌧ +1 to hk = k⌧ . We call a reservation interval-
based if instances are reserved only at the beginnings of
intervals. Let rIt be the reservation decision of the interval-
based strategy. Then rIt = 0, 8t 6= lk, k = 1, 2, . . . .

Given an arbitrary strategy, we construct the corresponding
interval-based strategy as follows. Whenever the given strategy
reserves rt instances at time t, the constructed interval-based
strategy also reserves rt instances at the beginnings of all Ik
such that Ik \ Rt 6= ;, where Rt = [t, t + ⌧ � 1] is the time
span in which those rt instances reserved by the given strategy
are effective. For simplicity, let l0 := 0. We then have

rIt =

( Phk

i=lk�1+1 ri, t = lk for some k,
0, o.w.

Denote by nt and nI
t the numbers of reserved instances

that remain effective at time t for the given strategy and
the constructed interval-based strategy, respectively. Clearly,
nI
t � nt. Let c and cI be the costs of the given strategy and

corresponding interval-based strategy, respectively. We have

cI =

PT
t=1 r

I
t � +

PT
t=1(dt � nI

t )
+p

=

P
k

Phk

i=lk�1+1 ri� +

PT
t=1(dt � nI

t )
+p

 2

PT
t=1 rt� +

PT
t=1(dt � nt)

+p

 2c ,

(8)

where the first inequality is due to nI
t � nt and the last

inequality is due to the definition of the cost c (see (1)).
Equation (8) indicates that the cost of the constructed interval-
based strategy is at most twice the original strategy.

We make an important observation, that Algorithm 1 incurs
the minimum cost among all interval-based strategies, i.e.,
c1  cI with c1 being the cost of Algorithm 1. By (8), we
have c1  cI  2c, which suggests that Algorithm 1 incurs
no more than twice the cost of any strategy.

B. A Greedy Algorithm with Long-Term Predictions
It is possible to improve Algorithm 1 when users can make

long-term predictions. One limitation of Algorithm 1 is that
in each level, the reservations are made only at the beginnings
of the ⌧ -intervals. A direct improvement of Algorithm 1 is to
allow arbitrary reservation time in each level: we still consider
from the bottom level up to the top, whereas in each level, we
solve an optimal reservation problem using dynamic program-
ming. Clearly, this strategy incurs less resource provisioning

Algorithm 2 Greedy Reservation Strategy

1. Initialization: md̄
t := 0 for all t = 1, . . . , T .

2. for l = ¯d down to 1 do
3. Make optimal reservations in level l via dynamic pro-

gramming defined by (9), (10), and (11).
4. Update ml�1

t .
5. end for

cost than Algorithm 1 in each level due to the relaxation on
reservation time. However, such a strategy remains inefficient,
since it ignores the dependencies across different levels.

A simple fix can incorporate inter-level dependencies: in-
stead of reserving bottom-up, we start to make reservations in
the top level ¯d and proceed top-down. Every instance reserved
in level l that is not used at time t will be passed over to
the lower level l � 1, so that it can be used to serve the
demand at time t in that level. We then step to level l � 1

and make optimal reservations there, taking into account the
“leftover” reserved instances passed over from the upper level.
Undoubtedly, the algorithm becomes more efficient, since each
level tries to utilize those “leftover” instances reserved in upper
levels. Note that this is impossible for a bottom-up approach,
where no “leftover” reserved instances can be passed from a
lower level up.

In each level of the procedure above, optimal reservations
can be efficiently made via dynamic programming. Suppose
before we make reservations in level l, ml

t reserved instances
are passed over from upper levels at time t, all of which can
be utilized. Let Vl(t) be the minimum cost of serving demands
dl1, . . . , d

l
t in level l up to time t . The Bellman equation is

given by

Vl(t) = min{Vl(t� ⌧) + �, Vl(t� 1) + cl(t)} , (9)

which chooses the minimum between two options. The first is
to serve the demand dlt with an instance reserved in the current
level l. The best strategy is to optimally serve demands up to
time t� ⌧ and reserve an instance at time t� ⌧ +1, incurring
a cost of Vl(t � ⌧) + �. The second option is to optimally
satisfy demands up to t� 1 and serve the demand at t using
an on-demand instance, with a cost cl(t) given by

cl(t) =

⇢
p, if dlt = 1 and ml

t = 0 ,
0, otherwise, (10)

which means that we pay p to launch an on-demand instance
only if there is demand at t, i.e., dlt = 1, yet no reserved
instance is leftover from upper levels to use at t, i.e., ml

t = 0.
The boundary conditions are clearly

Vl(t) = 0, t  0 . (11)

After reservations have been made in level l, we update
ml�1

t , the number of reserved instances to be passed to level
l � 1 at time t as follows: ml�1

t := ml
t + 1, if an instance is

reserved in level l but is not used at time t; ml�1
t := ml

t � 1,
if demand dlt is served using a reserved instance passed over
from upper levels; and ml�1

t = ml
t, otherwise.



Algorithm 3 Online Reservation Made at Time t

1. Let gi = (di � ni)
+ for all i = t� ⌧ + 1, . . . , t.

2. Run Algorithm 1 with gt�⌧+1, . . . , gt as the input de-
mands. Let x be its output.

3. Reserve rt = x instances at time t.
4. Update ni = ni + rt for all i = t� ⌧ + 1, . . . , t+ ⌧ � 1.

Algorithm 2 summarizes the greedy reservation strategy
above, which has time complexity O(

¯dT ) and space complex-
ity O(T ). As has been analyzed earlier in this subsection, in
each level, Algorithm 2 is more cost efficient than Algorithm 1,
leading to the following proposition:

Proposition 2: Algorithm 2 incurs a cost no more than
Algorithm 1, and is thus 2-competitive.

C. An Online Reservation Strategy
Previous algorithms apply to users who predict their future

demands. For those who cannot, we propose an online strategy
that reserves instances based only on history, without accessing
to any future information. Recall that nt is the number of
reserved instances that remain effective at time t. Our online
strategy makes a reservation decision rt at time t based on
the historical information gt�⌧+1, . . . , gt in the past reserva-
tion period, where gi := (di � ni)

+ for all i. We call gi
the reservation gap between demand di and the number of
reservations ni that remain effective at time i. Clearly, all these
gi reservation gaps have been filled by launching on-demand
instances at time i.

Now at time t, we review the reservation decision made at
time t � ⌧ + 1 (we set ri = 0 for all i  0) and calculate
how many more instances we should have reserved at time
t�⌧+1, if we knew that we would have to launch gi instances
on demand at time i = t � ⌧ + 1, . . . , t. These “should-
have-reserved” instances can be computed by Algorithm 1,
with outstanding gaps gt�⌧+1, . . . , gt as the input demands.
Suppose the found value is x, we then reserve rt = x
instances at the current time t. In the meantime, we update
the reservation history as if we had reserved x additional
instances at time t � ⌧ + 1, by setting ni := ni + x for all
i = t � ⌧ + 1, . . . , t, which will be used in computing the
next decision rt+1. Algorithm 3 details this process. Note that
initially (at time 0), we set di = ni = 0 for all i.

The computational complexity of the online reservation
strategy above is the same as Algorithm 1 at every time t.

V. PERFORMANCE EVALUATION

In this section, we conduct simulations driven by a large
volume of real-world traces to evaluate the performance of the
proposed brokerage service and reservation strategies, with an
extensive range of scenarios.

A. Dataset Description and Preprocessing
Workload traces in public clouds are often confidential: no

IaaS cloud has released its usage data so far. For this reason,
we use Google cluster-usage traces that were recently released
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Fig. 6. The demand curves of three typical users.
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Fig. 7. Demand statistics and the division of users into 3 groups according
to demand fluctuation level.

[6] in our evaluation. Although Google cluster is not a public
IaaS cloud, its usage traces reflect the computing demands of
Google engineers and services, which can represent demands
of public cloud users to some degree. The dataset contains
180 GB of resource demand/usage information of 933 users
over 29 days in May 2011, on a cluster of 12,583 physical
machines. In the Google traces, a user submits work in the
form of jobs. A job consists of several tasks, each of which
has a set of resource requirements on CPU, disk, memory, etc.

Instance Scheduling. We take such a dataset as input, and
ask the question: How many computing instances would each
user require if she were to run the same workload in a public
IaaS cloud? It is worth noting that in Google cluster, tasks
of different users may be scheduled onto the same machine,
whereas in IaaS clouds each user will run tasks only on her
own computing instances.

Therefore, we reschedule the tasks of each user onto in-
stances that are exclusively used by this user. We set the
instances to have the same computing capacity as Google
cluster machines (most Google cluster machines are of the
same computing capability, with 93% having the same CPU
cycles), which enables us to accurately estimate the task run
time by learning from the original traces.

For each user, we use a simple algorithm to schedule her
tasks onto available instances that have sufficient resources to
accommodate their resource requirements. Tasks that cannot



0 5 10 15 20 25 30
0

30

60

90

120

150

Demand Mean

D
e

m
a

n
d

 S
td

y = 1.774x

(a) Group 1: high fluctuation

0 20 40 60 80 100
0

50

100

150

200

Demand Mean

D
e

m
a

n
d

 S
td

y = 0.363x

(b) Group 2: medium fluctuation

0 200 400 600 800 1000
0

50

100

150

200

250

300

Demand Mean

D
e

m
a

n
d

 S
td

y = 0.058x

(c) Group 3: low fluctuation
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Fig. 8. Aggregation suppresses the demand fluctuation of individual users. Each circle represents a user. The line indicates the demand fluctuation level (the
ratio between the demand standard deviation and mean) in the aggregate demand curve.
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Fig. 9. Aggregation reduces the wasted instance-hours due to partial usage.

share the same machine (e.g., tasks of MapReduce) are sched-
uled to different instances. (For simplicity, we ignore other
complicated task placement constraints such as on OS ver-
sions and machine types.) Whenever the capacity of available
instances is reached, a new instance will be launched. In the
end, we obtain a demand curve for each user, indicating how
many instances the user requires in each hour. Fig. 6 illustrates
the demand curves of three typical users in the first 200 hours.

Pricing. Unless explicitly mentioned, we set the on-demand
hourly rate to $0.08, the same as Amazon EC2 small instances
[2]. Since our data only spans one month, we assume each
reservation is effective for one week, with a full-usage discount
of 50%: the reservation fee is equal to running an on-demand
instance for half a reservation period, which is a general
pricing policy in most IaaS clouds [2], [3], [4], [5].

Group Division. To further understand the demand statistics
of users, we calculate the demand mean and standard deviation
for each user and plot the results in Fig. 7. As has been
mentioned, to what extent a user can benefit from reservations
critically depends on its demand pattern: the more fluctuated
it is, the less is the benefit from using reserved instances. We
hence classify all 933 users into the following three groups
by the demand fluctuation level measured as the ratio between
the demand standard deviation and mean:

Group 1 (High Fluctuation): Users in this group have a
demand fluctuation level no smaller than 5. A typical user’s
demand is shown in the top graph of Fig. 6. There are 271
users in this group, represented by “o” in Fig. 7. These users
have small demands, with a mean less than 30 instances.

Group 2 (Medium Fluctuation): Users in this group have
a demand fluctuation level between 1 and 5. A typical user’s
demand is shown in the middle graph of Fig. 6. There are 286

users in this group, represented by “x” in Fig. 7. These users
demand a medium amount of instances, with a mean less than
100.

Group 3 (Low Fluctuation): Users in this group have a
demand fluctuation level less than 1, represented by “+” in
Fig. 7. A typical user’s demand is shown in the bottom graph
of Fig. 6. Almost all big users with a mean demand greater
than 100 belong to this group.

Our evaluations are carried out for each group. We start to
quantify to what extent the aggregation smooths out demand
bursts of individual users. Fig. 8 presents the results, with “o”
being the statistics of individual users and the line representing
the fluctuation level of the aggregated demand. We see from
Fig. 8a and 8b that aggregating bursty users (i.e., users in
Group 1 and 2) results in a steadier curve, with a fluctuation
level much smaller than that of any individual user. For
users that already have steady demands, aggregation does not
reduce fluctuation too much (see Fig. 8c). In addition, Fig. 8d
presents the result of aggregating all the users. In all cases,
the aggregated demand is stabler and more suitable for service
via reserved instances.

Another benefit of demand aggregation is that it reduces
the wasted instance-hours incurred by partial usage. To see
this, for each user, we count the total time during which
it is billed but does not run any workload, when this user
purchases directly from the cloud. In each group, we do the
same count for the aggregate demand and compare it with the
sum of the wasted instance-hours of all users in that group.
Fig. 9 plots the results. As expected, we observe a reduction
of wasted instance-hours in all four cases. Interestingly, the
waste reduction is the most significant for users with medium
fluctuation, instead of highly fluctuated users. This is because
we do not have a sufficient amount of highly fluctuated
demands to aggregate.

B. Aggregate Cost Savings

We now evaluate the aggregate cost savings offered by the
broker, under three different reservation strategies, namely, the
Heuristic (Algorithm 1), Greedy (Algorithm 2) and Online
(Algorithm 3). Assuming a specific strategy is adopted by both
users and the broker, we compare the total service cost if users
are using the broker with the sum of costs if users trade with
the provider. Fig. 11 shows such comparisons in each user
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Fig. 11. Aggregate service costs with and without broker in different user groups.
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Fig. 10. Aggregate cost savings in different user groups due to the brokerage
service.

group, while Fig. 10 shows the percentage of cost savings due
to the use of a broker.

From Fig. 10, we see that the broker can bring a cost saving
of close to 15% when it aggregates all the user demands. In
terms of absolute values, the saving is over $100K, as shown in
Fig. 11d. However, the broker’s benefit is different in different
user groups: cost saving is the highest for users with medium
demand fluctuation (40%), and the lowest for users with low
demand fluctuation (5%). This is because when user demands
are steady, they are heavily relying on reserved instances,
regardless of whether they use the brokerage service or not.
The broker thus brings little benefit, as shown in Fig. 11c. In
contrast, for fluctuated demands, as shown in Fig. 11b, the
broker can smooth out the demand curve through aggregation,
better exploiting discounts of reserved instances. However,
when users are highly fluctuated with bursty demands, as
shown in Fig. 11a, even the aggregate demand curve is not
smooth enough: these users can only leverage a limited amount
of reserved instances, leading to less reservation benefit than
for users with medium fluctuation. However, there is still
15 � 20% cost saving, partly due to aggregation and the
reduction of partial usage.

We now compare the costs of different reservation strategies.
Fig. 11 verifies that Greedy is the best strategy while Online
is inferior due to the lack of future knowledge. However,
as shown in Fig. 11a, the three strategies are similar for
highly fluctuated users, because for bursty demands, on-
demand instances are mainly used (especially without broker)
and reservation strategies become less critical.
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Fig. 12. CDF of price discounts for individual users due to the brokerage
service, under different algorithms.

C. Individual Cost Savings

We next evaluate the price discount each individual user
can enjoy from the brokerage service. We consider a straight-
forward usage-based pricing scheme adopted by the broker.
That is, for each user, the broker calculates the area under its
demand curve to find out the instance-hours it has used. The
broker then lets users share the aggregate cost in proportion
to their instance-hours. In Fig. 12, we plot the CDF of price
discounts of individual users due to using the broker. In
Fig. 13, we plot the costs with and without the broker for
each individual user (represented by a circle), under Greedy
strategy, where such costs are the same if the circle is on
the straight line y = x. We do not plot for Group 3 (low
fluctuation) because the benefit of broker is less significant.
In this sense, users in Group 3 has less motivation to use
the broker. Furthermore, we omit Group 1 (high fluctuation)
because all their cost saving percentages are observed to be
the same as the aggregate saving percentage. The reason
is that with highly bursty demands, users in Group 1 will
mainly use on-demand instances without the broker, leading
to bills proportional to their usage. If these users choose to
use the broker, their costs are also proportional to their usage.
Therefore, the individual saving percentages are essentially the
same as the aggregate saving percentage.

From Fig. 12a, we see that over 70% of users in Group 2
save more than 30%, while in Fig. 12b, we see that the broker
can bring more than 25% price discounts to 70% of users if
all users are aggregated. Several interesting phenomena are
noted from Fig. 12 and Fig. 13. First, there is an upper limit
on the price discount a user can get under Greedy, which is
about 50%. Second, with Online, a majority (around 40 �
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Fig. 13. Cost without the broker vs. with the broker for individual users,
using Greedy strategy. Each circle is a user.

50%) of users receive a discount of around 30%. Third, when
the broker charges users based on usage, very few users (less
than 5%) do not receive discounts (with price discount below
0 or circles above the straight line in Fig. 13). Since these
users only contribute to a very small portion of the entire
demand (around 3%), the broker can easily guarantee to charge
them at most the same price as charged by cloud providers, by
compensating them with a portion of the profit gained from
service cost savings.

It is worth noting that the usage-based billing above is only
one of many possible pricing policies that the broker can use.
We adopt it here because it is easy to implement and under-
stand. Although it may cause the problem of compensating
overcharged users as mentioned above, it is not typically an
issue for the Google dataset. We note that more complicated
pricing polices, such as charging based on users’ Shapley value
[9], can resolve this problem with guaranteed discounts for
everyone. The discussion of these policies is out of the scope
of this paper. As long as the cost saving is achieved by the
broker, there are rich methods to effectively share the benefits
among all participants (see Ch. 15 in [10]).

D. Reservation Periods and Billing Cycles
We now quantify the impact of other factors that may affect

the broker’s benefit. The first we consider is the reservation
period ⌧ . In practice, different reservation periods are defined
in different IaaS clouds, ranging from a month to years. To
see how this affects the cost saving benefits, we fix the hourly
on-demand rate, and try different reservation periods with 50%
full-usage discount (i.e., the reservation fee is equal to running
on-demand instances for half of the reservation period). The
results are plotted in Fig. 14. We observe that, in general,
the longer the reservation period, the more significant the
cost saving achieved by the broker. It is worth noticing that
the broker offers very limited cost savings when there is no
reserved instance offered in the IaaS cloud. In this case, the
cost saving is only due to the reduction of partial usage.

The second factor that we take into account is how the
length of billing cycle affects the cost saving. To see this, we
change the billing cycle from an hour to a day, which is the
case in VPS.NET [5]. We set the daily on-demand rate to
24 times the original hourly rate (i.e., 24 ⇥ $0.08 = $1.92).
The full-usage reservation discount remains 50% (VPS.NET
offers 41% full-usage reservation discount, though). Fig. 15a
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Fig. 14. The aggregate cost saving as the reservation period varies in different
user groups, using Greedy strategy, where “None” means no reservation is
available.
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Fig. 15. Cost savings with a daily billing cycle under the Greedy strategy.

and Fig. 15b present the simulation results using the Greedy
strategy. As compared to the case of hourly billing cycle
(Fig. 10 and 12b), we observe a significant cost saving
improvement here. Intuitively, adopting a larger billing cycle
results in more wasted partial usage, leading to more salient
advantages of using the broker.

E. Discussions and Other Practical Issues

Let us further discuss several potential benefits of the
broker that have not yet been investigated in the evaluation.
First, by taking advantage of volume discounts, the cost of
instance reservations would be significantly further reduced.
As mentioned in the introduction, in practice, most IaaS clouds
offer heavy volume discounts to large users. For example, in
Amazon EC2, such volume discounts offer an additional 20%
off on instance reservations [2]. Due to the sheer volume of
the aggregated demand, the broker can easily qualify for these
discounts.

Second, in addition to savings on the expenses of running
instances, the broker can also help lower the costs of other
cloud resources such as storage, data transfer, and bandwidth.
Since all these prices are sub-additive [2], the cost of provi-
sioning aggregated resources is much cheaper than the total
cost of purchasing them individually from the cloud.

Third, thanks to the cost reduction, the broker lowers the
bar of cloud adoption, which may attract more users and bring
forth more demands to cloud providers. Since most of these
demands are served with reserved instances, they are more
friendly to capacity planning while generating long-term risk-
free revenue for providers.

On the other hand, we also note several practical issues in



operating the brokerage service. First, the savings from partial
usage reduction are conditioned on the pricing details of a
specific cloud. It is worth noting that time-multiplexing users
on an on-demand instance in EC2 will not lead to cost savings.
This is because in EC2, stopping a user on an on-demand
instance terminates a billing cycle, while loading a new user
onto it opens a new one [2]. However, this is generally not
an issue for other cloud providers such as ElasticHosts [3]
or reserved instances with a fixed cost (e.g., EC2 Heavy
Utilization Reserved Instances). In fact, even without time-
multiplexing on-demand instances, our simulation indicates
that the total cost savings will only decrease less than 10%.

Second, in reality a user may only have rough knowledge of
its future demands, so the broker’s demand estimate may not
be accurate. In this case, they can still benefit from a broker
that uses the online strategy, which does not rely on future
information. After all, these users will face exactly the same
situation when purchasing directly from the cloud.

Finally, in our simulation, we consider the case that the
broker rewards all cost savings to users as price discounts. In
reality, the broker can turn a profit by taking a portion of the
savings as profit or through a commission.

VI. RELATED WORK

Some existing works discussed how to leverage prevalent
cloud pricing options to reduce instance running costs for
an individual user. For example, Zhao et al. [11] proposed
resource rental planning with EC2 Spot Price predictions to
reduce the operational cost of cloud applications. Hong et
al. [12] designed an instance purchasing strategy to reduce
the “margin cost” of over-provisioning. They also presented
a strategy to combine the use of on-demand and reserved
instances [12], which is essentially a special case of Algo-
rithm 1 when all demands are given in one reservation pe-
riod. Vermeersch [13] implemented a software prototype that
dynamically retrieves instances from Amazon EC2 based on
the user workload. All these works make instance purchasing
decisions for an individual user.

IaaS cloud brokers have recently emerged as intermediators
connecting buyers and sellers of computing resources. For
example, SpotCloud [14] offers a “clearinghouse” in which
users can buy and sell unused cloud computing capacity.
Buyya et al. [15] discussed the engineering aspects of using
brokerage to interconnect clouds into a global cloud market.
Song et al. [16] proposed a broker that predicts EC2 Spot
Price, bids for Spot Instances, and uses them to serve cloud
users. Unlike existing brokerage services that accommodate
individual user requests separately, our broker serves the
aggregated demands by leveraging instance multiplexing gains
and instance reservations, and is a general framework not
limited to a specific cloud.

The idea of resource multiplexing has also been extensively
studied, though none of them relates to computing instance
provisioning. Stanojevic et al. [17] made use of bandwidth
burstable billing and proposed a cooperative framework in
which multiple ISPs jointly purchase IP transit in bulk to

reduce individual costs. Urgaonkar et al. [18] empirically
evaluated the idea of statistical multiplexing and resource over-
booking in a shared hosting platform. Compared with these
applications, exploiting multiplexing gains in cloud instance
provisioning poses new challenges, mainly due to the newly
emerged complex cloud pricing options. It remains nontrivial
to design instance purchasing strategies that can optimally
combine different pricing options to reduce cloud usage costs.

VII. CONCLUDING REMARKS

In this paper, we propose a smart cloud brokerage service
that serves cloud user demands with a large pool of computing
instances that are either dynamically reserved or launched on
demand from IaaS clouds. By taking advantage of instance
multiplexing gains as well as the price gap between on-demand
and reserved instances, the broker benefits cloud users with
heavy discounts while gaining profits from the achieved cost
savings. To optimally exploit the price benefits of reserved
instances, we propose a set of dynamic strategies to decide
when and how many instances to reserve, with provable per-
formance guarantees. Large-scale simulations driven by real-
world cloud usage traces quantitatively suggest that significant
cost savings can be expected from using the proposed cloud
brokerage service.
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