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Abstract— Selfish overlay networks consist of autonomous
nodes that develop their own strategies by optimizing towards
their local objectives and self-interests, rather than following
prescribed protocols. It is thus important to regulate the behavior
of selfish nodes, so that system-wide properties are optimized. In
this paper, we investigate the problem of bandwidth allocation in
overlay networks, and propose to use a market-driven approach
to regulate the behavior of selfish nodes that either provide
or consume services. In such markets, consumers of services
select the best service providers, taking into account both the
performance and the price of the service. On the other hand,
service providers are encouraged to strategically decide their
respective prices in a pricing game, in order to maximize their
economic revenues and minimize losses in the long run. In
order to overcome the limitations of previous models towards
similar objectives, we design a decentralized algorithm that uses
reinforcement learning to help selfish nodes to incrementally
adapt to the local market, and to make optimized strategic
decisions based on past experiences. We have simulated our
proposed algorithm in randomly generated overlay networks,
and have shown that the behavior of selfish nodes converges to
their optimal strategies, and resource allocations in the entire
overlay are near-optimal, and efficiently adapts to the dynamics
of overlay networks.

I. I NTRODUCTION

When overlay nodes are inherentlyselfish, applications in
overlay networks may not perform optimally, since selfish
nodes tend to optimize towards their self-interests. For exam-
ple, they may attempt to maximally exploit services from other
nodes, while not willing to provide services to others. Their
strategies and behavior are not easily regulated by prescribed
distributed algorithms, if their self-interests are not considered.

Naturally, it is important to regulate the behavior of such
selfish nodes, and even steer such behavior towards thecom-
mon good, where system-wide properties are optimized, rather
than the original local self-interests. We investigate theprob-
lem of bandwidth allocationin overlay networks, involving
applications with long-lived and bandwidth demanding peer-
to-peer data transmissions. We wish to manipulate the self-
interests of overlay nodes by placing all participating nodes in
a market, where service provisioning becomes preferable even
for selfish nodes.

Let us consider the relationship between the nodes that
provide services and the nodes that consume them. Each
overlay node that consumes services, hereafter referred toas
a downstream node, has the choice of using the service from
one of multiple nodes that have the capability of providing

it (henceforth referred to asupstreamnodes). On the other
hand, each upstream node may potentially serve multiple
downstream nodes. In the bandwidth allocation problem, we
can simply envision that the data source in the peer-to-peer
data transfer application provides a “service” to the receiver,
who benefits from receiving such data.

Two critical questions arise from this context. First, if we
establish a directed overlay link (that symbolically represents
the service provisioning relationship) between a successfully
matched upstream and downstream node, which overlay links
should we include in our service provisioning network, that
connects all the upstream nodes that provide services to all
the downstream nodes that consume them? Second, once
these links are established, how much bandwidth should be
assigned to each overlay link in order to satisfy the traffic
demands of as many downstream nodes as possible? The
formation of this problem is rather generic, and may find its
root in various overlay application scenarios such as overlay
multimedia streaming and parallel downloading of bulky data.

By placing all participating (upstream and downstream)
nodes in amarket, we can leverage the concept ofprices of
providing servicesto regulate the behavior of selfish nodes in
contributing and consuming resources required for such ser-
vices. In our problem of bandwidth allocation, such resource
is the network bandwidth. A downstream node simply pays
a price to an upstream node for every unit of bandwidth the
data transmission service consumes.

Our market model is fundamentally different from mostsin-
gle pricing or static pricingmodels that have been previously
studied in the context of overlay networks. In previous models,
either a single centralized price is used in the entire system, or
per-service prices are established, but remain static throughout
the lifetime of the nodes. In our market mechanism,each
upstream node has its own specific service price it prefers to
charge its downstream nodes, and such a price is dynamically
adjusted over time in order to maximize its economic revenue
and minimize its empirical loss (due to the occupation of
its bandwidth by downstream nodes) in the long run. Such
a market mechanism is more flexible and realistic, as there
does not exist centralized authorities to determine a single
centralized price in overlay networks.

The market mechanism can be understood from two dif-
ferent perspectives. First, from the perspective of the down-
stream nodes as service consumers, they need the freedom



to select the best upstream nodes that not only deliver the
best performance, but also incur the minimum economic
costs. Second, from the perspective of the upstream nodes in
the market, they compete in apricing game in which they
need to strategically decide their service prices, since their
future revenues and potential losses are determined by the
prices set by all players in the game. Such a pricing game,
unfortunately, is rather complex in reality: it is a game with
incomplete information and imperfect recall, which usually
requires the nodes’ supplementary knowledge on probability
distributions of missing information in order to be solvable
by classical game theory. In this paper, we provide practical
solutions for strategic nodes to gradually solve the pricing
game, by modeling them asreinforcement learning agents
that are capable of incrementally improving their strategies
through trial-and-error interactions with the external world.
At equilibrium, nodes are expected to reach strategies that
optimally adjust their prices.

In more general scenarios where all overlay nodes may
potentially assume the dual roles of being both upstream
and downstream, the proposed market mechanism solves the
general problems of downstream/upstream matching and band-
width assignment, both in a fully distributed manner. In this
paper, we study how well the effects of such a market mecha-
nism approximate the optimal system-wide properties that can
be achieved in overlay networks. In particular, given an overlay
network, the distribution of data items, and the demands
from downstreams, we evaluate theoptimality of a specific
bandwidth allocation with two metrics: (1) the percentage of
transmission requests accepted by the network; and (2) the
total end-to-end throughput in the resulting topology.

The remainder of the paper is organized as follows. We
first discuss related work in Sec. II. The market model is
formulated in Sec. III. Sec. IV defines the pricing game,
and discusses our distributed solution based on reinforcement
learning algorithms. Bandwidth allocation decisions to be
made by upstream and downstream nodes on the market are
discussed in Sec. V. Sec. VI evaluates the performance of
the proposed mechanism through simulation results. Finally,
Sec. VII concludes the paper.

II. RELATED WORK

Node selfishness and incentive provisioning in autonomous
networks have been extensively researched, with the cur-
rent literature showing several distinct while related research
trends, which differ in their interpretations of self-interest, and
the assumptions related to applications.

First, networked selfish nodes have been modeled asstrate-
gic playersfrom a game theoretic perspective, where the self-
interest of a node is studied by considering the empirical
benefits of consuming or the losses for contributing resources
[1], [2], [3]. A selfish node wishes to maximize its overall
benefit while taking into account the negative impact from the
behavior of others. For example, in the routing game discussed
by Roughgarden and Tardos [4], a selfish node constantly
seeks to reduce its perceived latency by routing traffic through

shorter paths, while the increased traffic increases the latency
of every flow going through the shared links. Unfortunately,
the use of classical game theory requires strong assumptions,
for instance, the exact information about the entire game —
including private information of other players — is assumed
to be known to each selfish player. Due to the infeasibility
of making such assumptions in overlay networks, it is not
possible to design practical solutions using classical game the-
ory for each individual player to actually play the game. The
objectives of previous work have been to investigate whether a
specifically proposed game leads to the preferable equilibrium
point, and the equilibria are usually directly computed using
linear or nonlinear programming [4], [5].

Second, if we assume the existence of aservice charge
or reward, a selfish node may be concerned with both the
empirical benefit or loss and theeconomic revenue or cost.
When the service charge and reward are decided by a central
authority [6], [7], [8], [9], a selfish node just needs to decide
the amount of its contribution or usage of resources, and may
not be aware of the behavior of others. If we assume that
the central authority makes strategic decisions on prices,the
interactions between one player and the other players lead
to a Stackelberg game[10]. Although the existence of any
central authorities can not be conveniently assumed in overlay
networks, we still believe that it is a promising direction to
further explore decentralized algorithms of settling charges and
rewards, and to study the interactions between the two sides
that charge and pay.

Finally, some recent work has introduced the theory of
mechanism design[11] to the study of autonomous networks.
The main focus is to exploit the strength ofstrategyproof
mechanisms, which enforce selfish entities to truthfully reveal
their private information by offering calculated payments,
in order to derive the optimal solution to a system-wide
problem. Initially, varioussecond-priceauctions have been
extensively studied. For example, the progressive second price
auction mechanism proposed by Lazaret al. and Semretet
al. [12], [13] was used to differentiate QoS in bandwidth
sharing problems, and the Spawn system [14] manages idle
CPU times through distributed bidding. More recent research
has focused on more complicated algorithms such as the
VCG mechanism, and has emphasizeddistributed algorith-
mic mechanism designs[15]. For example, Feigenbaumet
al. have investigated cost sharing mechanisms for multicast
transmissions based on the marginal cost and theShapleyvalue
[16], and have designed a distributed mechanism that computes
VCG payments for intra-domain routing using the BGP model
[17]. Though strategyproof mechanisms have been extensively
studied, most existing approaches assume that a central entity
has unlimited amount of incentives to be offered to the system
in order to guarantee strategyproofness (as illustrated inthe
budget imbalance problem of VCG), which is not realistic
in overlay applications. In this paper, we seek to design a
fully distributed market-based mechanism, which still provides
incentivesfor upstream nodes to provide services, without the
requirements of a central authority to offer payments at its



cost.

III. PROBLEM FORMULATION

We consider the most generic abstraction ofone-hop flows
in overlay networks, each of which corresponds to a long-
lived end-to-end data transmission session between a pair of
overlay nodes. We believe that such an abstraction can be made
in overlay networks without being unrealistic: most peer-to-
peer applications involve one-hop unicast flows between a data
source and a receiver (downloader). For other types of overlay
communication sessions such as overlay multicast, each edge
in the corresponding topology (single tree, multiple trees, or
mesh) corresponds to a one-hop flow. We study bandwidth
allocation problems with respect to one-hop flows, without
assuming a specific type of overlay applications.

In our study, we assume that each overlay node is capable
of measuring performance metrics regarding overlay links be-
tween itself and other overlay nodes. With respect to one-hop
flows, we assume that nodes are only concerned with session
throughput, and theavailable bandwidthBi

j(t) from nodei

to node j may be measured through bandwidth estimation
algorithms at any given time. We assume that essential overlay
services such as service discovery exist in the overlay network,
so that each downstream node is able to identify a set of
upstream candidates that are able to provide the requested data
before interacting with them on the market. Finally, we assume
a secure payment mechanism among peers is in place, which
is complementary to this study and has been the focus of some
of the existing research work [8], [18], [19].

A. Market model

Our market model is established based on the notions of
downstream and upstream nodes of one-hop flows, where
the downstream node may be interpreted as the buyer and
consumer of the data service, and the upstream node as the
seller and provider. As a potential upstream node of an one-
hop flow to be established, each overlay nodei maintains
a transmission pricepi(t) for time slot t, which is to be
charged to any of its one-hop downstream nodes, foreach
unit of bandwidth they consume in that time slot.pi(t) may
be adjusted by nodei over time, for the purpose of maximizing
its utility based on its accumulated experience.

Each downstream node aims to achieve the highest benefit
from the one-hop flows it receives, and minimize the payments
made to the respective upstream nodes. Therefore, itselects
upstream nodes based on their prices, as well as the maxi-
mum possible session throughput from each of them. Each
downstream node determines the actual session throughput —
or the amount of bandwidth to be purchased per unit time
— by maximizing its own utility function. Since traffic loads
at both sides and within the underlying network may change
over time, downstream nodes have the freedom to switch to
better upstream nodes, since it wishes to always enjoy the best
performance at the minimum cost.

When establishing one-hop flows, we assume that upstream
nodes accept any downstream nodes as long as the resulting

one-hop flows improve their utilities. In other words, for
requests that come in sequentially, an upstream node simply
processes them on afirst come first servebasis, without
skipping or waiting for “better” requests to come.

B. Utility function

In our market mechanism, the consistent objective of any
selfish node is to maximize its self-interest for every time
slot that it participates in overlay data transmissions. Math-
ematically, we may characterize a node’s self-interest using
a utility function, which includes theempirical benefitsand
lossesfor consuming and contributing bandwidth resources,
and theeconomic revenuesand costsincurred in trading the
resource.

Since an overlay node usually assumes the dual roles of both
downstream and upstream in the overlay, its utility function
includes the utility in both roles. For the time slott, suppose
that nodei is currently receiving flows from a setUi(t) of
upstream nodes, each at a rate ofb

j
i (t) and a unit charge

of pj(t), j ∈ Ui(t); it also delivers flows to a setDi(t) of
downstream nodes, each at ratebi

k(t). If the local bandwidth
capacity at nodei is Ci, the utility of nodei participating in
overlay data transmissions can be expressed as:
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The first two terms represent nodei’s empirical benefit
of receiving flows, and the empirical loss for delivering
flows. The third and fourth term represent the economic cost
and revenue in the market. As is evident from thelog(·)

function, the empirical benefitǫ1 log
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P
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)

in-

creases quickly from zero as the total receiving throughput
increases from zero, then increases more slowly. This reflects
the intuition that the initial increase in receiving throughput
is more important to a node. On the contrary, the empirical
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increases relatively slowly

from zero at the beginning but rapidly later, which reflects the
natural judgement of a selfish node that becomes increasingly
reluctant to sell bandwidth when its available capacity is
decreasing. Thelog(·) function is also analytically convenient,
since it is increasing, strictly concave and continuously differ-
entiable. The coefficientsǫ1 and ǫ2 in Eq. (1) are positive
parameters that indicate the relative importance of empirical
benefit and loss in comparison with economic factors. They
also keep the four terms on the same order of magnitude. For
ease of illustration in our subsequent studies, we assume that



all nodes use the same form of utility functions, but they may
have different parameters that are only privately known.

C. Decision problems

Nodes have different decisions to make as they appear
on the market as downstream and upstream nodes. As a
downstream node, since the transmission prices of its upstream
candidates are given, the decision problem of nodei is
to select the best upstream node and the optimal receiving
throughput, so that it receives the highest positive utility from
the transmission, given the constraints of available bandwidth
between itself and the selected upstream node. As an upstream
node, nodei faces two kinds of decisions. First, for any
downstream node that requests for service, nodei decides
the range of its acceptable outgoing bandwidth, beyond which
its utility is going to decrease. Second, nodei strategically
decides the transmission price it charges in order to maximize
its utility in each upcoming time slot.

Why should nodei dynamically decide and adjust its price
as an upstream node? Due to the nature of the market model,
whether or not nodei will be selected by a downstream
node depends not only on its transmission price and the
performance of the overlay link between the two, but also
on the transmission prices set by other upstream candidates
and performance of their respective overlay links. Therefore,
if node i’s transmission price is too high, few downstream
nodes may wish to receive flows from it; if it is too low, too
much bandwidth may be consumed during the time slot, so
that some downstream nodes may decide to switch to other
upstream nodes or to reduce their receiving throughput, due
to the degraded performance.

IV. T HE PRICING GAME

We divide our discussions on the behavior of selfish nodes
in the market setting into two parts. In this section, we discuss
the decision problem at upstream nodes with respect to their
transmission prices. In the subsequent section, we proceed
to the problem of making upstream selections at downstream
nodes, when transmission prices are available.

A. Game formulation and its properties

Since all selfish nodes involved in overlay data transmis-
sions need to decide their transmission prices strategically,
they form the player setI, and the pricing game can be formed
as follows. Each nodei has a set of actionsAi = {ai} to be
chosen under various situations, and a strategy setSi = {fi}
containing all the possible mappings fromdistinguishable
information sets{Hi} perceived by nodei to nodei’s actions,
i.e., fi : Hi → ai. Asynchronously in time, nodes sequentially
take their optimal actions, following their optimal strategies
that maximize their utilities as expressed in Eq. (1).

To reduce the complexity of the game, we assume transmis-
sion prices to beinteger-valued, and interpret nodei’s actions
as the possible incremental changes to be made to the prices:
Ai = {−1, 0, 1}. For such a finite game — one with finite
number of players and finite action sets for each player, the

classical game theory has proved that it has at least one mixed
strategy Nash equilibrium [20].

However, further reflections show that classical game theory
does not provide any practical solutions to such a pricing
game. First, it is very hard for an arbitrary node to identify
the player setI, e.g., how many players there are in the
game, or which nodes they are, due to the lack of global
information. Second, even if the setI is identified, a node
still has incomplete informationabout the game itself and
about other players. Knowing only its own utility, a node has
no exact knowledge of how a bandwidth allocation outcome
is reached, or how other players’ strategies impact its utility.
Third, the game cannot be treated as a Bayesian game either,
since a node does not have the knowledge of the concrete form
of other nodes’ utility functions, as well as any probability
distributions of them. Finally, it is infeasible for a node to
observe the previous actions and states of all other players,
and thus to perform backward induction.

Summarizing these difficulties, we may recognize the pric-
ing game as adynamic sequential move gamewith incomplete
information and imperfect recall, which provides insufficient
knowledge for nodes to really derive their equilibrium strate-
gies. However, since nodes are still capable ofobservingtheir
own actions and utilities, as well as relevant system outcomes
in the history, we may design an appropriate solution for
nodes to graduallylearn the optimal strategies through past
experience. Being iterative and incremental, the well-studied
reinforcement learningalgorithms have become our choice
that our proposed solution is based upon.

B. Reinforcement learning

Reinforcement learning (RL) is a branch of machine learn-
ing that enables a decision maker, or anagent having a
set A of alternative actions, to involve an optimaldecision
policy through systematictrial-and-error interactions with the
external environment, which is characterized by a setS of
states.

A decision policy is defined as a mapping from each
environment state to a probability distribution over the agent’s
actions, i.e., π : (s, a) → π(s, a), where π(s, a) is the
probability of taking actiona at states. The agent incre-
mentally improves its decision policy towards an optimal one,
based on feedback provided by the environment, known as
reinforcementr. An optimal decision policy is to incur the
highest accumulated reinforcement values. The most familiar
example of RL is the training of a chess player: a chess
player gradually learns the best moves at different positions,
by repeatedly taking his moves, and receiving rewards (e.g.,
r >= 0) or penalties (e.g., r < 0) for its moves from the
trainer.

In the discrete-time domain, RL models the interaction
between an agent and the environment as aMarkov decision
process[21] (Fig. 1). Suppose the environment is at state
s(t) in time slot t, after the agent performs actiona(t),
it shifts to states(t + 1) in the next slot with probability
P a

ss′ = P{s(t + 1) = s′|s(t) = s, a(t) = a}. The agent then
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Fig. 1. An example of the Markov decision process. Empty circles represent
system states, and solid dots represent the corresponding actions, respectively.
For each state of the system, there exist multiple choices of feasible actions,
taking each one of them may lead the system to various states probabilistically.

receives a reinforcementr(t + 1) ∈ R, the expected value of
which may be expressed asRa

ss′ = ER{r(t + 1)|s(t + 1) =
s′, s(t) = s, a(t) = a}. The interaction between an agent and
its environment may be illustrated by Fig. 2.

RL agent
Environment

Z-1

a(t)

s(t+1)

r(t+1)

s(t)r(t)

Fig. 2. The interaction interface between an agent and the environment. The
Z−1 unit represents a delay of one time slot.

A decision policy is incrementally improved as the agent
tries by choosing an optimal action following the current pol-
icy, and thenmakes correctionsby adjusting the policy based
on the most recent observation〈s(t− 1), a(t− 1), s(t), r(t)〉.

For improved efficiency, we adopt theQ-learning method
that improves decision policies with the aid ofQ-value func-
tions, Q : (s, a) → Q(s, a), s ∈ S, a ∈ A, whereQ(s, a) is
the Q-value associated with the state-action pair(s, a), and
represents theexpected returnwhen taking actiona in states

and then following the current policy to the end. The expected
return is expressed as follows:

∞
∑

k=1

E{γkr(t + k)}

whereγ ∈ [0, 1) is a discounting factorthat discriminates the
impact of reinforcements that are farther away. The standard
updating rule forQ-learning is given as:
{

Q(s(t− 1), a(t− 1))← Q(s(t− 1), a(t− 1)) + ∆
∆← β [r(t) + γ maxa Q(s(t), a)−Q(s(t− 1), a(t− 1))]

(2)
whereβ indicates thelearning rate. The determination of a
decision policy starts with the iteration of aQ-value function;
the latter is considered to have converged to the optimal when
its value for each state-action pair is no smaller than that of
any other value functions.

However, Eq. (2) only updates theQ-value for one state-
action pair after each iteration with the environment, which

might be very slow, especially for systems in which perform-
ing real interactions with the environment is expensive. To
greatly improve the convergence speed, this paper adopts the
Dyna-Q architecture[22], which, after each real interaction,
performs one iteration on theQ-value of previous state-action
pair, then iterates onk hypothetical interactions simulated
by the learned system model,i.e., {Ra

ss′} and {P a
ss′}. The

updating rule forDyna-Q based on hypothetical interactions
is as follows:
{

Q(s, a)← Q(s, a) + ∆

∆← β
{

∑

s′

[

R̂a
ss′ + γ maxa′ Q(s′, a′)

]

P̂ a
ss′ −Q(s, a)

}

(3)
whereR̂a

ss′ and P̂ a
ss′ are the estimates of expected reinforce-

ment valueRa
ss′ and state transition probabilityP a

ss′ , based on
real interactions.

The details of the algorithm are given in Table I. Note that
the algorithm loops infinitely, because we are especially inter-
ested in cases where the dynamics of the external environment
possesses unpredictable time-varying characteristics that need
to be learned on line. The convergence is faster whenk is
higher.

TABLE I

THE Q-LEARNING ALGORITHM : DYNA

For all s ∈ S anda ∈ A(s), Q(s, a)← 0
while (true)

Increment the time of transitionss(t− 1)
a(t−1)
→ s(t)

UpdateP̂ a
ss′

Record the latest reinforcement valuer(t− 1)

UpdateR̂a
ss′

UpdateQ(s(t− 1), a(t− 1)) by Eq. (2)

Randomly choosek state-action pairs{s̄, ā}
for all (s̄, ā)

UpdateQ(s̄, ā) by Eq. (3)

Given all theQ-values of state-action pairs associated with
the current states, the probability of taking actiona follows
the Boltzmann distributiongiven by:

P (a|s) =
eαQ(s,a)

∑

a′ eαQ(s,a′)
(4)

whereα is a positive constant that controls the “sharpness”
of differentiating actions corresponding to differentQ-values.

C. Playing by RL

We wish to leverage reinforcement learning methods to
solve the decision making problem for the pricing game, based
on the following justifications.

– First, each node is presented with an external environment
composed of all other competitive upstream nodes as
well as downstream nodes. Each nodei may locally
observe its own residual bandwidthbi(t), which is the
original capacityCi subtracted by the total bandwidth
being consumed by all ongoing flows, as the state of the



environment. By adjusting the transmission pricepi(t),
node i receives the corresponding utility (characterized
by the secondlog(·) term and the economic revenue
term in Eq. (1)) as feedback. All upstream nodes seek
to maximize the sum of the feedback in the long run.

– Second, it is not feasible to obtain information about
the game itself, including (1) utility functions of other
players; (2) prices and performance metrics observed
by downstream nodes; (3) preferences of downstream
nodes, and (4) distribution of service requests. It is more
practical to model the interaction between the node and
the remainder of the game as a Markov process.

– Third, as theQ-function converges, the agent will form
a decision policy that maps an environment states to a
probability distributionP (a|s) over all possible actions
(Eq. (4)), which exactly corresponds to the spirit of a
mixed strategy equilibrium in our game.

– Finally, theDyna-Q learning algorithm is very amenable
to incremental implementations.

Formally, we define the RL-based solution for the pricing
game players as follows. A nodei, when acting as an upstream
node, is represented by a RL agent that locally observes the
environment statebi(t) at the end of time slott, and maintains
the integer-valuedtransmission pricepi(t + 1)← pi(t) + ∆p,
by choosing actions from the action space∆p = {−1, 0, 1}.
When its new price is exposed to the environment in time slot
(t + 1), the agent receives a reinforcement of

r(t + 1) = pi(t + 1)
∑

k∈Di(t+1)

bi
k(t + 1)

+ ǫ2 log
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
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by the end of that slot. The objective of the agent is to
obtain an optimal decision policy{P (∆p|bi(t))}, so that
∑∞

k=1 E{γkr(t + k)} is maximized at any timet.
Before deploying theDyna-Q algorithm, there are a few

outstanding problems that we need to address.
1) Dividing the state space:The residual bandwidth of a

node is essentially a continuous variable, hence the state space
potentially contains an infinite number of states. Solutions
to this problem involve eitherdividing continuous states into
sections, orgeneralizingQ-functions to the continuous do-
main. Since generalization methods usually require a neural
network to approximate the continuous function, while dis-
crete solutions only require table-based mapping, we choose
to divide the state space to reduce the complexity. In our
mechanism, since the residual bandwidth at nodei is bounded
by [0, Ci], it may be simply divided intomb equalsections,
though equal division is not required for the RL algorithms to
work successfully.

2) Filtering unnecessary state transitions:On observing
bi(t) from the environment, agenti needs to decide which
state the environment currently resides in. To avoid mistakenly

believing environment states are frequently in transitionwhen
observed values vary around section borders, we introduce a
transition thresholdǫ that is0.15 times of the average size of
a section to filter unnecessary transitions. Thus, a states may
still belong to a section[a, b) , even if s < a but s ≥ (a− ǫ),
or if s > b but s ≤ (b + ǫ).

3) Convergence of learning:Conventional reinforcement
learning models require that the state transition of the environ-
ment, as well as the distribution of reinforcement values, be
stationary, meaning that{P a

ss′} and{Ra
ss′} do not change over

time. Overlay networks do not satisfy this requirement, since
both quantities are affected by unpredictable network dynam-
ics and variations of transmission requests. However, as long
as{P a

ss′} and{Ra
ss′} are only varying mildly and gradually,

RL algorithms are still effective solutions to optimal decision
making problems, where we have difficulty to mathematically
characterize the dynamics of the environment [23].

V. TRADING ON THE MARKET

As described by the market model in Sec. III, once trans-
mission prices are determined, the downstream node needs
to make decisions to select the best upstream node and the
session throughput of the one-hop flow. Such decisions are
made based on the respective utilities brought by the upstream
candidates.

A. Evaluating utilities

For each upstream candidate, a downstream nodei may
envision its benefit or loss when receiving from nodej at
rate b

j
i (t) based on the utility function Eq. (1). Two design

alternatives are possible: nodei may either evaluate itstotal
utility that considers all current incoming flows (including the
new flow) using Eq. (6), or consider theadditional utility
brought by the new flow using Eq. (7).

u
j
i,D(t) = ǫ1 log

(

1 +
b

j

i
(t)+

P

j′∈Ui(t) b
j′

i
(t)

Ci

)

− pj(t)b
j
i (t)−

∑

j′∈Ui(t)
pj′(t)bj′

i (t)

(6)

u
j
i,D(t) = ǫ1 log

(

1 +
b

j

i
(t)+

P

j′∈Ui(t) b
j′

i
(t)

Ci

)

− ǫ1 log

(

1 +
P

j′∈Ui(t) b
j′

i
(t)

Ci

)

− pj(t)b
j
i (t)

(7)

The subscriptD and superscriptj in u
j
i,D(t) indicate that

the value is computed by nodei as a downstream node of
node j. In subsequent discussions, we assume all nodes use
Eq. (7), as it requires less computation. Our market model,
however, does not favor one over the other, and leave it as an
option to applications or different selfish nodes.

B. Determining optimal transmission throughput

In addition to evaluating each upstream candidate in terms
of its induced utility, a downstream nodei also computes the
most preferable receiving throughput from the candidate, by
maximizing Eq. (7):



r
j
i,D(t) = arg max

b
j

i
(t)[ǫ1 log(1 +

b
j

i
(t)+

P

j′∈Ui(t) b
j′

i
(t)

Ci
)

− pj(t)b
j
i (t)]

s.t. bmin ≤ b
j
i (t) ≤ bmax

(8)
wherebmin andbmax are feasibility constraints on the possible
end-to-end throughput from nodej to node i. Eq. (8) also
suggests the order of magnitudeǫ1 has to take in order to
keep the value of Eq. (8) positive. For instance,ǫ1 ∼ 2CiPi

should be a valid choice, wherePi is the maximum acceptable
transmission price to nodei.

C. Rate negotiation

Since delivering flows incurs empirical loss to the upstream
node, it might be possible, especially when the transmission
price is low, that nodej’s utility at time slott becomes nega-
tive, if it delivers a flow to nodei at rater

j
i,D. To address this

problem, we introduce a two-step rate negotiation mechanism
to determine the bandwidth allocated to an one-hop flow. Since
downstream nodes are the primary decision makers regarding
one-hop flows, we require nodej to first compute the range
of its acceptable transmission rates(rj,U

min, rj,U
max) that keeps its

utility positive, and then advertise it to nodei.
The values ofrj,U

min andrj,U
max may be computed as the roots

to the following equation:

ǫ2 log

(

1−
x+

P

k∈Dj(t) b
j

k
(t)

Cj

)

−ǫ2 log

(

1−

P

k∈Dj(t) b
j

k
(t)

Cj

)

+ pj(t)x = 0
(9)

which may be numerically approximated, since Eq. (9) is
transcendental.

Knowing nodej’s acceptable range(rj,U
min, rj,U

max), and hav-
ing measured the available bandwidthB

j
i from nodej to itself,

nodei may decide the feasibility constraints as:
{

bmin = r
j,U
min

bmax = min{Bj
i , r

j,U
max}

(10)

and computesrj
i,D by Eq. (8). The achievable utility can be

further evaluated by Eq. (7). If the resulting utility is positive
and the highest among all the relevant upstream candidates,
nodei then proceeds to establish the one-hop flow with node
j and start to receive data at rater

j
i,D.

In summary, we have designed a market-based mechanism,
which encourages selfish nodes to contribute their spare band-
width and prevents them from excessively consuming band-
width at other nodes by means of transmission prices. Two
properties of the mechanism help to provide high-performance
bandwidth allocation: (1) upstream nodes have the capability
to wisely control their revenue and residual bandwidth using
their prices; and (2) downstream nodes aim to maximize their
private utility by receiving data from nodes that have both high
residual bandwidth and low price.

We should point out that our proposed mechanism is not
confined to any particular data dissemination application.

Nodes may adjust their behavior in different applications at
the same time, based on the same mechanism, as long as
their selfishness about the bandwidth resource can be inte-
grally characterized by the same utility function. We discuss
outstanding issues with respect to the implementation of the
proposed market mechanism as follows.

D. Price and bandwidth probing

As described above, a downstream node needs to probe each
upstream candidate for its transmission price and acceptable
transmission rates, and measures the available bandwidth
between the two. Practically, these two probing tasks can be
combined in one step.

Initially, the downstream nodei sends aprice probe(PP)
message to each upstream candidatej, which contains the
source node IDi and the message ID (PP). Upon receiving the
PP message, nodej immediately returnsfour identical price
reply (PR) messages back-to-back. A PR message contains
the source IDj, its transmission price, the current local
time at nodej, and its minimum and maximum acceptable
transmission ratesrj,U

min andrj,U
max.

Hence, nodei may estimate the available bandwidth be-
tween them based on the arrival times of the messages, as in
the simpleReceiver Only Packet Pairmethod [24]. Since PR
messages are short and only four messages are sent on each
request, they do not form intrusive traffic to the network, while
still giving overlay nodes a reasonable estimate of available
bandwidth between them [25].

TABLE II

MESSAGES IN MARKET-DRIVEN BANDWIDTH ALLOCATION MECHANISM

Price probe (PP)
Source Type Message body

i PP NULL
Price reply (PR)

Source Type Message body
j PR r

j,U

min, rj,U
max, 〈pj , tj , j〉privj

Start request (SR)
Source Type Message body

i SR r
j

i,D, 〈〈pj , tj , j〉,〈pj , tj , j〉privj
〉privi

E. Transmission request and avoidance of price dispute

Knowing r
j,U
min and rj,U

max, node i computesr
j
i,D and the

corresponding utility. If satisfied with the utility, it then
includes r

j
i,D in a start request(SR) message and sends it

to node j; otherwise, it does not need to take any action.
As nodei requests nodej to transmit its required data, one
problem may occur. Since transmission prices are dynamically
updated, by the time a downstream nodei decides to contact
an ideal upstream nodej to receive data, nodej’s price
may have changed. In order to eliminate such disputes and
ensure that nodei is still eligible for the previous price, we
propose a simple signature-based solution using the publickey
infrastructure (PKI), as follows.

After receiving the PP message from nodei, nodej replies
with a PR message that contains itssigned ID, price and
current local time:〈pj , tj , j〉privj

. Nodei, upon receiving the



signed message, is able to decrypt it using the public key of

node j and view the price:〈pj , tj , j〉privj

pubj

→ 〈pj , tj , j〉. If
it decides to take nodej as its upstream node, nodei sends
to nodej a start request(SR) message that includes the fol-
lowing signed component:〈〈pj , tj , j〉, 〈pj , tj , j〉privj

〉privi
. By

decrypting the component, encrypting the first part〈pj , tj , j〉
using privj , and comparing the result with the second part,
nodej is able to verify that nodei quoted an authentic price
issued by itself when its local time wastj . If the price is no
older than one time slot, nodej will proceed to transmit to
node i and still use the previous price; otherwise, it simply
sends another set of PR messages, without starting the data
transmission.

For convenience, Table II lists all the messages employed
by our proposed mechanism, where nodesi andj are assumed
to be a downstream and an upstream node, respectively.

VI. PERFORMANCEEVALUATION

Given the market-based mechanisms proposed in the paper,
the question that remains to be answered is whether these
iterative selfish decisions will lead to an overall outcome that
is comparable to the situation that all nodes are responsibly
maintaining the shared bandwidth resource. Our simulation-
based results show the validity of the proposed mechanism,
as well as its performance under various simulated scenarios.
In particular, we show that the proposed mechanism is able to
generate bandwidth allocations comparable to or better than
cooperative situations.

A. Simulation methodology

In our simulations, topologies of the underlying backbone
IP-layer network are randomly generated by the BRITE
universal topology generator [26], and overlay nodes are
randomly connected to backbone routers in the IP network
throughlast-mileaccess links. In all our experiments, the back-
bone IP network consists of512 routers and1024 backbone
links. Capacities of the backbone links follow a heavy-tailed
distribution between10Mbps and1024Mbps. The bandwidth
capacities of thelast-mile links were exponentially distributed
with an expectation of10Mbps. The overlay network contains
256 overlay nodes. We model background traffic as random
noise that is independently generated for each link, with the
magnitude uniformly distributed from0 to a small value,e.g.,
5% of the link capacity. Thewidestrouting algorithm is used
to select a IP-layer path of the highest bandwidth between two
overlay nodes.

In the overlay application being simulated, overlay nodes
query for large data items, then directly download from the
upstream node that it has selected. While downloading a data
item, a node probes all eligible upstream candidates every50
time slots, and attempts to switch to another upstream node if
it helps to increase its utility.

2000 items of identical sizes (300 Mb) are randomly dis-
tributed among overlay nodes, each having3 separate copies.
Experiments were run for4000 time slots, with each time
slot interpreted as3 seconds in reality. During the first half

of simulation time, overlay nodes sequentially establish data
transmissions in randomly chosen time slots. At any time, a
node may request for a data item with probabilityλ = 0.1.
We assume service discovery mechanisms exist, such that a
downstream node is able to locate all the upstream nodes that
can provide the requested item. All nodes are assumed to be
stateless,i.e., we do not consider the case where nodes cache
downloaded copies and become eligible upstream candidates
in the future.

For fair comparisons, we seek to keep the simulation envi-
ronment consistent across different schemes under investiga-
tion. Our simulation environment include the physical network
topology, the assignment of link capacities, background traffic,
as well as events of node participation and downloading
requests.

In our market-driven bandwidth allocation mechanism (re-
ferred to asmarket in simulation results), upstream nodes
updateQ-values every20 steps, coefficientsǫ1 andǫ2 are set
to 300Ci and0.5Ci, respectively, whereCi is the bandwidth
capacity of nodei. Transmission prices are initialized to5.

B. Strategies used in comparisons

To be used as control in our comparisons, we have imple-
mented four other fully decentralized strategies that determine
the bandwidth allocations for one-hop flows.

– TheGreedyCoopstrategy. In this strategy, a downstream
node greedily chooses the upstream node that can deliver
the data item at the highest throughput, which is the
available bandwidth between the selected upstream node
and itself. In GreedyCoop, the downstream nodes are
greedy to exploit available resources, but the upstream
nodes always choose to be cooperative, and to provide
the requested data item.

– TheGreedySelfstrategy. In this strategy, the downstream
node is still greedy, but the selected upstream node may
choose to deny the request for service at a particular
transmission rate with a probabilityτ , which represents
the degree of selfishness at the upstream node.

– The CoopCoopstrategy. In this strategy, downstream
nodes are cooperative, and only ask for half of the maxi-
mum available bandwidth in data transmission, and avoid
transmissions with rates below a certain threshold, such
as20 Kbps in our experiments. The upstream nodes are
also cooperative, satisfying all requests at the requested
transmission rate

– TheCoopSelfstrategy. In this strategy, downstream nodes
are still cooperative as in theCoopCoopstrategy, but
upstream nodes may choose to deny service requests with
probability τ .

In all these strategies, a downstream node may switch to
a different upstream node if it perceives a higher receiving
throughput from the new upstream.

C. Evaluation metrics and simulation results

For applications involving one-hop overlay data transmis-
sions, we are most concerned with the total end-to-end



throughput of the entire overlay, how many transmission re-
quests can be successfully handled, and bandwidth utilization.

1) Total end-to-end throughput:We first analyze the total
end-to-end throughput of all active one-hop flows in the over-
lay with the market-based bandwidth allocation mechanism,
as compared to the other decentralized strategies. As shown
in Fig. 3, as time progresses, total throughput rises initially in
all the strategies, and then stabilizes as all the nodes have
joined the overlay. TheGreedyCoopstrategy leads to the
highest total end-to-end throughput due to the greedy nature
of downstream nodes and the altruistic nature of the upstream,
which can be treated as the ideal case when evaluating total
end-to-end throughput. In contrast, theGreedySelfstrategy
emulates an unregulated selfish network. When the degree of
selfishness at upstream nodes is moderate (τ = 0.5), its total
throughput is slightly below the market-based mechanism. We
have also tested theGreedySelfstrategy with otherτ values.
As intuitively expected, lowerτ values (less than0.5, not
shown) lead to a total end-to-end throughput very similar tothe
GreedyCoopstrategy, and higherτ values (> 0.5) will produce
significantly worse total throughput. TheCoopCoopstrategy
emulates a cooperative overlay, and the result is slightly higher
than the market-based mechanism. Withτ = 0.5, the total
end-to-end throughput with theCoopSelfstrategy is evidently
lower than that of the other strategies. From these results,we
observe that the total throughput of proposed market-based
mechanism approaches the ideal case ofGreedyCoop, and
matches or exceeds the throughput achieved by cooperative
strategies.
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Fig. 3. Total end-to-end throughput of the market-based mechanism, com-
pared to other decentralized strategies with different degrees of selfishness.

2) Percentages of rejected requests:The percentage of
rejected requests in all transmission requests also reflects the
capability of a strategy to utilize available resources in the
overlay. In our experiment, a request is considered to be
rejected by the overlay, if the downstream can not find any
upstream nodes from which it may download the requested
data item. In our market-based mechanism, this may occur
when the available bandwidth is low or when the prices are
high. In theGreedySelfstrategy, such denied requests are due
to the selfishness of upstream nodes. InCoopCoop, the reason
may be that the available bandwidth to the downstream node is

lower than the minimum threshold. InCoopSelf, either of the
above two reasons can lead to denied requests. For simplicity,
in GreedySelfandCoopSelfstrategies, a request is considered
rejected when the best upstream candidate denies the request.

Fig. 4(A)-(E) show that all other strategies stabilizes to a
similar mean percentage of rejected requests — around45%,
while themarket-basedmechanism stabilizes to around30%.
This is a very desirable property. It indicates that under the
market-based mechanism, downstream and upstream nodes are
more likely to be able to manage one-hop flows between them
according to their needs. In Fig. 4, the percentage of rejected
requests is visibly higher in the first half of time, because
many nodes have not joined the overlay, and their data items
are not yet discovered. Similarly, Fig. 5 has shown that at any
time, marketandCoopCoophave the largest number of active
flows being transmitted.
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Fig. 5. The total number of active flows in the network.

3) Downloading time distribution:For successfully down-
loaded items, we record the total downloading time for each
item, and plot the cumulative density functions for all strate-
gies in the comparison, as shown in Fig. 6. We have found
that theGreedyCoop, GreedySelf(with τ = 0.5) andCoopSelf
perform similarly, the market-based mechanism has the lowest
average downloading time, andCoopCoophas the highest.
Combined with previous figures, our results so far indicate that
our market-based mechanism delivers comparable or superior
performance compared to the cooperative strategies.

4) Bandwidth utilization on last mile links:Fig. 7 shows
the bandwidth utilization as a percentage of utilizing last-mile
access link capacities at each of the overlay nodes, and Table
III lists bandwidth utilization averaged over all overlay nodes,
obtained after5 rounds of simulations.

We observe that in all strategies exceptCoopSelf(with τ =
0.5), bandwidth utilization is quite high, mostly ranging from
50% to 100%. GreedyCoopand CoopCoophave the highest
overall bandwidth utilization, due to the cooperative nature
of upstream nodes. Our market-based mechanism performs
similarly to theGreedySelfstrategy.

5) Convergence ofQ-value and variation of price:We
are further concerned with convergence ofQ-values and the
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Fig. 4. Percentage of rejected requests. (A) Market; (B) GreedyCoop; (C) GreedySelf,τ = 0.5; (D) CoopCoop; (E) CoopSelf,τ = 0.5.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Capacity (Mbps)

B
an

dw
id

th
 u

til
iz

at
io

n 
(%

)

Market

(A)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Capacity (Mbps)

B
an

dw
id

th
 u

til
iz

at
io

n 
(%

)

GreedyCoop

(B)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Capacity (Mbps)

B
an

dw
id

th
 u

til
iz

at
io

n 
(%

)

GreedySelf

(C)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Capacity (Mbps)

B
an

dw
id

th
 u

til
iz

at
io

n 
(%

)

CoopCoop

(D)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Capacity (Mbps)

B
an

dw
id

th
 u

til
iz

at
io

n 
(%

)

CoopSelf

(E)

Fig. 7. Bandwidth utilization at different overlay nodes. (A) Market; (B) GreedyCoop; (C) GreedySelf,τ = 0.5; (D) CoopCoop; (E) CoopSelf,τ = 0.5.

resulting transmission prices in our market-based mechanism.
In our simulations, we have carefully chosen the number of
discrete states (mb), learning rate (β in Eq. (2)), number of
hypothetical iterations (k), and α in Boltzmann distribution,
in order to achieve fast convergence and reasonable range of
prices. We use the following figures to show the effects of
parameter settings, withmb = 5, β = 0.5, andγ = 0.9.

Fig. 8 has shownQ-value curves corresponding to all the
state-action pairs at an arbitrary node that joins the transmis-
sions at around1200 seconds after the simulation starts. The

number of hypothetical iterations,k, is equal to5 in Fig. 8(A),
and it is 15 in Fig. 8(B). The figures show thatQ-values
converge quickly after6000 seconds from the starting point of
the simulation, while the learning curves with15 hypothetical
iterations change more sharply.

Fig. 8(C)(D) showQ-values of another node whenα was
set to 0.001 (Fig. 8(C)) and0.01 (Fig. 8(D)), respectively.
As shown in Fig. 9, the transmission price mostly stays on
a positive level whenα = 0.01, while frequently touching
0 when α = 0.001. This is because a very smallα offers
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TABLE III

AVERAGE BANDWIDTH UTILIZATION ON LAST MILE LINKS

Scheme Bandwidth utilization (%)
Market 70.485

CoopCoop 73.305
CoopSelf 61.31

GreedyCoop 72.93
GreedySelf 70.99

little discrimination among different state-action pairs, so that
the price may probabilistically stay at0, while a relatively
larger α may bring the price to a reasonable positive value
at the equilibrium. We have also tested even largerα values,
e.g., α = 2.0, the resulting price may rise without bound or
stay infinitely at zero, because a largeα essentially prevents
reasonable exploration in the state-action space.
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Fig. 8. Convergence ofQ-values under different parameter settings.

6) Message overhead:Since a downstream node only needs
to send its PP message to a few candidate nodes when it is in
need of some data, and each candidate only replies4 back to
back messages, the total number of messages sent in a network

0 1500 3000 4500 6000 7500 9000 10500 12000
0

2

4

6

8

10

12

14

16

18

20

Time (second)

Tr
an

sm
is

si
on

 P
ric

e

alpha=0.01
alpha=0.001

Fig. 9. Variation of transmission price.

increases linearly with the number of overlay nodes and is
quite moderate.

To summarize, our simulation results have clearly shown
the advantages of our proposed market-based mechanisms
as compared to other strategies with different degrees of
selfishness. It is also clear that, using reinforcement learning,
upstream nodes can efficiently adjust their behavior under
system dynamics. For example, learning can be performed
while nodes dynamically join the overlay, which gradually
leads to better performance. Further, the market-based mecha-
nism leads to a total end-to-end throughput comparable to the
GreedyCoopstrategy, the number of active flows comparable
to theCoopCoopstrategy, as well as the lowest percentage of
rejected requests. These results have supported our claim that
the market-based mechanism has achieved desirable system-
wide properties with respect to bandwidth allocation in selfish
overlay networks.

VII. C ONCLUSIONS

In this paper, we have addressed the problem of bandwidth
allocation in overlay networks comprised of selfish nodes,
and designed a market-based mechanism that consists of a
pricing game and local utility optimizations at downstream
and upstream nodes. We propose distributed solutions that
feasibly solve the pricing game, and discuss the local decision
problems regarding each one-hop flow. The highlights of this
paper are as follows. First, the selfish behavior of overlay
nodes is modeled as local maximization. With adequate pricing
mechanisms, upstream nodes are obliged to contribute their
bandwidth as much as possible, while maintaining sufficient
residual bandwidth at the same time; downstream nodes are
forced to consume bandwidth wisely, while maintaining a
certain level of empirical benefits. Second, we introduce the
learning capabilityto overlay nodes, so that they are able to
infer the dynamics of the external environment, and to act
adaptively and optimally. We believe that the general service
provisioning framework used in this paper can be utilized to
solve other similar problems that involve the provisioningof
services in dynamic settings.
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