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Summary

Cooperation in wireless ad hoc networks has twofold implications. First, each wireless node does not excessively
and greedily inject traffic to the shared wireless channel. Second, intermediate nodes voluntarily relay traffic for
upstream nodes towards the destination at the cost of its own private resource. Such an assumption supports almost
all existing research when it comes to protocol design in ad hoc networks. We believe that without appropriate
incentive mechanisms, the nodes are inherently selfish (unwilling to contribute its private resource to relay traffic)
and greedy (unfairly sharing the wireless channel). In this paper, we present a price pair mechanism to arbitrate
resource allocation and to provide incentives simultaneously such that cooperation is promoted and the desired
global optimal network operating point is reached by convergence with a fully decentralized self-optimizing
algorithm. Such desired network-wide global optimum is characterized with the concept of Nash bargaining
solution (NBS), which not only provides the Pareto optimal point for the network, but is also consistent with the
fairness axioms of game theory. We simulate the price pair mechanism and report encouraging results to support
and validate our theoretical claims. Copyright # 2006 John Wiley & Sons, Ltd.
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1. Introduction

Nodes in wireless ad hoc networks not only share the
wireless channel in the same local neighborhood, but
also relay traffic so that destinations multiple hops
away may be reached. In almost all previous work
related to wireless ad hoc networks, the following two
fundamental assumptions are made. First, nodes do
not excessively inject traffic to the locally shared
wireless channel. Second, intermediate nodes volun-
tarily relay traffic for upstream nodes towards the
destination. In this paper, we believe that such as-
sumptions may not hold in realistic scenarios, at least

not without appropriate incentive-based mechanisms.
In fact, they behave in quite the contrary fashion: they
are both greedy when it comes to sharing public
resource (wireless channel) and selfish when it comes
to contributing private resource (such as battery en-
ergy). In other words, the network may fail to function
at all in realistic scenarios once neither assumption
holds.

The only way to solve these problems is to design
appropriate incentive mechanisms to not only en-
courage cooperative behavior of selfish nodes,
but also curb unfair and excessive resource usage
when sharing a common resource pool, such as a
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shared channel. Such designs of incentives should
optimize towards a clearly specified objective,
which is a desired optimal operating point of the
wireless network. At such an optimal point,
resources are shared fairly, and the levels of coop-
eration are adequate for all necessary data commu-
nications and network functions. This paper exactly
targets this critical issue in multi-hop wireless net-
works.

Our original contributions are twofold. First, we
clearly characterize the desired network-wide opti-
mal operating point using a game theoretic frame-
work, based on the concept of Nash bargaining
solution (NBS). NBS naturally encapsulates two
favorable properties: (1) Pareto efficiency in terms
of resource usage; and (2) a set of fairness axioms
with respect to resource allocations. Using this
framework, the problem of finding the desired glob-
ally optimal operating point may be formulated as a
non-linear optimization problem. Second, we pro-
pose a decentralized algorithm that uses a price pair
mechanism to arbitrate incentives. With a pair of
prices, localized self-optimization by individual
nodes naturally converges to globally optimal net-
work operating points. Within the price pair, the
channel price regulates greedy usage of the shared
wireless channel, while the relay price encourages
traffic relaying. Effectively, our price pair mechan-
ism transforms non-cooperative behavior in wireless
ad hoc networks to a cooperative game, whose
optimal operating points demonstrate more advanta-
geous properties than the usual Nash equilibrium in
typical non-cooperative environments.

The essence of our paper is to integrate the mechan-
isms that use pricing as signals to (1) fairly allocate
resources; and (2) adequately incentivize cooperative
behavior. Though there exists previous work towards
either one of these objectives, we are not aware of
existing work that integrates both prices into a coher-
ent framework. Such integration becomes more com-
plicated if we consider the unique channel contention
characteristics in wireless ad hoc networks, where the
traffic flows contend in multiple contention cliques.
Considerations of such unique complications in
ad hoc networks are beyond all of the existing work
in the area of pricing or incentives.

The remainder of this paper is organized as follows.
Section 2 presents some preliminaries before formal
treatment of this topic. Section 3 defines the desired
network operating points using the concept of NBS.
We present the distributed algorithm in Section 4. We
show simulation results in Section 5, present related

work in Section 6, and finally conclude the paper in
Section 7.

2. Network Model

We consider a wireless ad hoc network which consists
of a set of nodes N ¼ f1; 2; . . . ;Ng. In this network,
only nodes that are within the transmission range of
each other can communicate directly and form a
wireless link. We model such a network as a bidirec-
tional graph GN ¼ ðN ;LÞ, where L ¼ f1; 2; . . . ; Lg is
the set of wireless links.

In such a network, a wireless node i 2 N may
establish an end-to-end flow, or simply flow, fi with
rate xi to another node. Flow fi is assumed to be
elastic: it requires a minimum rate of xmi and a
maximum rate of xMi , that is, x

m
i 4xi4xMi . In general,

fi flows through multiple hops in the network, passing
a set of wireless links. We use this set of wireless links
to represent fi, that is, fi $ L. We denote the set of
relaying nodes for flow fi as Rð fiÞ, and the destination
of fi as Dð fiÞ. For simplicity of exposition, we further
define Hð fiÞ ¼ Rð fiÞ [ fDð fiÞ; ig as the set of nodes fi
traverses, and Kð fiÞ ¼ Hð fiÞ % fig. A single-hop data
transmission along a particular wireless link is re-
ferred to as a subflow and is a part of a flow. Several
subflows from different flows along the same wireless
link form an aggregated subflow.

In such a network, nodes compete for two types of
resources: shared wireless channel and individual
nodes’ relaying cost (such as energy). The availability
of these resources constrains the solution space of
resource allocations. We proceed to analyze the char-
acteristics of both types of resources.

2.1. Shared Wireless Channel:
Location-Dependent Contention

The shared-mediummulti-hop nature of wireless ad hoc
networks presents unique characteristics of location-
dependent contention and spatial reuse of spectrum.
Compared with wireline networks where flows contend
only at the router with other simultaneous flows through
the same router (contention in the time domain), the
unique characteristics of multi-hop wireless networks
show that flows also compete for shared channel
bandwidth if they are within the transmission ranges
of each other (contention in the spatial domain).

In particular, two subflows contend with each
other if either the source or destination of one subflow
is within the transmission range of the source or
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destination of the other.
y
The locality of wireless

transmissions implies that the degree of contention
for the shared medium is location dependent. On the
other hand, two subflows that are geographically far
away have the potential to transmit simultaneously,
reusing the wireless channel.
We now formulate the resource constraints that

reflect the unique characteristics of wireless ad hoc
networks. First, let us consider a set of mutually
contending subflows. In this set, only one subflow
can transmit at a time. Intuitively, the aggregated rate
of all subflows in this set can not exceed the channel
capacity. Formally, we consider a subflow contention
graph. In this graph, each vertex corresponds to an
aggregated subflow in the original network. Each edge
in the graph denotes that two aggregated subflows
which correspond to the two vertices, contend with
each other. Formally, let VC ¼ [i2N fi & L be the set
of aggregated subflows in network GN , then a bidirec-
tional graph GC ¼ ðVC; ECÞ is a subflow contention
graph of network GN .
In a graph, a complete subgraph is referred to as a

clique. A maximal clique is defined as a clique that is
not contained in any other cliques.

z
In a subflow

contention graph, the vertices in a maximal clique
represent a maximal set of mutually contending sub-
flows. Intuitively, each maximal clique in a subflow
contention graph represents a ‘maximal distinct con-
tention region,’ since at most one subflow in the clique
can transmit at any time and adding any other sub-
flows into this clique will introduce the possibility of
simultaneous transmissions. For simplicity, we use the
set of vertices in a clique to represent the clique, and
denote it as q. Furthermore, we denote the set of all
maximal cliques in a subflow contention graph as Q.
Here, we illustrate the above concepts using an

example. The network topology and the flows in the
example are shown in Figure 1(a). The corresponding
subflow contention graph is shown in Figure 1(b).
In this example, there are three maximal cliques
in the contention graph: q1 ¼ ff1; 2g; f3; 2g; f3; 4g;
f3; 6gg; q2 ¼ ff3; 2g; f3; 4g; f4; 5g; f3; 6gg and q3 ¼
ff3; 2g; f3; 4g; f3; 6g; f6; 7gg.
We proceed to consider the problem of allocating

rates to wireless links. We claim that a rate allocation

y ¼ ðyl; l 2 LÞ is feasible, if there exists a collision-
free transmission schedule that allocates yl to l. We
now formalize the condition implied by such a fea-
sible rate allocation.

Lemma 1. If a rate allocation y ¼ ðyl; l 2 LÞ is
feasible, then the following condition is satisfied:

8q 2 Q;
X

l2q
yl4C ð1Þ

where C is the channel capacity.
Equation (1) gives an upper bound on the rate

allocations to the wireless links. In practice, how-
ever, such a bound may not be tight, especially with
carrier-sensing-multiple-access-based wireless net-
works (such as IEEE 802.11). In this case, we intro-
duce Cq, the achievable channel capacity at a clique q.
More formally, if

P
l2q yl4Cq then y ¼ ðyl; l 2 LÞ is

feasible. To this end, we observe that each maximal
clique may be regarded as an independent channel
resource unit with capacity Cq. It motivates the use of
the maximal clique as a basic resource unit for pricing
in wireless ad hoc networks, as compared to the
notion of a link in wireline networks.

We now proceed to consider resource constraints on
rate allocations among flows. To facilitate discussions,
we define a clique-flow matrix R ¼ fRqig, where
Rqi ¼ jq \ fij represents the number of subflows that
flow f has in the clique q. If we treat a maximal clique
as an independent resource, then the clique-flow
matrix R represents the ‘resource usage pattern’ of
each flow. Let the vector C ¼ ðCq; q 2 QÞ be the
vector of achievable channel capacities in each of the
cliques. Constraints with respect to rate allocations to
end-to-end flows in wireless ad hoc networks are
presented in the following proposition.

y
If we assume that the interference range is greater than the
transmission range, the contention model can be straight-
forwardly extended.
z
Note that maximal clique has a different definition from
maximum clique of a graph, which is the maximal clique
with the largest number of vertices.

Fig. 1. Example of wireless ad hoc network and its subflow
contention graph. (a) Network topology and (b) Subflow
contention.
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Proposition 1. In a wireless ad hoc network
GN ¼ ðN ;LÞ, there exists a feasible rate allocation
x ¼ ðxi; i 2 NÞ, if and only if R x4C.

Proof: It is obvious that R x4C , 8q 2 Q,P
i2N Rqixi4Cq. By the definition of R, we haveP
i2N Rqixi ¼

P
l2q yl. The result follows naturally

from Lemma 1 and its following discussions. &

2.2. Costs of Relays

Relaying traffic for upstream nodes apparently incurs
cost, since localized resources need to be consumed,
such as energy, CPU cycle, and memory space. With-
out loss of generality, we use energy levels on each
node as an example to characterize such costs of
relays. Given a minimum expected lifetime in the
network, each node j has a budget on its energy
consumption rate, denoted as Ej. Here, we consider
two types of energy consumption related to packet
transmission: (1) er as the energy consumed
for receiving a unit flow; (2) es as the energy
consumed for transmitting a unit flow. Then
the energy consumption at node j is xje

s þ
P

i:j2RðfiÞ
xiðer þ esÞ þ

P
i:j¼Dð fiÞ xie

r. As the energy consump-
tion rate can not exceed the energy budget, we have
the following relation:

xje
s þ

X

i:j2Rð fiÞ
xiðer þ esÞ þ

X

i:j¼Dð fiÞ
xie

r4Ei ð2Þ

We now proceed to define a N ( N matrix B as
follows.

Bji ¼

cres if j ¼ i

er þ es if node j forwards packets for flow fi;

that is; j 2 Rð fiÞ
er if nodej is the destination of flow fi;

that is; j ¼ Dð fiÞ
0 otherwise

8
>>>>>>>><

>>>>>>>>:

B specifies the relaying relation among nodes in the
ad hoc network. To summarize, the local constraint on
energy can be formalized as follows:

B ) x * E ð4Þ

where E ¼ ðEj; j 2 NÞ is the energy consumption
budget vector.

3. Problem Formulation

In this section, we characterize the desired network-
wide optimal operating point using a game theoretic
framework, based on the concept of NBS. NBS
naturally encapsulates two favorable properties:
(1) Pareto efficiency in terms of resource usage; and
(2) a set of fairness axioms with respect to resource
allocations. Using this framework, the problem of
finding the desired globally optimal operating point
may be formulated as a non-linear optimization pro-
blem. We show how such a global optimization
problem may be decomposed into localized greedy
optimization problems via a price pair.

3.1. Nash Bargaining Solution: a Game
Theoretical Formulation

We present the basic concepts and results of NBS
from game theory [1] and show how it can character-
ize and formulate the desired network operation point,
towards which our price pair mechanism should con-
verge.

The basic setting of the problem is as follows: the
set of nodes N in the wireless ad hoc network GN

constitutes a set of players in the game. They
compete for the use of a fixed amount of resources
(wireless channel and costs of relays such as en-
ergy). The rate allocation x ¼ ðxi; i 2 NÞ is the
utility vector of all players in the game. Let
S $ RN be the set of all feasible utility vectors.
We assume that S is a non-empty convex closed
and bounded set. Further, we denote the initial
agreement point of the game as x+, which is the
guaranteed utilities of players without any coopera-
tion in order to enter the game.

In such a problem setting, a bargaining problem is
any ðS; x+Þ where fx 2 Sjx , x+g 6¼ ;. In other
words, a bargaining problem is actually a set of
rate allocations x that is acceptable to all players.
Let B ¼ fðS; x+Þg denote the set of all bargaining
problems. It then follows that a bargaining solution
is any function ’ : B ! RN , so that 8ðS; x+Þ 2 B,
’ðS; x+Þ 2 S. A bargaining solution actually specifies
finding a rate allocation within all acceptable alloca-
tions. A natural question about the bargaining solu-
tion is how such a function ’ is to be defined. There
are two reasonable properties desired for a bargain-
ing solution: (1) efficient use of resources; and
(2) fair allocation among all players. These two
conditions are precisely encapsulated by the concept
of NBS defined as follows.
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Definition 1 (Nash Bargaining Solution). A bar-
gaining solution ’ : B ! RN is a NBS, if
!xx ¼ ’ðS; x+Þ satisfies the Nash Axioms A1–A6.

A1 (individual rationality) !xx , x+;
A2 (feasibility) !xx 2 S;
A3 (pareto optimality), If 8x 2 S; x , !xx, then x ¼ !xx;
A4 (independence of irrelevant alternatives) If !xx 2

T $ S and !xx ¼ ’ðS; x+Þ, then !xx ¼ ’ðT; x+Þ;
A5 (independence of linear transformation) Let T be

obtained from S by the linear transformation !ðxÞ
with

!ðxÞi ¼ aixi þ bi; ai; bi > 0; i ¼ 1; 2; . . . ;N

Then if ’ðS; x+Þ ¼ !xx, then ’ðT ; !ðx+ÞÞ ¼ !ð!xxÞ;
A6 (symmetry) Suppose S is symmetric with respect

to a subset J & f1; 2; . . . ;Ng of indices, then ’ is
symmetry, which means that if x 2 S and for
i; j 2 J, x+i ¼ x+j , then !xixi ¼ !xjxj.

The above axioms encapsulate both the concept of
Pareto optimality (A3) and the concept of fairness
(A4–A6). Pareto optimality means that there is no
other point which gives strict superior utility for all the
players simultaneously. The definition of Pareto op-
timality reflects the condition of efficient use of
resources, where there are no ‘idle’ resources in the
network. The existing work in game theory [1] and its
application in wireline communication networks [2]
establish the following results for NBS.

Proposition 2. There exists a unique function ’
defined on all bargaining problems ðS; x+Þ that satis-
fies axioms A1–A6, that is, a unique NBS exists.
Moreover, the unique solution !xx is a unique vector
that solves the following maximization problems:

N1 : max
x

Y

i2N
ð!xxi % x+i Þ ð5Þ

Equivalently,

N2 : max
x

X

i2N
lnð!xxi % x+i Þ ð6Þ

3.2. Network Operating Points: Optimal and Fair
Rate Allocations

We assume that each player involved in the game can
be guaranteed with its minimum rate vector xm. Thus,

the minimum rate vector xm can be regarded as an
initial agreement point of the game x+. From the
discussions in Section 3A, it is clear that the NBS
formulates the desired network operation point, which
is fair to all nodes while efficient from the network’s
point of view. Thus, the problem of finding the
globally optimal resource allocation is transformed
to solve the NBS of its corresponding game, which is
the solution of the following non-linear optimization
problem by Proposition 2.

P : maximize
X

i2N
lnðxi % xmi Þ ð7Þ

subject to A ) x * C ð8Þ

B ) x * E ð9Þ

over xm * x * xM ð10Þ

The objective function in Equation (7) of the
optimization problem corresponds to the optimization
problem whose solution is NBS. The constraints of the
optimization problem Equations (8) and (9) are the
constraints from the shared wireless channel and costs
of relays, respectively, as discussed in Section 2.

Note that the objective function
P

i2N lnðxi % xmi Þ
is strictly concave. In addition, the feasible region of
the optimization problem is non-empty, convex, and
compact. By non-linear optimization theory, there
exists a maximizing value of argument x for the above
optimization problem. Let us consider the Lagrangian
form of the optimization problem P:

Lðx; l";l#Þ
¼

X

i2N
lnðxi % xmi Þ þ l"ðC % AxÞ þ l#ðE% BxÞ

ð11Þ

where l" ¼ ð$"
q ; q 2 QÞ, l# ¼ ð$#

j ; j 2 NÞ are two
vectors of Lagrange multipliers. The first-order
Kuhn–Tucker conditions are necessary and sufficient
for optimality of problem P. Thus, for i 2 N , the
following conditions hold:

1

xi % xmi
%
X

q2Q
$"
q Aqi %

X

j2N
$#
j Bji ¼ 0 ð12Þ

l"ðC % AxÞ ¼ 0; l" , 0 ð13Þ

l#ðE% BxÞ ¼ 0; l# , 0 ð14Þ

xm * x * xM ð15Þ
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In the Lagrangian form shown in Equation (11), the
Lagrange multipliers $"

q can be regarded as the im-
plied cost of unit flow accessing the channel at the
maximal clique q. In other words, $"

q is the shadow
price of clique q, called channel price. This price
corresponds to the shared channel resource constraint.
The Lagrange multipliers $#

j can be regarded as the
implied relay cost of unit flow at node j. In other
words, $#

j is the shadow price of relay at node j, called
relay price. This pair of prices ðl"; l#Þ will be used as
incentives so that localized self-optimizing decision
can implement the global optimum. In particular, the
price l" will signal a ‘charge’ (contrary to incentives)
to the shared channel usage and regulate the greedy
behavior, while the price l# will provide incentives to
traffic relays at intermediate nodes and regulate the
selfish behavior of wireless nodes.
Let us denote

%"
i ¼

X

q2Q
$"
q Aqi ð16Þ

%#
i ¼

X

j2N
$#
j Bji ð17Þ

Clearly,

%"
i ¼

X

q:fi\q6¼;
$"
q Aqi ð18Þ

¼
X

l:l2fi

X

q:l2q
$"
q ð19Þ

%#
i ¼

X

j2Hð fiÞ
$#
j Bji ð20Þ

¼ $#
i e

s þ
X

j2Rð fiÞ
$#
j ðes þ erÞ þ $#

Dð fiÞe
r ð21Þ

Then %"
i and %#

i are the prices for node i, which is
the source of flow fi, for accessing shared channels and
relay services, respectively. For channel usage, node i
needs to pay for all the maximal cliques that it
traverses. For each clique, the price to pay is the
product of the number of wireless links that fi tra-
verses in this clique and the shadow price of this
clique as in Equation (18). Alternatively, the price of

flow fi is the aggregated price of all its subflows. For
each subflow, its price is the aggregated price of the
maximal cliques that it belongs to as in Equation (19).
Note that such a pricing policy for end-to-end flows is
fundamentally different from the pricing models in
wireline networks, where a flow’s price is the aggre-
gation of the link prices which it traverses. Such
difference is rooted at the nature of the shared med-
ium—the interference and spatial reuse of wireless
channel in an ad hoc network. For traffic relay
services, node i needs to pay for the relay costs of
all relaying nodes of fi, including itself and the
destination. Using flow f1 as an example, the channel
price model is illustrated in Figure 2(a) and the relay
price model is illustrated in Figure 2(b). The
channel price for f1 is %"

1 ¼ 3$"
1 þ 3$"

2 þ 2$"
3 ; and

the relay price %#
1 ¼ 2$#

1 þ 3$#
2 þ 3$#

3 þ 3$#
4 þ $#

5 ,
where the energy consumed for receiving is given as
er ¼ 1, and for transmitting as es ¼ 2.

To summarize, we have the following results with
respect to the globally optimal network operating
point.

Theorem 1. There exists a unique solution to
problem P (i.e., unique NBS), which is characterized
as follows: There exist two vectors l" ¼ ð$"

q ; q 2 QÞ,
l# ¼ ð$#

j ; j 2 NÞ such that

xi ¼
1

%"
i þ %#

i

þ xmi

" #xMi

xmi

; for i 2 N ð22Þ

l"ðC % AxÞ ¼ 0; l" , 0 ð23Þ

l#ðE% BxÞ ¼ 0; l# , 0 ð24Þ

where ½z.ba ¼ maxfminfz; bg; ag.

Fig. 2. An example of the price pair mechanism. (a) Channel
price and (b) relay price.
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3.3. Local Strategies: Self-Optimizing Decisions

With the understanding of the global optimal point,
we now study how this point can be achieved in a
distributed manner by localized self-optimizing deci-
sions at each individual node. The key to this goal is to
use the pair of prices ðl"; l#Þ as signals to coordinate
the distributed decisions.
First, we study the conditions that the prices need to

satisfy in order to incentivize local node decisions so
that they could implement the global network opti-
mum. Let us consider the following problems:
ChannelðA;C; l"Þ:

maximize
X

i2N
%"
i xi ð25Þ

subject to Ax * C ð26Þ

over xm * x * xM ð27Þ

where %"
i is a function of l", as defined in Equa-

tion (16). Problem ChannelðA;C; l"Þ maximizes the
total revenue of channel based on charging %"

i per unit
of bandwidth to user i subject to the channel capacity
constraint.
RelayðB;E; l#Þ:

maximize
X

i2N
%#
i xi ð28Þ

subject to Bx * E ð29Þ

over xm * x * xM ð30Þ

where %#
i is a function of l#, as defined in Equa-

tion (17). Problem RelayðB;E; l#Þ maximizes the
total relay revenue of all nodes subject to the relay
cost constraint at each individual node.
Now let us consider a local self-optimizing decision

at each node i which corresponds to the following
problem:
Nodeið%"

i ; %
#
i ; $

#
i Þ:

maximize lnðxi % xmi Þ % %"
i xi % %#

i xi þ $#
i Ei ð31Þ

over xmi * xi * xMi ð32Þ

The relationship between localized node decision
and the global optimal network operating point is then
given as follows.

Theorem 2: There exist vectors l", l# and x such
that

(1) xi is the unique solution to Nodeið%"
i ; %

#
i ; $

#
i Þ;

(2) x solves ChannelðA;C; l"Þ;
(3) x solves RelayðB;E; l#Þ;

Then x also solves problem P.
The proof of this theorem is given in our technical

report [3].
Let us denote

"ðxiÞ ¼ lnðxi % xmi Þ % %"
i xi % %#

i xi þ $#
i Ei ð33Þ

Now we show that "ðxiÞ reflects the ‘net benefit’ of
node i and problem Nodeið%"

i ; %
#
i ; $

#
i Þ maximizes the

node i’s net benefit. This claim is based on the following
two observations. First, node i does not pay its relay cost
to itself from a local point of view, while the flow relay
price %#

i , which is defined from a global point of view,
contains the price of relay for itself. Thus from a local
point of view, the cost of node i is:

%"
i xi þ

X

j2Kð fiÞ
Bji ¼ ð%"

i þ %#
i Þxi % $#

i e
sxi ð34Þ

And the revenue of node i is:

X

j:i2Kð fjÞ
$#
i Bijxj ¼ $#

i

X

j:i2Hð fjÞ
Bijxj % $#

i e
sxi ð35Þ

Second, from Theorem 2 we have

$#
i ¼ 0; if

X

j:i2Hð fjÞ
Bijxj < Ei ð36Þ

$#
i > 0; if

X

j:i2Hð fjÞ
Bijxj ¼ Ei ð37Þ

Thus it is clear that"ðxiÞ reflects the ‘net benefit’ of
node i, which is the difference between utility, revenue
3 and cost.

4. Algorithm

Although the global problem P can be mathematically
solvable in a centralized fashion, it is impractical for
realistic operations in wireless ad hoc networks. In
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this section, we present a distributed iterative algo-
rithm for price calculation and resource arbitration.
We show that the iterative algorithm converges to the
global optimum, and maximizes the local net benefit
at each node simultaneously.

4.1. Dual Problem

In order to achieve a distributed solution, we first look
at the dual problem of P as follows.

D : min
l";l#,0

Dðl"; l#Þ ð38Þ

where

Dðl"; l#Þ
¼ max

x
Lðx; l"; l#Þ

¼ max
x

X

i2N
ðlnðxi % xmi Þ % ð%

"
i þ %#

i Þxi þ $#
i Ei|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

"ðxiÞ

Þ

þ
X

q2Q
$"
qCq

Note that "ðxiÞ is node i’s ‘net benefit.’ By the
separation nature of Lagrangian form, maximizing
Lðx; l"; l#Þ can be decomposed into separately max-
imizing "ðxiÞ for each node i 2 N (Section 3.4.2 in
Reference [4]). We now have

Dðl"; l#Þ ¼
X

i2N
max

xmi *xi*x
M
i

f"ðxiÞg þ
X

q2Q
$"
q cq ð39Þ

As "ð)Þ is strictly concave and twice continuously
differentiable, a unique maximizer of "ðxiÞ exists
when

d"ðxiÞ
dxi

¼ 1

xi % xmi
% ð%"

i þ %#
i Þ ¼ 0

We define the maximizer as follows:

xið%"
i ; %

#
i Þ ¼ arg max

xmi *xi*x
M
i

f"ðxiÞg ð40Þ

Note that xið%"
i ; %

#
i Þ is usually called demand func-

tion, which reflects the optimal rate for node i with
channel price as %"

i and relay price as %#
i .

4.2. Distributed Algorithm

We solve the dual problem D using the gradient
projection method [4]. In this method, l" and l# are

adjusted in the opposite direction to the gradient
rDðl";l#Þ:

$"
q ðt þ 1Þ ¼ ½$"

q ðtÞ % &
@Dðl"ðtÞ; l#ðtÞÞ

@$"
q

.þ ð41Þ

$#
j ðt þ 1Þ ¼ ½$#

j ðtÞ % &
@Dðl#ðtÞ; l#ðtÞÞ

@$#
j

.þ ð42Þ

where & is the stepsize. Dðl"; l#Þ is continuously
differentiable since lnð)Þ is strictly concave [4]. Thus,
it follows that

@Dðl"; l#Þ
@$"

q

¼ Cq %
X

i:fi\ q 6¼;
xið%"

i ; %
#
i ÞAqi ð43Þ

@Dðl"; l#Þ
@$#

j

¼ Ej %
X

i:j2Hð fiÞ
xið%"

i ; %
#
i ÞBji ð44Þ

Substituting Equation (43) into (41) and (44) into
(42), we have

$"
q ðt þ 1Þ ¼

½$"
q ðtÞ þ &ð

X

i:fi\q 6¼;
xið%"

i ðtÞ; %
#
i ðtÞÞAqi % CqÞ.þ

ð45Þ

$#
j ðt þ 1Þ ¼ ½$#

j ðtÞ þ &ð
X

i:j2Hð fiÞ
xið%"

i ðtÞ; %
#
i ðtÞÞBji % EjÞ.þ

ð46Þ

Equations (45) and (46) reflect the law of supply
and demand. If the demand for bandwidth at clique q
exceeds its supply Cq, the channel constraint is vio-
lated. Thus, the channel price $"

q is raised. Otherwise,
$"
q is reduced. Similarly, in Equation (46), if the

demand for energy at node j exceeds its budget Ej,
the energy constraint is violated. Thus, the relay price
$#
j is raised. Otherwise, $#

j is reduced.
We summarize our algorithm in Table I, where

clique q and node i are deemed as entities capable
of computing and communicating.

We now show the property of this distributed iterative
algorithm. Let us define YðiÞ ¼

P
q Aqi þ

P
j Bji, and

!YY ¼ maxi2N YðiÞ. Further, we defineUðqÞ ¼
P

i2N Aqi
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and !UU ¼ maxq2QUðqÞ; Vð jÞ ¼
P

i2N Bji and !VV ¼
maxj2N Vð jÞ; !ZZ ¼ maxf!UU; !VVg. Let 'i ¼ ðxMi % xmi Þ

2

and !'' ¼ maxi2N'i.

Theorem 3 (Global convergence and optimality).
Suppose 0 < & < 2=!''!YY!ZZ. Starting from any initial
rates xm * xð0Þ * xM, and prices l"ð0Þ , 0 and
l#ð0Þ , 0, every accumulation point ðx+; l"+; l#+Þ
of the sequence ðxðtÞ; l"ðtÞ; l#ðtÞÞ generated by the
algorithm in Table I is primal-dual optimal.
The reader is referred to our technical report [3] for

a detailed proof. Though there exists a unique max-
imizer x+ to the problem P, there may be multiple dual
optimal prices, since only the flow price is constrained
at optimality according to U0

f ðx+f Þ ¼ %"
i
+ þ %#

i

+
. The-

orem 3 does not guarantee convergence to a unique
vector ðx+; l"+; l#+Þ, though any convergent subse-
quence leads to the optimal rate allocation x+.

In the above iterative algorithm, a maximal clique is
regarded as a network element that can carry out the
functions of price calculation and notification. How-
ever, a maximal clique is only a concept defined based
on subflow contention graph. To deploy the algorithm
in an actual ad hoc network, the above tasks of a
maximal clique need to be carried out by the nodes
that constitute the clique in a distributed fashion. For
the implementation details, readers are referred to our
report [3].

5. Simulation Results

We present the simulation results of our price pair
mechanism and the distributed algorithm on a simple
network as shown in Figure 1. The reader is referred to
our technical report [3] for extensive results and
performance evaluation.

In the first experiment, the network parameters are
as follows: channel capacity Cq ¼ 2Mbps, for q¼
1,2,3; relay cost Ej¼ 2 for j¼ 1,2,3,5,6,7 and E4¼ 3.
The minimum and maximum rate requirement of
flows are fxmi ¼ 0 Mbps and xMi ¼ 2 Mbps, for all
i ¼ 1; . . . ; 7. Step size & ¼ 0:05. It is obvious that the
minimum rate requirement can be guaranteed. We
show the convergence behavior of our iterative algo-
rithm in this experiment. As shown in Figure 3, the
algorithm converges to a global network equilibrium
within about 800 iterations. At the equilibrium point,
the optimal resource allocation and prices are listed in
Table II.

In the second set of experiments, we show how both
channel price and relay price are necessary to regulate
and incentivize the network to operate at its optimal
point. In particular, we simulate on the same network
as in the first experiment with only one price. The
results in comparison with the result based on price

Table I. Distributed algorithm.

Clique price update (by clique q): at time t¼ 1,2, . . .

1 Receive rates xiðtÞ from flows fi where fi \ q 6¼ ;
2 Update price $"

q ðt þ 1Þ ¼ ½$"
q ðtÞ þ &ð

P
fi\q6¼; xiðtÞAqi % CqÞ.þ

3 Send $"
q ðt þ 1Þ to flows fi where fi \ q 6¼ ;

Relay price update (by node j): at time t¼ 1,2, . . .

1 Receive rates xiðtÞ from flows fi where j 2 HðfiÞ
2 Update price $#

j ðt þ 1Þ ¼ ½$#
j ðtÞþ &ð

P
i:j2HðfiÞ xiðtÞBji % EjÞ.þ

3 Send $#
j ðt þ 1Þ to flows fi where j 2 Hð fiÞ

Rate update (by node i): at time t ¼ 1; 2; . . .

1 Receive prices $"
q ðtÞ from q where fi \ q 6¼ ;

2 Receive relay prices $#
j ðtÞ from j where j 2 HðfiÞ

3 Calculate

%"
i ¼

P
q:fi\q6¼; $

"
q Aqi

%#
i ¼

P
j:j2HðfiÞ l

#
j Bji

5 Adjust rate xiðt þ 1Þ ¼ xið%"
i ; %

#
i Þ

4 Send xiðt þ 1Þ to corresponding cliques.

Fig. 3. Convergence of the algorithm on the network shown in Figure 1. (a) Flow rates xiði 2 N Þ, (b) Channel price $"
q ðq 2 QÞ

and (c) relay price $#
j ð j 2 N Þ:
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pair are shown in Table II. It is easy to see that the
network does not operate at its desired point (i.e.,
NBS), when only one price (either channel price or
relay price) is used. Above results show that in a
typical network environment, using either only chan-
nel price to regulate the usage of shared wireless
channel or only relay price to incentivize traffic relay
for other nodes can not reach the adequate level of
cooperation, where global network operates at its
optimal point.

6. Related Work

The problem of optimal and fair resource allocation
has been extensively studied in the context of wireline
networks. Among these works, pricing has been
shown to be an effective approach to achieve distrib-
uted solution for flow control [5–7] and service
differentiation [8]. Simultaneously, game theory is
applied to model resource sharing among multiple
users, e.g., [2,9].

The main difference that distinguishes our work
from the existing works is rooted in the unique
characteristics of resource models of ad hoc network.
First, the allocation mechanism needs to consider two
types of resources, namely, the shared channel and the
private resource such as energy. Second, due to
the location-dependent contention and spatial reuse
of the shared channel resource, the channel price is
associated with a maximal clique in the subflow
contention graph, rather than a wireline link. This
presents a different pricing policy for end-to-end
flows.

Incentives in wireless networks have stimulated
much research interests. (e.g., in the context of
ad hoc networks [10–12] and in wireless LAN [13]).
In particular, the work in Reference [10] presents
virtual credit-based mechanisms to stimulate coopera-
tion in ad hoc networks, where virtual credits (so
called nuglets) are awarded for packet forwarding.
Some approaches [14,15] use a reputation-based me-

chanism where selfish or misbehaving nodes are
identified, isolated, or punished. Our work distin-
guishes from the existing works in that, it does not
only promote cooperation in packet forwarding, more
importantly, it studies at what level of cooperation the
network operates at its optimal point, and how to
achieve such cooperation using pricing as incentives.

Non-cooperative game theory has been used to
model the relaying behavior among nodes in ad hoc
networks in References [11,12]. By designing appro-
priate game strategies and analyzing the Nash equili-
brium of the corresponding relaying game, these
works show the existence of a network operating
point where node cooperation is promoted. In our
work, Nash bargaining solution is used to characterize
the global network operating point, which usually
demonstrates more advantageous properties, such as
Pareto optimality and fairness, than the usual Nash
equilibrium in a non-cooperative game.

There are also previous works that address the issue
of resource allocation [16] and use a price-based
approach [17]. However, the ad hoc network models
in these works do not consider the shared nature of the
wireless channel, and thus their solutions are not able
to capture the unique issues in wireless ad hoc net-
works. Moreover, the price-based distributed algo-
rithm presented in [16] only converges to a network
optimum when its utility function takes certain a
special form, and such a utility function does not
satisfy the fairness axiom.

7. Concluding Remarks

This paper presents a price pair mechanism that both
regulates greedy behaviors and incentivizes selfish
users in ad hoc networks. A pair of prices is the
centerpiece of this mechanism: (1) the channel price
that reflects the unique characteristics of location-
dependent contention in ad hoc networks, and regu-
lates the usage of shared wireless channel; (2) the
relay price that gives incentives to reach the adequate

Table II. Equilibrium rate comparison.

Rate(Mbps) x+1 x+2 x+3 x+4 x+5 x+6 x+7
P7

i¼1 lnðxiÞ

Price pair 0.095 0.364 0.235 0.286 0.286 0.129 0.096 %11.7
Channel price only 0.092 0.307 0.286 0.286 0.259 0.134 0.096 %11.8
Relay price only 0.081 0.540 0.137 0.314 0.314 0.105 0.081 %12.2
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level of cooperation with respect to traffic relay. By
using such a price pair as a signal, the decentralized
self-optimizing decisions at each individual node
converges to the global network optimal operation
point.
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