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Abstract—Cloud resources are usually priced in multiple
markets with different service guarantees. For example, Amazon
EC2 prices virtual instances under three pricing schemes — the
subscription option (a.k.a., Reserved Instances), the pay-as-you-
go offer (a.k.a., On-Demand Instances), and an auction-like spot
market (a.k.a., Spot Instances) — simultaneously. There arises
a new problem of capacity segmentation: how can a provider
allocate resources to different categories of pricing schemes, so
that the total revenue is maximized? In this paper, we consider an
EC2-like pricing scheme with traditional pay-as-you-go pricing
augmented by an auction market, where bidders periodically
bid for resources and can use the instances for as long as they
wish, until the clearing price exceeds their bids. We show that
optimal periodic auctions must follow the design of m+1-price
auction with seller’s reservation price. Theoretical analysis also
suggests the connections between periodic auctions and EC2
spot market. Furthermore, we formulate the optimal capacity
segmentation strategy as a Markov decision process over some
demand prediction window. To mitigate the high computational
complexity of the conventional dynamic programming solution,
we develop an approximate solution that has significantly lower
complexity and is shown to closely approach the optimal revenue.

I. INTRODUCTION

Cloud computing transforms a large part of the IT industry
by fulfilling the long-held ambitious vision of computing as
a utility. Users pay to access computing resources delivered
over the Internet, just as they pay to use water and electricity.
Like other utility providers, many cloud providers charge their
customers in a regular pay-as-you-go manner [1], [2], [3], [4],
[5], [6], [7]. A provider sets a static or infrequently updated
per-unit price, and users pay for only what they use.

Along with the pay-as-you-go offer, there are two additional
pricing schemes widely adopted in cloud markets: the sub-
scription option [2] and the spot market [1]. In the former
scheme, a user pays a one-time subscription fee to reserve one
unit of resource for a certain period of time. A user can use the
reserved resource whenever it wants during the subscription
period, under a significantly discounted usage fee. The spot
market, on the other hand, is an auction-like mechanism. Users
periodically submit bids to the provider, who in turn posts a
series of spot prices. Users gain resource access and can use
the resources for as long as they wish, until the spot price rises
above their bids, at which time they are rejected.

Instead of exclusively selling computing services via a
single pricing channel, many providers use multiple pricing
schemes simultaneously to charge for cloud services. For
example, both pay-as-you-go pricing and subscription option
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Fig. 1. The capacity segmentation problem: how do we allocate resources
to each pricing model so that the revenue is maximized?

are offered in [2], [4], [7]. Amazon EC2, on the other hand,
leases virtual instances through all three pricing channels [1].

Compared with leasing cloud resources via a single pricing
channel, multiple categories of pricing strategies are more
attractive to a provider for two reasons. First, with a combined
pricing structure, the deficiency of one business mode is
compensated by another. For example, the demand uncertainty
of pay-as-you-go pricing is compensated by risk-free income
from subscription users bearing long-term usage commitment.
Second, the use of multiple pricing categories expands the mar-
ket demand by offering more flexible choices to accommodate
different types of users. For example, price-sensitive users who
cannot afford the pay-as-you-go price now have a chance to
gain access to resources by bidding in the spot market.

The co-existence of multiple pricing channels, as illustrated
in Fig. 1, raises a new, and challenging, question to a provider:
with limited resources available, how do we allocate them to
each pricing channel so that the overall revenue is maximized?

To answer this question, in this paper, we consider the
problem of capacity segmentation with two pricing models
applied in parallel, i.e., the regular pay-as-you-go offer and
periodic auctions. The latter allows users to periodically bid
for resources in a sequence of auctions. In each period, a
uniform take-it-or-leave-it price is posted to clear the market.
The winners can use the resources for as long as they wish,
until the clearing price rises above their bids. The provider’s
problem is to optimally allocate its resources to the two
pricing channels, based on supply and demand, to maximize
the obtained revenue.

We choose the aforementioned two pricing models as build-
ing blocks of the capacity segmentation problem for two
reasons. First, due to the upfront usage commitment borne



by users, subscription demand generates long-term risk-free
income to the provider. In this sense, subscription requests
are more preferred to providers [7] and are always fulfilled at
the highest priority. We therefore focus only on the remaining
two pricing models. Second, given that Amazon reveals no
detailed information on how the spot price is determined [1],
it is unclear how the spot market is operated. We hence turn
to periodic auctions as they share similar pricing forms as the
EC2 spot market (i.e., both are bid-based)1.

To the best of our knowledge, we are the first to consider
such a capacity segmentation problem in cloud markets with
hybrid pricing. We make two original contributions in this
paper. First, we show that an optimal design for the auction
channel must follow the form of the m+1-price auction with
seller’s reservation price. Contrary to the well-known result
that, in general, bidders tend to underbid in a uniform-price
auction (including the m+1-price auction), we show that,
in cloud environments, however, the m+1-price auction is
essentially truthful with two-dimensional bids. Interestingly,
such truthfulness is also expected in the EC2 spot market. In
this case, replacing Amazon’s design with periodic auctions
does not change user behaviours, resulting in the same market
response.

Second, we formulate the optimal capacity segmentation
problem as a Markov decision process (MDP). However,
optimally solving this MDP with conventional dynamic pro-
gramming is computationally prohibitive, especially for a large
provider with enormous capacity. By utilizing some special
bounding structure of the optimization problem, we further
develop an approximate solution that significantly reduces the
computational complexity from O(C3

) to O(C2
), with C

being the capacity of the provider. We conditionally bound the
competitive ratio of the sub-optimal revenue to the optimal
one. This analytical bound, together with extensive simula-
tions, suggests that the approximation closely approaches the
optimal solution.

The remainder of this paper is organized as follows. In
Sec. II, we briefly survey the related work. Our model and
notations are introduced in Sec. III. In Sec. IV, we characterize
the revenue obtained in the auction market, and present an
optimal design with maximum revenue. We also discuss its
connections to the EC2 spot market. In Sec. V, we first present
rationales for the use of multiple pricing models. We then
show that achieving optimal segmentation is computationally
prohibitive. For this reason, we present a near-optimal solution
where the computational complexity is significantly reduced
by identifying some optimization structures in the problem.
Extensive simulation studies are presented in Sec. VI. Sec. VII
concludes the paper.

1We emphasize that periodic auctions are not equivalent to the EC2 spot
market. While spot users are price-takers unaware of how spot prices are
produced, auction bidders, on the other hand, have full knowledge on pricing
details and can affect the clearing price via strategic bidding.

II. RELATED WORK

Three pricing models are now widely adopted in cloud
markets, i.e., the regular pay-as-you-go offer, the subscription
option, and the newly invented spot market. The providers
advertise that having multiple pricing schemes benefits cloud
users by lowering their costs [1], [7]. Existing works also
present some user strategies to switch between different pric-
ing markets to cut the cost [8], [9].

However, little has been addressed from the cloud provider’s
perspective, on how their resources should be allocated to
different markets to maximize revenue. Relevant research
works in the literature include [10], which investigates the
resource allocation problem in either static pricing or variable
pricing, by solving a static optimization program, and [11],
which presents a dynamic auction-based model for resource
allocations in the grid system. None of these works considers
the coexistence of multiple different pricing markets.

We believe the key to solve the capacity segmentation
problem lies in understanding the EC2 spot market. However,
since Amazon reveals no detailed pricing information, it
remains unclear how the spot price is determined. Despite
Amazon’s claim that the price is calculated based on market
demand and supply [1], some recent works conjecture that
the price is in fact artificially set via some random process
[9], [12]. In this paper, we consider periodic uniform-price
auctions, as they share similar pricing forms as the EC2
spot market. Unlike general uniform-price auctions discussed
in economics literature [13], [14], in the cloud environment,
partial fulfillment is not accepted: a bidder is either rejected
or having all requested instances [1] being fulfilled. For this
reason, our design avoids the well-known effect of “demand
reduction” observed in general uniform-price auctions — that
bidders have an incentive to bid lower than their true values
[13], [14] — and is proved to be truthful with two-dimensional
bids.

We note that there exist some works in the literature of
economics that discuss a similar resource allocation problem
in the retail market, where two pricing channels are used to
sell products, the auction market and the regular pay-as-you-go
pricing [15], [16]. However, neither the model nor the analysis
applies to the cloud environment. First, their models are based
on sales markets, where resources are sold to customers and
will never be reclaimed and made available to others. In
contrast, cloud instances are leased to users and can be reused
by others once the resources are released by previous owners.
Second, their analysis relies on a strong assumption that each
customer is restricted to ask for only one unit of product,
which is clearly not the case for cloud users. We note that
[15] further assumes that the seller capacity is infinite.

It is worth mentioning that optimal periodic auctions have
also been studied in the retail market in [17], [18], but the same
problems mentioned above render those works inapplicable in
cloud markets.



III. SYSTEM MODEL

Suppose a cloud provider has allocated a fixed capacity C
for a certain type of virtual instances, i.e., at any given time, up
to C instances of that type can be hosted. All these instances
are leased in two pricing channels, an auction market and a
pay-as-you-go market, simultaneously. We take discrete time
horizons indexed by t = 1, 2, . . . in the following analysis.

A. User Model

Pay-as-you-go users. The pay-as-you-go market offers
guaranteed services. Users can run their instances for as
long as they wish, and are charged what they used based
on a constant regular price p

r

. In particular, denote by t
i,j

the running time of instance j hosted for user i. User i
is then charged p

r

t
i,j

for using that instance. To make the
analysis tractable, we take a technical assumption that t

i,j

’s
are i.i.d. exponential. In discrete settings, this implies that
t
i,j

follows the geometric distribution with p.m.f. P (t
i,j

=

k) = q(1� q)k�1, where q is the probability that a currently
running instance will be terminated by its user in the next
period. Therefore, the expected overall payment for using
one instance is E[p

r

t
i,j

] = p
r

E[t
i,j

] = p
r

/q. Although the
i.i.d. exponential instance running time is a simple model
and practical user behaviours may not follow it, taking this
technical assumption allows tractable analysis and has been
shown to give interesting insights into practical systems. We
also note that such exponential resource usage time is widely
adopted in economics literatures to analyze rental markets
[19], [20].

Because p
r

is constant, pay-as-you-go users have no pur-
chasing strategy as the auction bidders have. We assume there
are Rt

r

instance requests received at time t, and if the available
capacity allocated to the pay-as-you-go market is below Rt

r

,
some users do not receive their requested instances. The exact
mechanism for user admission (e.g., first-come, first-served)
is unimportant to the problem under consideration since the
same price p

r

is charged for each instance.
Users in the auction market. Instances purchased in the

auction market offer no service guarantees and will be termi-
nated by the provider whenever the bid has been exceeded by
the clearing price. Suppose at time t, there are N t

a

bidders
joining the auction. Each bidder i (1  i  N t

a

) wishes to
access n

i

instances and has a maximum affordable price v
i

,
also known as the reservation price, for using one instance at
one period. User i then submits a two-dimensional bid (rt

i

, bt
i

)

requesting rt
i

instances with a bid price bt
i

. Note that user i
could strategically misreport its bid (i.e., bt

i

6= v
i

or rt
i

6= n
i

)
as long as it believes that this is more beneficial.

After all bids are collected, the cloud provider runs the
auction and charges a take-it-or-leave-it clearing price pt

a

to all
winners: each user i with bt

i

> pt
a

(resp. bt
i

< pt
a

) either has
its new requests fulfilled (resp. rejected) or has its running
instances continued (resp. terminated). Those with bt

i

= pt
a

may or may not be accepted depending on the specific auction
mechanism. The value of pt

a

is calculated based on some

specified mechanism that is publicly known to all bidders. We
therefore define user i’s utility at time t as follows:

ut

i

(rt
i

, bt
i

) =

⇢
n
i

v
i

� rt
i

pt
a

, if bt
i

> pt
a

and rt
i

� n
i

;
0 , otherwise. (1)

Here, both n
i

and v
i

are private information known only to
user i, and are distributed with joint p.d.f. f

n,v

and c.d.f.
F
n,v

on the support [n, n̄] ⇥ [v, v̄]. The user i’s problem is
to find the optimal bid such that the utility is maximized, i.e.,
max

r

t
i ,b

t
i
ut

i

(rt
i

, bt
i

).
It is worth mentioning that the auction described above is

substantially different from the uniform-price auction consid-
ered in the literature of economics [13], [14], as bidders in the
later mechanism accept partial fulfillment and have different
utility functions other than (1).

B. The Problem of Optimal Capacity Segmentation
The cloud provider aims to optimally allocate its available

capacity to both the pay-as-you-go and auction markets, to
maximize its obtained revenue. Let the available capacity at
time t be Ct. In addition to knowing the exact number of
requests in the current time slot t, we assume that the provider
may predict the demand in the near future: it knows the
distributions of N⌧

a

(the user number in the auction market)
and R⌧

r

(the total requests in the pay-as-you-go market) for
⌧  T = t+ w, with w being some prediction window. Note
that forecasting future demand has already been addressed in
some literature [10], [21].

Given Ct at time t, denote by �

t

(Ct

) the maximum
expected aggregate revenue obtained from t to T . Let �

a

(c)
and �

r

(c) be the revenues of allocating c instances to the
auction and the regular pay-as-you-go markets, respectively.
The problem of optimal capacity segmentation is to find the
optimal capacity allocations to the two markets such that the
revenue collected within the prediction window is maximized.
This can be expressed in the following recursive form:

�

t

(Ct

) = E


max

0C

t
aC

t

�
�
a

(Ct

a

) + �
r

(Ct � Ct

a

)

+E
C

t+1

⇥
�

t+1
(Ct+1

)

⇤ �
, (2)

where Ct

a

is the capacity allocated to the auction market,
and the boundary conditions are �

T+1
(c) = 0 for all c =

0, 1, . . . , C.
Since the pay-as-you-go price is infrequently updated [1],

in this work we consider only the shorter time-scale problem
of capacity segmentation given a fixed p

r

. Then we have

�
r

(c) =

⇢
p
r

c/q , if c  Rt

r

;
p
r

Rt

r

/q , otherwise. (3)

Note that a discussion on how to optimize p
r

can be conducted
based on the proposed revenue maximizing method, but it
additionally requires knowledge of the yet unknown supply-
demand relation and hence is left open for future research.

To determine the value of Ct+1 in (2), we note that at time
t, there are Ct

a

instances allocated to the auction market and



C � Ct

a

instances held for the pay-as-you-go users. Suppose
that right before t + 1, X of them are terminated by pay-
as-you-go users and are returned to the system. As a result,
there are Ct+1

= Ct

a

+ X instances being available for new
requests at the beginning of t+1. From the assumption of the
exponential running time as explained in Sec. III-A, it is easy
to see that X follows a binomial distribution with P (X =

k) = B(C � Ct

a

, k, q), where B(n, k, q) =
�
n

k

�
qk(1� q)n�k.

We re-write (2) as

�

t

(Ct

) = E


max

0C

t
aC

t

�
�
a

(Ct

a

) + �
r

(Ct � Ct

a

)

+E
X

⇥
�

t+1
(Ct

a

+X)

⇤ �
. (4)

Note that the capacity segmentation problem is essentially
formulated as a Markov decision process. The cloud provider’s
problem is to solve (4) to find the optimal capacity segmen-
tation point Ct⇤

a

.
It is worth mentioning that the capacity segmentation prob-

lem stated in (4) is non-trivial: Neither market is always more
profitable than the other. In the auction market, there may
be high-bid requests from users starving for cloud resources,
which can drive the auction price above the regular pay-
as-you-go price (i.e., pt

a

> p
r

), making the auction market
more profitable for a provider. Such phenomenon has indeed
been observed in the real world: In EC2 pricing, the spot
price occasionally exceeds the regular price [1]. A cloud
provider has to dynamically segment its capacity to maximize
its revenue.

For now, problem (4) is still not well defined. One question
remains: how to design the optimal auction market to max-
imize the revenue �

a

(Ct

a

) given Ct

a

instances are allocated?
We answer this question in the following section.

IV. OPTIMAL AUCTION DESIGN

This section addresses the question raised above. Given
an allocated capacity Ct

a

, what is the optimal design for
the auction market described in Sec. III? We investigate the
structure of the optimal auction and characterize its revenue
�
a

(Ct

a

). We also discuss its connections to Amazon EC2 Spot
Instances.

A. Preliminaries

An auction mechanism M is said to be truthful if for every
bidder, no matter how others behave, the optimal bidding
strategy is always to submit its true bids. In our problem, this
means that for every i, ut

i

(n
i

, v
i

) � ut

i

(rt
i

, bt
i

) for any (rt
i

, bt
i

).
By the Revelation Principle [22], it suffices to focus only on

truthful auction designs when revenue is of interest. Lemma 1
characterizes the revenue of any truthful auctions by extending
the Revenue Equivalence Theorem [23] to the two-dimensional
domain. The proof is similar to [23] and is given in Ap-
pendix A.

Lemma 1: Let v = (v
i

) and n = (n
i

). Denote by �M the
revenue of a mechanism M with two-dimensional bids. Then

for any truthful M, we have

En,v[�M] = En,v

"
NX

i=1

n
i

�(v
i

)x
i

(n,v)

#
. (5)

Here, �(v
i

) = v
i

� 1�Fv(vi|ni)
fv(vi|ni)

, and x
i

(n,v) takes the value 0
or 1 depending on whether user i loses or wins, respectively.

An important observation from Lemma 1 is that the ex-
pected revenue of a truthful mechanism only depends on who
is to win (i.e., x

i

’s), not what they pay (i.e., pt
a

).
We now characterize the revenue of the auction market

described in Sec. III. Without loss of generality, suppose
bidders are sorted in a decreasing order of their bidding prices,
i.e., v1 � v2 � · · · � v

N

t
a
. We have the following proposition.

Proposition 1: Suppose M is a truthful auction offering
a uniform take-it-or-leave-it price. Let m be the number
of winning bidders2. Then the expected revenue of M is
characterized as follows:

En,v[�M] = En,v

"
mX

i=1

n
i

�(v
i

)

#
. (6)

Proof: Since the auction market offers a uniform take-it-or-
leave-it price pt

a

, every winning bidder i must have v
i

� pt
a

.
In this case, the top m bidders win the auction, i.e., x

i

=

1 for i = 1, 2, . . . ,m. Substituting this to (5) and applying
Lemma 1, we see that the statement holds.

Proposition 1 essentially indicates that maximizing the
auction revenue is equivalent to maximizing the RHS of (6),
subject to the capacity constraint:

max

mN

t
a

mX

i=1

n
i

�(v
i

)

s.t.
mX

i=1

n
i

 Ct

a

.

(7)

For mathematical convenience, we take the standard regu-
larity assumption that �(·) is increasing. This is not a restric-
tive assumption, as it generally holds for most distributions
[23] and is widely adopted in the literature [13], [23], [24].

B. Optimal Auction Market

Problem (7) can be optimally solved in a greedy fashion:
sequentially accept bidders’ requests, from the top valued (i.e.,
the highest �(v

i

)) to the bottom, until there is no longer
capacity for more. It suffices to assume that all requests are
positively valued (�(v

i

) > 0), as those with �(v
i

)  0 will
never be fulfilled. The optimal auction market, described in
Algorithm 1, is designed based on the above process.

We note that Algorithm 1 adopts the similar design of
the canonical m+1-price auction, with a difference that a
seller now has a reservation price ��1

(0). Though m+1-price
auction is truthful for the case where each bidder requests no
more than one unit of the auctioned good [25], it is well known
that in general, the truthfulness no longer holds when bidders

2The value of m depends on n and v.



Algorithm 1 Optimal Auction Market with Capacity Ct

a

1. if
P

N

t
a

i=1 r
t

i

 Ct

a

then
2. All bidders win (m = N t

a

), with pt
a

= ��1
(0)

3. else
4. Top m bidders win, with pt

a

= bt
m+1, where

P
m

i=1 r
t

i


Ct

a

<
P

m+1
i=1 rt

i

5. end if

have multi-unit demands [13], [14]. However, we show that
for the specific problem considered in this paper, m+1-price
auction is two-dimensionally truthful in both n

i

and v
i

. To see
this, we require the following lemma.

Lemma 2: For every bidder i, fix all others’ submissions.
Denote by pt

a

(bt
i

, rt
i

) the clearing price when i bids (bt
i

, rt
i

).
Then for all bt

i

(resp. rt
i

), pt
a

(bt
i

, rt
i

) is increasing w.r.t. rt
i

(resp.
bt
i

).
Lemma 2 reflects the basic principle of economics: With

the same supply, the market price rises as the bidders’ demand
increases. The proof can be found in Appendix B.

Lemma 2 immediately suggests Lemma 3, whose proof is
given in Appendix B.

Lemma 3: For every bidder i, there is no advantage to
overbook instances, i.e., given bt

i

, ut

i

(rt
i

, bt
i

)  ut

i

(n
i

, bt
i

) for
all rt

i

> n
i

.
Since no user has the incentive to request fewer instances

than needed (as ut

i

(rt
i

, bt
i

) = 0 whenever rt
i

< n
i

), Lemma 3
essentially indicates that the users always truthfully report their
n
i

value. This leads to the truthfulness statement as follows.
Proposition 2: Algorithm 1 is two-dimensionally truthful,

i.e., ut

i

(n
i

, v
i

) � ut

i

(rt
i

, bt
i

) for all (rt
i

, bt
i

), i = 1, 2, . . . , N t

a

.
The detailed proof is given in Appendix B. Intuitively, given

that all users report n
i

truthfully as dictated by Lemma 3, the
market can be viewed as a second price auction in terms of the
bid price only, which is well-known to be truthful. We point
out that the two-dimensional truthfulness of this special case
of m+1-price auction in our problem is due to the specific
characteristics of cloud markets that partial fulfillment is not
allowed.

The revenue optimality of Algorithm 1 follows naturally
from the proved truthfulness (i.e., Proposition 2):

Proposition 3: Among all mechanisms offering a uniform
take-it-or-leave-it price, Algorithm 1 is optimal in terms of
revenue maximization.

Proof: Since Algorithm 1 is truthful, all bidders bid rt
i

= n
i

and bt
i

= v
i

. In this case, Algorithm 1 optimally solves
problem (7). By Proposition 1, this implies that Algorithm 1
maximizes the revenue among all truthful auctions offering
uniform clearing prices. Due to the Revelation Principle [22],
imposing the truthfulness to the auction design does not
hurt the revenue. We therefore conclude that the statement
generally holds.

C. Optimal Revenue
To derive the revenue obtained from Algorithm 1, one has

to deal with two cases, with or without sufficient capacity to

accommodate all profitable requests. To combine both cases
in our subsequent discussion, we artificially insert a virtual
bidder to the market, who requests an infinite amount of
instances at a price ��1

(0). Inserting a virtual bidder has no
effect on the auction result, but it significantly simplifies the
revenue expression. Based on Algorithm 1, pt

a

= v
m+1, and

�
a

(Ct

a

) = v
m+1

P
m

i=1 ni

, where
P

m

i=1 ni

 Ct

a

<
P

m+1
i=1 n

i

.
By Proposition 1, we have E[�

a

(Ct

a

)] = E[v
m+1

P
m

i=1 ni

] =

E[

P
m

i=1 ni

�(v
i

)]. Therefore, in expectation, it is equivalent to
write

�
a

(c) =

mX

i=1

n
i

�(v
i

) , (8)

where
P

m

i=1 ni

 c <
P

m+1
i=1 n

i

. In this sense, n
i

�(v
i

) can
be viewed as the marginal revenue generated by accepting the
requests of bidder i.

D. Connections to EC2 Spot Market
It is interesting to see some connections between the auction

market discussed in this paper and the spot market adopted
by Amazon EC2 Spot Instances [1]. Similar to the auction
market, spot users periodically submit bids (rt

i

, bt
i

) to Amazon,
requesting rt

i

instances at a price bt
i

. A uniform spot price pt
s

is periodically posted by Amazon to charge the winners, i.e.,
those who bid higher than the spot price (bt

i

> pt
a

). All winners
can use the instances as long as the price does not rise above
their bids.

Though similar in description, the pricing of Spot Instances
is by no means an auction market. Since Amazon has revealed
no detailed information regarding how the spot price pt

s

is
calculated, there is no way for spot users to know what pt

s

is
going to be, even with the complete information of demand
(i.e., users’ bids) and supply (i.e., the amount of instances
offered in the spot market). This is not the case in a real
auction, where the mechanism details are publicly known to
every participant.

We now investigate the optimal bidding strategy for Spot
Instances. Without pricing details, one valid approach for spot
users is to view pt

s

as a random variable, with p.d.f. f t

s

and
c.d.f. F t

s

learned from the price history published by Amazon
[1]. Suppose the utility defined for user i is similar to (1) with
the clearing price pt

a

replaced by the spot price pt
s

, i.e.,

ut

i

(rt
i

, bt
i

) =

⇢
n
i

v
i

� rt
i

pt
s

, if bt
i

> pt
s

and rt
i

� n
i

;
0 , otherwise.

The user’s problem is to find the optimal bid so that its
expected utility is maximized, i.e., max

r

t
i ,b

t
i
E

p

t
s
ut

i

(rt
i

, bt
i

).
Proposition 4: In the spot market, the optimal bid for user

i is to truthfully submit (n
i

, v
i

).
Proof: Let A be the event that i wins by bidding bt

i

. Denote
by I

X

the indicator function of event X . We have

E[ut

i

(rt
i

, bt
i

)] = P (A)(n
i

v
i

� rt
i

E[pt
s

|A])I
r

t
i�ni

= F
s

(bt
i

)

"
n
i

v
i

� rt
i

Z
b

t
i

v

xf
s

(x)dx

#
I
r

t
i�ni

.

(9)



It is easy to see that bidding rt
i

= n
i

dominates all other
strategies for every bt

i

. Now substituting it back to (9) and
applying the first-order optimality conditions, we see that the
optimal bid price is v

i

. This concludes the proof.
Intuitively, without knowing how the spot price reacts to

different submissions, no user has the incentive to strategize
over its bid. Therefore, by replacing a spot market with an
auction market, the provider would expect the same user
behaviour. In other words, the two markets are equivalent in
terms of the market reaction. Considering that both are of
similar pricing structures (i.e., both are bid-based), we believe
that the auction market offers a good simulation to the spot
market, and the analysis of the former sheds light on the latter.

V. OPTIMAL CAPACITY SEGMENTATION

Having characterized the revenue for the auction market, we
are now ready to investigate the market segmentation problem
stated in (4). Before delving into the detailed technical dis-
cussions, we justify the motivation of having two co-existing
markets by taking a look at the simplest scenario where no
future information is available, i.e., the prediction window w
is 0.

A. Motivations for Joint Markets
When w = 0, (4) is reduced to a one-shot optimization

problem, i.e.,

�

t

(Ct

) = E


max

0C

t
aC

t

�
�
a

(Ct

a

) + �
r

(Ct � Ct

a

)

 �
. (10)

We are not interested in solving the problem above as an O(C)

solution trivially exists (i.e., search all possible Ct

a

’s to find
the optimal segmentation). Instead, we show that this simple
scenario illustrates two motivating factors behind pricing via
joint markets.

First, with the auction market, low-valuation users whose
v
i

< p
r

are offered a chance for access to cloud instances.
Therefore, having two markets expands the potential demand
and increases the overall revenue.

Second, users with low tolerance to interruptions are offered
an option to increase their request priority, as stated below.

Proposition 5: To maximize revenue, the provider always
tries to fulfill the requests of those auction bidders whose v

i

�
p
r

/q before it accepts any pay-as-you-go requests.
Proof: Suppose the provider has sufficient capacity to fulfill

bidder i’s requests n
i

. By Proposition 1, the marginal revenue
of accommodating bidder i is n

i

�(v
i

). Now if the provider
changes its mind and allocates these n

i

instances to pay-as-
you-go users, then the marginal revenue would be at most
n
i

p
r

/q. Note that this will not happen if �(v
i

) � p
r

/q,
as bidder i’s requests bring more marginal revenue to the
provider. We therefore conclude the proof by noticing that
v
i

� �(v
i

) � p
r

/q.
In other words, for high-valuation users, the auction market

is actually offering guaranteed services with higher fulfillment
priority. Only low-valuation users bear the risk of being
interrupted.

All above justify the motivation for using multiple markets:
It benefits both the provider and the users. However, though
Proposition 5 reveals some basic criteria in allocating re-
sources, it alone is unable to guarantee the optimal revenue. In
fact, optimal capacity segmentation is a complicated problem.
The following discussions are targeted for a general setting
where short prediction is available, i.e., w > 0.

B. Complexity of Optimal Capacity Segmentation

Since (4) describes an MDP problem, a standard solution is
numerical dynamic programming via backward induction. It
proceeds by first simulating market demand in the last stage
T based on the predicted demand and calculating the optimal
segmentation made in that stage. Using this result, it then
determines how to segment the capacity in stage T � 1, based
on the predicted market demand at that time. This process
continues backwards until the optimal segmentation Ct⇤

a

made
in the current stage is obtained. In each stage ⌧ , for each possi-
ble C⌧ and each demand realization (i.e., the auction requests
(n,v) and pay-as-you-go requests R⌧

r

), compute (4), which
takes O(C2

) operations. Since the computation is taken over
all C⌧

= 0, 1, . . . , C, the complexity of one-stage calculation
is O(C3

). By noting that only short prediction is possible
and w is usually small, we see the overall computational
complexity of the above process is O(C3

).
For large providers with high capacities, finding exact

solutions to (4) is computationally intractable. As a typical
example, when C = 10

5, the computation above requires
O(10

15
) operations, which is prohibitive when decisions need

to be made in real time.

C. An Approximate Solution

The segmentation decision needs to be made quickly after
the user demand has arrived. In practice, this is often more
important than pursuing exact optimality. Hence, we next pro-
pose an approximate solution to (4) that significantly reduces
the computational complexity.

In the auction market, the bidders’ requests do not always
fit exactly within the allocated capacity. By (8), there are
� = c �

P
m

i=1 ni

instances leftover as these resources are
not sufficient to accommodate bidder m + 1’s requests, i.e.,
� < n

m+1. However, if bidder m+1 accepts partial fulfillment,
then those � instances generate ��(v

m+1) additional revenue
to the provider. Let �̄

a

(·) be the revenue obtained as if partial
fulfillment were acceptable, i.e.,

�̄
a

(c) = �
a

(c) + ��(v
m+1)

=

mX

i=1

n
i

�(v
i

) + ��(v
m+1) , (11)

Clearly �̄
a

is an upper bound of �
a

. The following Proposition
bounds the gap between �

a

and �̄
a

.
Lemma 4: If c � ↵n̄ for some ↵ � 1, then �

a

(c) � (1 �
1
↵

)�̄
a

(c).
Proof: By (11), we have �̄

a

(c) � �
a

(c) = ��(v
m+1). It

suffices to consider the following two cases.



Case 1: n
m+1 = 1. In this case, m + 1 is the virtual

bidder with �(v
m+1) = 0. We see the statement holds with

�̄
a

(c) = �
a

(c).
Case 2: n

m+1 < 1. In this case, m + 1 is a regular
bidder. We have � < n

m+1  n̄  c/↵. Hence �̄
a

(c) �
�
a

(c) = ��(v
m+1)  c�(v

m+1)/↵  �̄
a

(c)/↵, where the last
inequality holds since �(v1) � · · · � �(v

m+1).
By Lemma 4, we see that the upper bound �̄

a

is a close
approximation to �

a

in practical settings, where the capacity
allocated to the auction market is usually enormous compared
with a single bidder’s requests (i.e., ↵ � 1). We therefore
consider an approximate problem by replacing �

a

with �̄
a

in
(4), i.e.,

¯

�

t

(Ct

) = E


max

0C

t
aC

t

�
�̄
a

(Ct

a

) + �
r

(Ct � Ct

a

)

+E
X

⇥
¯

�

t+1
(Ct

a

+X)

⇤ �
. (12)

The boundary conditions are ¯

�

T+1
(c) = 0 for all c =

0, 1, . . . , C. Let ˜Ct

a

be the optimal solution to (12). The
provider then uses it as an approximate, sub-optimal solution
to (4), generating revenue

˜

�

t

(Ct

) = E


�
a

(

˜Ct

a

) + �
r

(Ct � ˜Ct

a

)

+E
X

⇥
˜

�

t+1
(

˜Ct

a

+X)

⇤�
. (13)

We justify the intuition of the approximation above with
the following proposition, which conditionally bounds the
competitive ratio of ˜

�

t to �

t.
Proposition 6: In (12), if ˜C⌧

a

� ↵n̄ for all ⌧ = t, . . . , T ,
then (1� 1

↵

)�

t

(Ct

)  ˜

�

t

(Ct

)  �

t

(Ct

).
Proof: It is trivial to show the second inequality as �

t is
the optimal solution. To show the first inequality, we have

˜

�

t

(Ct

) = E

"
TX

⌧=t

�
a

(

˜C⌧

a

) + �
r

(C⌧ � ˜C⌧

a

)

#

� (1� 1

↵
)E

"
TX

⌧=t

�̄
a

(

˜C⌧

a

) + �
r

(C⌧ � ˜C⌧

a

)

#

= (1� 1

↵
)�

t

(Ct

) , (14)

where the second inequality holds due to Lemma 4.
The condition of Proposition 6 is frequently satisfied in

practice. Due to the large number of bidders, the volume of
each bidder’s requests is much smaller than the total capacity.
As a result, the revenue obtained from the approximation does
not deviate too far away from the optimal one. We later verify
this point via extensive simulations in Sec. VI.

We now show that (12) has an important optimization
structure that leads to an efficient solution within O(C2

). First,
we see that �̄

a

(·) is concave, as stated below.
Lemma 5: Given n and v, �̄

a

(c) defined in (11) is concave.
That is, r�̄

a

(c) = �̄
a

(c)� �̄
a

(c� 1) is decreasing w.r.t. c.
Lemma 5 suggests the concavity of ¯

�

t

(·) as follows.

Lemma 6: For every ⌧ = t, . . . , T , ¯

�

⌧

(C⌧

) is increasing
and concave for all C⌧

= 0, 1, . . . , C.
This concavity finally leads to an interesting structure de-

scribed in the following proposition.
Proposition 7: For every realization n and v at time ⌧ =

t, t + 1, . . . , T , let ˜C⌧

a

(C⌧

) be the optimal solution to (12).
For all C⌧

= 0, 1, . . . , C, we have

˜C⌧

a

(C⌧

+ 1)� 1  ˜C⌧

a

(C⌧

)  ˜C⌧

a

(C⌧

+ 1). (15)

The detailed proofs of Lemmas 5 and 6, as well as Propo-
sition 7, are all given in Appendix C.

Proposition 7 indicates that previously calculated results
can be reused in subsequent computations. We therefore run
dynamic programming from the last stage T and proceed
backwards to t. Within each stage ⌧ , ¯

�

⌧

(C⌧

) is sequentially
computed as C⌧

= C,C�1, . . . , 0. When computing ˜C⌧

a

(C⌧

),
instead of exhaustively searching the entire solution space
from 0 to C, one only needs to try two values, ˜C⌧

a

(C⌧

+ 1)

and ˜C⌧

a

(C⌧

+ 1)� 1, and the one resulting in higher revenue
is selected as ˜C⌧

a

. The entire computation only takes O(C2
)

operations.
In terms of computational efficiency, the approximate so-

lution significantly outperforms the optimal one, as the total
capacity of a provider is usually enormous in practice. As an
example, when C = 10

5, the approximation is 105 times faster
than the exact solution.

VI. SIMULATION RESULTS

We evaluate the revenue performance of the proposed
approximate solution via extensive simulations. We adopt a
typical scenario where C = 10

5. That is, the provider is able
to host up to 10

5 virtual instances of a certain type simultane-
ously. We simulate the markets for 100 time periods. In each
period t, cloud users arrive into the system following a Poisson
process with intensity �, which are then randomly split into
the pay-as-you-go and auction markets with equal probability.
Our evaluation adopts three demand patterns — low, medium,
and high, with � being 100, 200, and 500, respectively. For
the pay-as-you-go market, each user’s demand is modeled by
a random variable uniformly distributed in [1, 1000], the price
p
r

is normalized to 1, and the instance return probability q is
taken as 0.5. For the auction market, each bidder i’s request n

i

is modeled by an i.i.d. random variable uniformly distributed
in [1, 1000], and its affordable price v

i

is i.i.d. exponential
with mean E[v

i

] = 0.5p
r

= 0.5. We enable short predictions
and set the prediction window w = 5. Each result below has
been averaged over 1000 runs.

A. Revenue Performance
We first evaluate the proposed near-optimal segmentation

scheme by comparing its revenue (i.e., ˜

�

t defined in (13))
against the theoretical upper bound (i.e., ¯

�

t defined in (12)).
The results are illustrated in Fig. 2a, where all data is normal-
ized by the maximum upper-bound revenue. Fig. 2a shows
that our approximation design closely approaches the optimal
solution. Even compared with the theoretical revenue upper
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Fig. 2. Performance evaluation of the approximate capacity segmentation algorithm, where “UB” stands for upper bound while “approxn.” is short for
approximation.

TABLE I
REVENUE GAP BETWEEN THE APPROXIMATION AND THE UPPER BOUND.

� = 100 � = 200 � = 500

Revenue gap 0.81% 0.52% 0.38%

bound ¯

�

t, the gap is almost negligible, less than 1% in all
cases, as summarized in Table I. This confirms our conclusion
from Proposition 6.

B. Capacity Segmentation and Auction Prices
We now analyze how the capacity is allocated to the two

markets under the near-optimal segmentation strategy. Fig. 2b
illustrates the CDF of the market share of periodic auctions
in all three demand patterns. Here, the market share is defined
as the ratio, between the capacity allocated to the auction
market and the entire capacity that the provider has. It is
worth mentioning that the allocated capacity might not be
fully used to accommodate auction bidders, even for the case
where the auction demand exceeds the supply. The provider
would strategically reserve some instances by rejecting low-
bid requests, since accepting them lowers the clearing price,
which may decrease the revenue.

As illustrated in Fig. 2b, when demand is low (i.e., � =

100), about half of the capacity is allocated to the auction
market, leading to a 50% market share. Fig. 2c shows the
corresponding clearing price that is around the mean bid E[v

i

]

of auction bidders. In this case, since cloud instances are over-
provisioned, some of them are auctioned at a discounted price
to increase the revenue. It is worth mentioning that though
auction bidders enjoy using the resources at a lower price,
they bear the risks that the services might be interrupted.

As demand increases, the market share drops, while the
auction price rises. For the case where � = 200, Fig. 2b
shows that almost all instances are hosted to accommodate
pay-as-you-go requests, with less than 10% capacity allocated
to auction markets. This is essentially due to the simulation
settings that instances are less valued in periodic auctions than
they are in pay-as-you-go market, as the mean bid is only half
of the pay-as-you-go price (i.e., E[v

i

] = 0.5p
r

). In this case,
pay-as-you-go requests are considered more profitable than
auction bids. Only a few high-value bids are accepted by the

provider, resulting in a higher clearing price in the auction
channel as illustrated in Fig. 2c.

It is interesting to observe that, when demand keeps increas-
ing, the market share of periodic auctions rebounds, which
is shown in Fig. 2b with � = 500. In this case, the entire
market demand significantly exceeds the provider’s capacity.
As a result, more high-bid requests are received from the
auction market. Since these requests are more profitable than
those in the pay-as-you-go market, the provider fulfills them by
allocating more resources to the auction market. The clearing
price is also observed to rise in Fig. 2c.

All discussions above show that augmenting pay-as-you-
go pricing with periodic auctions essentially increases the
provider’s ability to respond to demand uncertainties. Periodic
auctions help to fulfill some leftover revenue when resources
are over-provisioned in the pay-as-you-go market. On the other
hand, it extracts more revenue by charging high prices to high-
bid requests when demand exceeds supply.

C. Comparisons Between Pay-as-You-Go and Auctions
The two markets do not make equal revenue contributions.

As presented in Fig. 2d, the pay-as-you-go market contributes
more than 85% revenue to the provider in all three demand
patterns. Note that the pay-as-you-go market takes up only
66% of the overall demand3. Therefore, it provides a dispro-
portionately large share of revenue. Similar observations are
made when different demand ratios between the two markets
are considered.

By offering guaranteed services with a static price, instances
in the pay-as-you-go market often demand a higher premium
than those in the auction market. For this reason, pay-as-
you-go requests are usually more profitable than most auc-
tion bids, and are accepted at a higher priority for revenue
maximization. Table II further validates this point, where
the request acceptance rates are listed for all three demand
patterns. We see that pay-as-you-go requests are generally
accepted with a considerably higher probability than auction
bids. However, this does not mean that auction bidders are
always secondary customers. As stated in Proposition 5, those

3New demand arrivals are equal for both markets, but each new pay-as-
you-go instance requires twice the capacity of each new auction instance since
q = 0.5.



TABLE II
AVERAGE REQUEST ACCEPTANCE RATES

Pay-as-you-go users Auction users
� = 100 100% 36.9%
� = 200 88.9% 5.7%
� = 500 63.1% 5.2%

who bid sufficiently high will always be accommodated first.
In our simulation, these are the top 5% bidders. As illustrated
in Table II, their requests are least affected by the specific
demand pattern. Therefore, the auction market offers an option
to the users to increase the priority of their requests.

VII. CONCLUSIONS

In this paper, we investigate the problem of optimal capacity
segmentation in an EC2-like cloud market with the regular
pay-as-you-go pricing augmented by periodic auctions. To
this end, we analytically characterize the revenue of uniform-
price auctions, and present an optimal design with maximum
revenue. Contrary to the well-known result that uniform-price
auctions have suffered from the “demand reduction” in gen-
eral, our design achieves truthfulness in cloud environments
where partial fulfillment is unacceptable to users. We further
connect our design to the EC2 spot market, showing that the
two are equivalent in terms of their market response. Based on
the established analysis for the auction channel, we formulate
the capacity segmentation problem as a Markov decision
process. Realizing that the exact solution is computationally
prohibitive in practical settings, we present a near-optimal
approximation that reduces the computational complexity from
O(C3

) to O(C2
), which is significant for cloud providers with

large capacities. All our theoretical results are further validated
by extensive simulation studies.

APPENDIX A
EXTENSION OF THE REVENUE EQUIVALENCE THEOREM

Proof of Lemma 1:
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where v�i

is obtained by removing the ith component v
i

from
v. Now consider E

vi|v�i
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]. It has been shown in [22] that,
when n and v�i

are given, a truthful mechanism M always
offers a take-it-or-leave-it payment4, say ⇢
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4Such payment relies on M, n and v�i, but is independent of vi.
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Fig. 3. Effect of demand rti and bid price bti on the clearing price pta.

where the second equality can be verified by performing
integration by parts on the right-hand side (RHS). We conclude
the proof by substituting (17) back into (16).

APPENDIX B
TRUTHFULNESS ANALYSIS OF ALGORITHM 1

In this section, we show that the proposed auction mecha-
nism (Algorithm 1) is truthful. We start to prove Lemma 2.

Proof of Lemma 2: We explain the pictorial proof through
Figs. 3a and 3b. First we show that pt

a

is increasing w.r.t. rt
i

,
i.e., pt

a

(bt
i

, rt
i

)  pt
a

(bt
i

, rt
i

+ �) for all � > 0. It suffices to
consider the following two cases.

Case 1: Bidder i loses by requesting rt
i

instances. Note that
increasing a bidder’s request does not change its ranking (as
they are sorted based on their bid prices). It is easy to verify
that having this bidder requesting more instances, say, rt

i

+�

instances, results in the same clearing price, i.e., pt
a

(bt
i

, rt
i

) =

pt
a

(bt
i

, rt
i

+�).
Case 2: Bidder i wins by requesting rt

i

instances. Suppose it
now increases its request by � instances. Fig. 3a illustrates the
changes of clearing price pt

a

, from which we see that having
a winning bidder requesting more instances essentially raises
the clearing price, i.e., pt

a

(bt
i

, rt
i

)  pt
a

(bt
i

, rt
i

+�).
We next prove that pt

a

is also increases w.r.t. bt
i

, i.e.,
pt
a

(bt
i

, rt
i

)  pt
a

(bt
i

+ �, rt
i

) for all � > 0. Still, it suffices
to consider two cases below.

Case 1: Bidder i loses by bidding bt
i

. Suppose it now raises
its bid by �. We consider two cases. (1) Bidder i wins by
bidding bt

i

+ �. This is shown in Fig. 3b, from which we
see that the clearing price is raised. (2) Bidder i loses by
bidding bt

i

+ �. In this case, if bidder i’s new bid is used
as the new clearing price (i.e., pt

a

= bt
i

+ �), then this new
price must be higher than the original one (because its value is
updated). Otherwise, the clearing price pt

a

remains unchanged.
In summary, pt

a

(bt
i

, rt
i

)  pt
a

(bt
i

+�, rt
i

) for all � > 0.
Case 2: Bidder i wins by bidding bt

i

. In this case, raising
the bid price has no effect on the clearing price — the later
remains unchanged with the value equal to the m+1-th highest
bid, i.e., pt

a

(bt
i

, rt
i

) = pt
a

(bt
i

+�, rt
i

).



With Lemma 2, we are now ready to prove that no bidder
has the incentive to overbook instances.

Proof of Lemma 3: It suffices to consider the case where
bidder i wins by submitting (rt

i

, bt
i

), with rt
i

> n
i

. In this case,

bt
i

� pt
a

(rt
i
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i

) � pt
a

(n
i

, bt
i

) , (18)

where the first inequality holds since i wins by bidding (rt
i

, bt
i

),
while the second inequality is derived from Lemma 2. This
implies that i also wins by bidding (n

i

, bt
i

). As a result,

ut

i

(rt
i

, bt
i

) = n
i

v
i

� rt
i

pt
i

(rt
i

, bt
i

)

 n
i

v
i

� n
i

pt
i

(n
i

, bt
i

)

= ut

i

(n
i

, bt
i

) .

Lemma 2 and 3 leads to the truthfulness of Algorithm 1, as
proved below.

Proof of Proposition 2: We consider all possible outcomes
of bidding truthfully or untruthfully. Since every bidder i
chooses to truthfully report n

i

, any untruthful submission is
of the form (n

i

, bt
i

) where bt
i

6= v
i

. Suppose the untruthful
submission leads to the bidder losing, then the propositional
statement trivially holds for bt

i

. Therefore, in the following we
only need to consider the case where the untruthful submission
leads to the bidder winning.

Suppose bidding truthfully leads to the bidder winning, then
it is easy to verify that pt

a

(n
i

, bt
i

) = pt
a

(n
i

, v
i

) = p, where
p is either ��1

(0) or b
m+1, depending on whether there is

sufficient capacity to accommodate all requests. As a result,
we see ut

i

(n
i

, v
i

) = ut

i

(n
i

, bt
i

).
On the other hand, if bidding truthfully leads to the bidder

losing, then pt
a

(n
i

, v
i

) � v
i

. Since by changing the submission
to (n

i

, bt
i

) user i wins, we must have bt
i

> v
i

. By Lemma 2,
pt
a

(n
i

, bt
i

) � pt
a

(n
i

, v
i

) � v
i

. Hence, ut

i

(n
i

, bt
i

) = n
i

(v
i

�
pt
a

(n
i

, b
i

))  0 = ut

i

(n
i

, v
i

).

APPENDIX C
ANALYSIS OF THE APPROXIMATE SOLUTION

This section investigates the optimization structure of (13).
First we show that �̄

a

is concave.
Proof of Lemma 5: By (11), we have

r�̄
a

(c) =

⇢
�(v

m

) , if � = 0;
�(v

m+1) , otherwise. (19)

In the first case (� = 0), r�̄
a

(c+ 1) = �(v
m+1)  �(v

m

) =

r�
a

(c). In the second case (� > 0), r�̄
a

(c+1) = �(v
m+1) =

r�
a

(c).
To show ¯

�

t is increasing and concave, we need the follow-
ing two technical lemmas.

Lemma 7: Let f be a decreasing and concave function.
Define g by g(n) =

P
n

k=0 B(n, k, q)f(k). Then g is also
decreasing and concave.

Proof: For notational simplicity, we write f(n) by f
n

and
g(n) by g

n

. Without loss of generality, we assume f0 = 0.
Let rg

n

= g
n

�g
n�1 and r2g

n

= rg
n

�rg
n�1 be the first-

and second-order forward differences of g(·), respectively.

Similar definition also applies to rf
n

and r2f
n

. When there
is no confusion, we simply write B(n, k, q) as B

n,k

. For
convenience, we define B

n,k

= 0 for all k < 0.

We first show that g is decreasing by proving that rg
n

 0.
By definition, we have

rg
n

= g
n

� g
n�1

=

nX

k=0

B
n,k

f
k

�
n�1X

k=0

B
n�1,kfk

= q

n�1X

k=1

[B
n�1,k�1 �B

n�1,k] fk + qnf
n

.

= q

n�1X

k=0

B
n�1,krf

k+1 (20)

Here the third equality holds because f0 = 0 and

B
n,k

= qB
n�1,k�1 + (1� q)B

n�1,k. (21)

Since f is decreasing, rf
k+1  0 for all k, which implies

rg
n

 0.

We next show the concavity of g by proving

r2g
n+1 = q2

n�1X

k=0

B
n�1,kr2f

k+2. (22)

The following equation is obtained by plugging (20) into
(22) and applying (21):

1

q2
r2g

n+1

=

n�1X

k=1

[B
n�1,k�2 +B

n�1,k � 2B
n�1,k�1]fk

+ [B
n�1,n�2 � 2B

n�1,n�1]fn +B
n�1,n�1fn+1. (23)

Fixing n, we define ↵
m

by

↵
m

=

m�1X

k=1

[B
n�1,k�2 +B

n�1,k � 2B
n�1,k�1]fk, (24)

and define �
m

by

�
m

= [B
n�1,m�2�2B

n�1,m�1]fm+B
n�1,m�1fm+1. (25)

Noticing that ↵
m

= 0 for all m < 2, we can write (23) by
1

q2
r2g

n+1 = ↵
n

+ �
n

. (26)

We now investigate the structure of ↵
m

+ �
m

for all m.
First, we have

�
m

= [B
n�1,m�2 �B

n�1,m�1]fm +B
n�1,m�1rf

m+1

= �B
n�1,m�1fm�1 +B

n�1,m�2fm

+B
n�1,m�1r2f

m+1. (27)

Substituting (27) back to ↵
m

+ �
m

leads to the following



equalities:

↵
m

+ �
m

= ↵
m�1 + �

m

+ [B
n�1,m�3 +B

n�1,m�1 � 2B
n�1,m�2]fm�1

= ↵
m�1 +B

n�1,m�1r2f
m+1

+ [B
n�1,m�3 � 2B

n�1,m�2]fm�1 +B
n�1,m�2fm

= ↵
m�1 + �

m�1 +B
n�1,m�1r2f

m+1 (28)

=

m�1X

k=0

B
n�1,kr2f

k+2, (29)

where (29) is obtained by recursively applying (28). With (29)
and (26), we see (22) holds, which concludes the proof.

Lemma 8: Let f1 and f2 be two functions that are increas-
ing and concave. Define f as follows.

f(n) = max

k=0,1,...,n
{f1(k) + f2(n� k)}. (30)

Let k⇤
n

be the optimal solution to (30). We have the following
three statements.

(1) f is increasing and concave.
(2) k⇤

n

 k if and only if �f1(k)  �f2(n� k� 1), where
�f(n) = f(n+ 1)� f(n) for all discrete f .

(3) k⇤
n+1 � 1  k⇤

n

 k⇤
n+1.

Proof of (1): For any discrete function h, let ¯h be its linear
interpolation. That is, for all x, let n = bxc. We have

¯h(x) = h(n) +�h(n) · (x� n). (31)

Given n, we define g
k

= f1(k)+f2(n�k). It is easy to see that
ḡ(x) = ¯f1(x)+ ¯f2(n� x). Since ḡ is a linear interpolation of
a discrete function g, we know its maximum value is achieved
at the integeter point, i.e.,

f(n) = max

k=0,1,...,n
g
k

= max

0xn

ḡ(x)

= max

0xn

{ ¯f1(x) + ¯f2(n� x)}. (32)

Let f0(y) be defined by

f0(y) = max

0xy

{ ¯f1(x) + ¯f2(y � x)}. (33)

Since both f1 and f2 are increasing and concave, their linear
interpolations, ¯f1 and ¯f2, are also increasing and concave. By
[26] (Rule 9 of Theorem 3.1.5), we know f0 is increasing,
concave, and piecewise linear. Also note that f0(n) = f(n)
for all integer n. We conclude that f0 is a linear interpolation
of f , i.e., f0 =

¯f . In this case, f is increasing and concave.
Proof of (2): Let f(n) = max0kn

g(k) where g(k) =

f1(k)+f2(n�k). We know g is concave since both f1 and f2
are concave. In this case, k⇤

n

 k if and only if �g(k)  0. We
hence conclude the proof by noticing that �g(k) = �f1(k)�
�f2(n� k � 1).

Proof of (3): First we show k⇤
n

 k⇤
n+1. By statement (2),

this is equivalent to show �f1(k
⇤
n+1)  �f2(n� k⇤

n+1 � 1).

This is indeed the case as

�f1(k
⇤
n+1)  �f2(n� k⇤

n+1)  �f2(n� k⇤
n+1 � 1) .

Here the first inequality is derived by applying statement (2)
to the case of n+1, while the second inequality is due to the
fact that f2 is concave.

We next show that k⇤
n+1  k⇤

n

+1. By statement (2), this is
equivalent to prove �f1(k

⇤
n

+ 1)  �f2(n� k⇤
n

� 1), which
is true because

�f1(k
⇤
n

+ 1)  �f1(k
⇤
n

)  �f2(n� k⇤
n

� 1) ,

where the first inequality is due to the concavity of f1 and the
second inequality is derived from statement (2).

We are now ready to prove Lemma 6.
Proof of Lemma 6: We prove by induction.
Basis: Show that the statement holds for ⌧ = T . In this

case, (12) becomes

¯

�

T

(CT

) = max

0C

T
a C

T

�
�̄
a

(CT

a

) + �
r

(CT � CT

a

)

 
.

Since both �̄
a

(·) and �
r

(·) are increasing and concave, by
Lemma 8, ¯�T

(·) is also increasing and concave.
Inductive step: Suppose the statement holds for ⌧ . We now

show it also holds for ⌧ � 1. Let g⌧ (c) = E
X

[

¯

�

⌧

(c + X)].
Given n and v, (12) can be rewritten as

¯

�

⌧�1
(C⌧

) = max

0C

⌧
aC

⌧

�
�̄
a

(C⌧

a

) + �
r

(C⌧ � C⌧

a

) + g⌧ (C⌧

a

)

 
.

We first show that g⌧ (·) is increasing and concave. Let n =

C � c. We derive as follows.

g⌧ (C � n) =

C�cX

k=0

B(C � c, k, q)¯�⌧

(c+ k)

=

nX

k=0

B(n, k, q)¯�⌧

(C � n+ k)

=

nX

k=0

B(n, k, 1� q)¯�⌧

(C � k) .

Since ¯

�

⌧

(·) is increasing and concave (due to the induction
assumptions), we see g⌧ (·) is also increasing and concave by
applying Lemma 7.

Now that �̄
a

(·), �
r

(·), and g⌧ (·) are all increasing and
concave, by statement (1) of Lemma 8, ¯�⌧�1 is also increasing
and concave. This concludes the proof.

The lemmas above immediately suggest the proof of Propo-
sition 7.

Proof of Proposition 7: Let f(C⌧

a

) = �̄
a

(C⌧

a

) +

E
X

[

¯

�

⌧+1
(C⌧

a

+ X)]. When n and v are given, (12) can be
rewritten as

¯

�

⌧

(C⌧

) = max

0C

⌧
aC

⌧
{f(C⌧

a

) + �
r

(C⌧ � C⌧

a

)} .

Noting that both f and �
r

are concave, and applying statement
(3) of Lemma 8, we see the statement holds.
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