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Abstract— Selfish overlay networks consist of autonomous it (henceforth referred to aspstreamnodes). On the other
nodes that develop their own strategies by optimizing towards hand, each upstream node may potentially serve multiple
their local objectives and self-interests, rather than following downstream nodes. In the bandwidth allocation problem, we

prescribed protocols. It is thus important to regulate the behavio imol ision that the dat in th ¢
of selfish nodes, so that system-wide properties are optimized. In €81 SIMPly envision that thé data source in the peer-lo-peer

this paper, we investigate the problem of bandwidth allocation in data transfer application provides a “service” to the rezei
overlay networks, and propose to use a market-driven approdt who benefits from receiving such data.

to regulate the D_EhaVi?f of ie”iShkn?deS that eitheffDVOVide Two critical questions arise from this context. First, if we
or consume services. In such markets, consumers of services, ; ; ; ;

select the best service providers, takiné into account both the establlsh a dlrec_te-d Qverlay “.nk (that symbolically regenets
performance and the price of the service. On the other hand, the service provisioning relationship) between, a Sucuﬂysf
service providers are encouraged to strategically decide their Mmatched upstream and downstream node, which overlay links
respective prices in a pricing game, in order to maximize their should we include in our service provisioning network, that
economic revenues and minimize losses in the long run. In connects all the upstream nodes that provide services to all
order to overcome the limitations of previous models towards the downstream nodes that consume them? Second, once

similar objectives, we design a decentralized algorithm that uses . - .
reinforcement learning to help selfish nodes to incrementally these links are established, how much bandwidth should be

adapt to the local market, and to make optimized strategic assigned to each overlay link in order to satisfy the traffic
decisions based on past experiences. We have simulated oudemands of as many downstream nodes as possible? The
proposed algorithm in randomly generated overlay networks, formation of this problem is rather generic, and may find its
and have shown that the behavior of selfish nodes converges toyg41 in various overlay application scenarios such as ayerl
their optimal strategies, and resource allocations in the entire . . . -
overlay are near-optimal, and efficiently adapts to the dynamics muItlmedle.t streaming gnd parallel downloading of bulkyadat
of overlay networks. By placing all participating (upstream and downstream)
nodes in amarket we can leverage the concept pfices of
. INTRODUCTION providing servicego regulate the behavior of selfish nodes in
When overlay nodes are inherentglfish applications in contributing and consuming resources required for such ser
overlay networks may not perform optimally, since selfishices. In our problem of bandwidth allocation, such reseurc
nodes tend to optimize towards their self-interests. Famex is the network bandwidth. A downstream node simply pays
ple, they may attempt to maximally exploit services fromesth a price to an upstream node for every unit of bandwidth the
nodes, while not willing to provide services to others. Thedata transmission service consumes.
strategies and behavior are not easily regulated by pbestri Our market model is fundamentally different from mest-
distributed algorithms, if their self-interests are nobsiolered. gle pricing or static pricingmodels that have been previously
Naturally, it is important to regulate the behavior of sucktudied in the context of overlay networks. In previous niede
selfish nodes, and even steer such behavior towardsatime either a single centralized price is used in the entire gyste
mon goodwhere system-wide properties are optimized, rathper-service prices are established, but remain staticigfiraut
than the original local self-interests. We investigate pheb- the lifetime of the nodes. In our market mechanismach
lem of bandwidth allocationin overlay networks, involving upstream node has its own specific service price it prefers to
applications with long-lived and bandwidth demanding peecharge its downstream nodes, and such a price is dynamically
to-peer data transmissions. We wish to manipulate the selfijusted over time in order to maximize its economic revenue
interests of overlay nodes by placing all participatinge®éh and minimize its empirical loss (due to the occupation of
amarket where service provisioning becomes preferable evés bandwidth by downstream nodes) in the long run. Such
for selfish nodes. a market mechanism is more flexible and realistic, as there
Let us consider the relationship between the nodes tliies not exist centralized authorities to determine a singl
provide services and the nodes that consume them. Eaemtralized price in overlay networks.
overlay node that consumes services, hereafter referread to The market mechanism can be understood from two dif-
a downstream nodehas the choice of using the service fronferent perspectives. First, from the perspective of therdow
one of multiple nodes that have the capability of providingtream nodes as service consumers, they need the freedom



to select the best upstream nodes that not only deliver thleorter paths, while the increased traffic increases tieadst
best performance, but also incur the minimum economdf every flow going through the shared links. Unfortunately,
costs. Second, from the perspective of the upstream nodeshi@ use of classical game theory requires strong assursption
the market, they compete in @ricing gamein which they for instance, the exact information about the entire game —
need to strategically decide their service prices, sin@dr thincluding private information of other players — is assumed
future revenues and potential losses are determined by thebe known to each selfish player. Due to the infeasibility
prices set by all players in the game. Such a pricing ganw, making such assumptions in overlay networks, it is not
unfortunately, is rather complex in reality: it is a gamehwit possible to design practical solutions using classicaleytra-
incomplete information and imperfect recall, which usyallory for each individual player to actually play the game. The
requires the nodes’ supplementary knowledge on probgabilibjectives of previous work have been to investigate whethe
distributions of missing information in order to be solablspecifically proposed game leads to the preferable equilibr
by classical game theory. In this paper, we provide practigaoint, and the equilibria are usually directly computedngsi
solutions for strategic nodes to gradually solve the pgcirinear or nonlinear programming [4], [5].
game, by modeling them a®inforcement learning agents Second, if we assume the existence obeavice charge
that are capable of incrementally improving their stragegior reward a selfish node may be concerned with both the
through trial-and-error interactions with the externalrido empirical benefit or loss and theconomic revenue or cost
At equilibrium, nodes are expected to reach strategies th&then the service charge and reward are decided by a central
optimally adjust their prices. authority [6], [7], [8], [9], a selfish node just needs to dkxi
In more general scenarios where all overlay nodes m#ye amount of its contribution or usage of resources, and may
potentially assume the dual roles of being both upstreamot be aware of the behavior of others. If we assume that
and downstream, the proposed market mechanism solves ttie central authority makes strategic decisions on prites,
general problems of downstream/upstream matching and baimderactions between one player and the other players lead
width assignment, both in a fully distributed manner. Irsthito a Stackelberg gam¢§l0]. Although the existence of any
paper, we study how well the effects of such a market mechaentral authorities can not be conveniently assumed inayer
nism approximate the optimal system-wide properties that cnetworks, we still believe that it is a promising directiam t
be achieved in overlay networks. In particular, given arrlaye further explore decentralized algorithms of settling gearand
network, the distribution of data items, and the demandewards, and to study the interactions between the two sides
from downstreams, we evaluate tlptimality of a specific that charge and pay.
bandwidth allocation with two metrics: (1) the percentade o Finally, some recent work has introduced the theory of
transmission requests accepted by the network; and (2) thechanism desigfi1] to the study of autonomous networks.
total end-to-end throughput in the resulting topology. The main focus is to exploit the strength efrategyproof
The remainder of the paper is organized as follows. Waechanisms, which enforce selfish entities to truthfullyess
first discuss related work in Sec. Il. The market model iheir private information by offering calculated payments
formulated in Sec. lll. Sec. IV defines the pricing gamén order to derive the optimal solution to a system-wide
and discusses our distributed solution based on reinfaznemproblem. Initially, varioussecond-priceauctions have been
learning algorithms. Bandwidth allocation decisions to bextensively studied. For example, the progressive secdod p
made by upstream and downstream nodes on the market @retion mechanism proposed by Lazdral. and Semreet
discussed in Sec. V. Sec. VI evaluates the performance abf [12], [13] was used to differentiate QoS in bandwidth
the proposed mechanism through simulation results. Finalsharing problems, and the Spawn system [14] manages idle
Sec. VII concludes the paper. CPU times through distributed bidding. More recent redearc
has focused on more complicated algorithms such as the
VCG mechanism, and has emphasiadidtributed algorith-
Node selfishness and incentive provisioning in autonomomsc mechanism designd5]. For example, Feigenbauret
networks have been extensively researched, with the cal: have investigated cost sharing mechanisms for multicast
rent literature showing several distinct while relatedesgsh transmissions based on the marginal cost an&@traplewalue
trends, which differ in their interpretations of self-irgst, and [16], and have designed a distributed mechanism that casput
the assumptions related to applications. VCG payments for intra-domain routing using the BGP model
First, networked selfish nodes have been modelestrate- [17]. Though strategyproof mechanisms have been extdpsive
gic playersfrom a game theoretic perspective, where the seltudied, most existing approaches assume that a centitgyl ent
interest of a node is studied by considering the empirichhs unlimited amount of incentives to be offered to the syste
benefits of consuming or the losses for contributing resssiran order to guarantee strategyproofness (as illustratethen
[1], [2], [3]. A selfish node wishes to maximize its overalbudget imbalance problem of VCG), which is not realistic
benefit while taking into account the negative impact from thin overlay applications. In this paper, we seek to design a
behavior of others. For example, in the routing game dismlissully distributed market-based mechanism, which stilpdes
by Roughgarden and Tardos [4], a selfish node constanihcentivesfor upstream nodes to provide services, without the
seeks to reduce its perceived latency by routing trafficugho requirements of a central authority to offer payments at its

Il. RELATED WORK



cost. one-hop flows improve their utilities. In other words, for
requests that come in sequentially, an upstream node simply
processes them on first come first servebasis, without

We consider the most generic abstractiorong-hop flows skipping or waiting for “better” requests to come.
in overlay networks, each of which corresponds to a long-
lived end-to-end data transmission session between a paiBe Utility function
overlay nodes. We believe that such an abstraction can be madi, our market mechanism, the consistent objective of any

in overlay networks without being unrealistic: most peer-t seifish node is to maximize its self-interest for every time
peer applications involve one-hop unicast flows betweert@ dg|ot that it participates in overlay data transmissionstiMa
source and a receiver (downloader). For other types OfWerbmatically, we may characterize a node’s self-interestgusi
communication sessions such as overlay multicast, each egaility function which includes theempirical benefitsand
in the corresponding topology (single tree, multiple t&@S |ossesfor consuming and contributing bandwidth resources,
mesh) corresponds to a one-hop flow. We study bandwid{fiq theeconomic revenueand costsincurred in trading the
allocation problems with respect to one-hop flows, withoykgoyrce.
assuming a specific type of overlay applications. Since an overlay node usually assumes the dual roles of both
In our study, we assume that each overlay node is capagl§ynstream and upstream in the overlay, its utility funtio
of measuring performance metrics regarding overlay lirks bincjydes the utility in both roles. For the time slotsuppose
tween itself and other overlay nodes. With respect to ome-Ngyat node; is currently receiving flows from a séf; (t) of
flows, we assume that nodes are only concerned with sessiiiream nodes, each at a rate boft) and a unit charge
throughput, and thavailable bandwidthB} () from nodei p;(t), j € Us(t); it also delivers flows to a seb;(t) of
to nodej may be measured through bandwidth estimatiqfhwnstream nodes, each at rajgt). If the local bandwidth
algorithms at any given time. We assume that essentialayertanacity at node is C;, the utility of nodei participating in
services such as service discovery exist in the overlayor&w qyeriay data transmissions can be expressed as:

Ill. PROBLEM FORMULATION

so that each downstream node is able to identify a set of Z b (#)
upstream candidates that are able to provide the requestad d ‘ i
before interacting with them on the market. Finally, we assu ui(t)= e log| 1+ %

a secure payment mechanism among peers is in place, which
is complementary to this study and has been the focus of some

of the existing research work [8], [18], [19]. Z by (t) (1)
keD;(t)
A. Market model + elog|l-——%
Our market model is established based on the notions of . '
downstream and upstream nodes of one-hop flows, where - Z p;(£)b](t) + pi(t) Z by, ()
the downstream node may be interpreted as the buyer and JEU (L) keD;(t)

consumer of the data service, and the upstream node as th?he first two terms represent nods empirical benefit
seller and provider. As a potential upstream node of an one-

. . o of receiving flows, and the empirical loss for delivering
hop flow to be established, each overlay nodenaintains . )
. : : o flows. The third and fourth term represent the economic cost
a transmission pricep;(t) for time slot ¢, which is to be ; ; )
) and revenue in the market. As is evident from tlg(-)
charged to any of its one-hop downstream nodes,efach s b ()
unit of bandwidth they consume in that time slpt(t) may function, the empirical benefit; log (1 + =
be adjusted by nodeover time, for the purpose of maximizingcreases quickly from zero as the total receiving throughput
its utility based on its accumulated experience. increases from zero, then increases more slowly. This teflec
Each downstream node aims to achieve the highest bengfil intyition that the initial increase in receiving throygt

from the one-hop flows it receives, and minimize the payments more important to a node. On the contrary, the empirical
made to the respective upstream nodes. Therefoisslécts S ens (o i ()

upstream nodes based on their prices, as well as the mdg®s €2 |log (1 - C;
mum possible session throughput from each of them. Eaitbm zero at the beginning but rapidly later, which refletis t
downstream node determines the actual session throughpuhatural judgement of a selfish node that becomes incregsingl
or the amount of bandwidth to be purchased per unit timeluctant to sell bandwidth when its available capacity is
— by maximizing its own utility function. Since traffic loadsdecreasing. Thig(-) function is also analytically convenient,
at both sides and within the underlying network may changnce it is increasing, strictly concave and continuousifed
over time, downstream nodes have the freedom to switchdntiable. The coefficients; and e; in Eq. (1) are positive
better upstream nodes, since it wishes to always enjoy thie garameters that indicate the relative importance of ewgiri
performance at the minimum cost. benefit and loss in comparison with economic factors. They
When establishing one-hop flows, we assume that upstrealso keep the four terms on the same order of magnitude. For
nodes accept any downstream nodes as long as the resuléiage of illustration in our subsequent studies, we assuate th

increases relatively slowly




all nodes use the same form of utility functions, but they magtassical game theory has proved that it has at least onedmixe
have different parameters that are only privately known.  strategy Nash equilibrium [20].

However, further reflections show that classical game theor
does not provide any practical solutions to such a pricing

Nodes have different decisions to make as they appegme. First, it is very hard for an arbitrary node to identify
on the market as downstream and upstream nodes. Asha player setl, e.g, how many players there are in the
downstream node, since the transmission prices of itsegustr game, or which nodes they are, due to the lack of global
candidates are given, the decision problem of nade information. Second, even if the sétis identified, a node
to select the best upstream node and the optimal receivistdl has incomplete informationabout the game itself and
throughput, so that it receives the highest positive ytfliom about other players. Knowing only its own utility, a node has
the transmission, given the constraints of available badiitiw no exact knowledge of how a bandwidth allocation outcome
between itself and the selected upstream node. As an upstrési reached, or how other players’ strategies impact itstytil
node, node: faces two kinds of decisions. First, for anyThird, the game cannot be treated as a Bayesian game either,
downstream node that requests for service, nbdkecides since a node does not have the knowledge of the concrete form
the range of its acceptable outgoing bandwidth, beyondtwhiof other nodes’ utility functions, as well as any probaipilit
its utility is going to decrease. Second, nodstrategically distributions of them. Finally, it is infeasible for a node t
decides the transmission price it charges in order to maeimiobserve the previous actions and states of all other players
its utility in each upcoming time slot. and thus to perform backward induction.

Why should node dynamically decide and adjust its price Summarizing these difficulties, we may recognize the pric-
as an upstream node? Due to the nature of the market modted, game as a@ynamic sequential move gamwith incomplete
whether or not node will be selected by a downstreaminformation and imperfect recall which provides insufficient
node depends not only on its transmission price and therowledge for nodes to really derive their equilibrium tdra
performance of the overlay link between the two, but alsgies. However, since nodes are still capableléervingtheir
on the transmission prices set by other upstream candidatesm actions and utilities, as well as relevant system ouesom
and performance of their respective overlay links. Theesfo in the history, we may design an appropriate solution for
if node ¢'s transmission price is too high, few downstreamodes to graduallyearn the optimal strategies through past
nodes may wish to receive flows from it; if it is too low, tooexperience. Being iterative and incremental, the welilist
much bandwidth may be consumed during the time slot, ssinforcement learningalgorithms have become our choice
that some downstream nodes may decide to switch to othleat our proposed solution is based upon.
upstream nodes or to reduce their receiving throughput, due .
to the degraded performance. B. Reinforcement learning

C. Decision problems

Reinforcement learning (RL) is a branch of machine learn-
ing that enables a decision maker, or agent having a
We divide our discussions on the behavior of selfish nodest A of alternative actions, to involve an optimdEcision
in the market setting into two parts. In this section, we alisc policy through systematitrial-and-error interactions with the
the decision problem at upstream nodes with respect to thekternal environment which is characterized by a sét of
transmission prices. In the subsequent section, we procegates.
to the problem of making upstream selections at downstreamA decision policy is defined as a mapping from each

IV. THE PRICING GAME

nodes, when transmission prices are available. environment state to a probability distribution over theris
) ) _ actions,i.e, m : (s,a) — m(s,a), where w(s,a) is the
A. Game formulation and its properties probability of taking actiona at states. The agent incre-

Since all selfish nodes involved in overlay data transmigsentally improves its decision policy towards an optimaéon
sions need to decide their transmission prices stratdgicabased on feedback provided by the environment, known as
they form the player set, and the pricing game can be formedeinforcementr. An optimal decision policy is to incur the
as follows. Each nodé has a set of actiond; = {a;} to be highest accumulated reinforcement values. The most famili
chosen under various situations, and a strategysset {f;} example of RL is the training of a chess player: a chess
containing all the possible mappings frodistinguishable player gradually learns the best moves at different pastio
information setq H;} perceived by nodéto nodei’s actions, by repeatedly taking his moves, and receiving rewasdg, (
i.e, fi : H; — a;. Asynchronously in time, nodes sequentially: >= 0) or penalties €.g, » < 0) for its moves from the
take their optimal actions, following their optimal strgies trainer.
that maximize their utilities as expressed in Eq. (1). In the discrete-time domain, RL models the interaction

To reduce the complexity of the game, we assume transmietween an agent and the environment ddaakov decision
sion prices to bénteger-valuedand interpret nodés actions process[21] (Fig. 1). Suppose the environment is at state
as the possible incremental changes to be made to the priegs} in time slot ¢, after the agent performs actiom(t),

A; = {-1,0,1}. For such a finite game — one with finiteit shifts to states(¢ + 1) in the next slot with probability
number of players and finite action sets for each player, ti, = P{s(t + 1) = s'|s(t) = s,a(t) = a}. The agent then



might be very slow, especially for systems in which perform-
ing real interactions with the environment is expensive. To
greatly improve the convergence speed, this paper adopts th
Dyna-Q architecturg22], which, after each real interaction,
performs one iteration on th@-value of previous state-action
pair, then iterates ork hypothetical interactions simulated
by the learned system modele., {RZ,.} and {PZ,}. The
updating rule forDyna-Q based on hypothetical interactions

Fig. 1. An example of the Markov decision process. Empty circéresent is as follows:

system states, and solid dots represent the corresponttiogs respectively. { Q(s, a) — Q(s, a) + A

For each state of the system, there exist multiple choicesasilfte actions, S TN
taking each one of them may lead the system to various staibalgifistically. A—p {zs' [Rgs’ +ymaxy Q(s',a')| Pl — Q(s, a)}
©)

where R?,, and P%, are the estimates of expected reinforce-
receives a reinforcemen{t + 1) € R, the expected value of ment valueR?,, and state transition probabilit§¢,,, based on
which may be expressed d&',, = Ex{r(t+ 1)|s(t +1) = real interactions.
s',s(t) = s,a(t) = a}. The interaction between an agent and The details of the algorithm are given in Table I. Note that

its environment may be illustrated by Fig. 2. the algorithm loops infinitely, because we are especialigrin
ested in cases where the dynamics of the external enviranmen
a® possesses unpredictable time-varying characteristatsnied
to be learned on line. The convergence is faster when
RL agent Environment hlgher'
r(t) W/_ s(t+1) TABLE |
Z'1 THE Q-LEARNING ALGORITHM: DYNA

—r(t+l)

Foralls € S anda € A(s), Q(s,a) < 0
Fig. 2. The interaction interface between an agent and thieoement. The while (true)

Z~=1 unit represents a delay of one time slot. Increment the time of transitions(t — 1) a(t=1) s(t)
Update P2,
A decision policy is incrementally improved as the agent Record the latest reinforcement valug — 1)
tries by choosing an optimal action following the current pol- UpdateR?,,
icy, and thenmakes correctiondy adjusting the policy based UpdateQ(s(t — 1), a(t — 1)) by Eq. (2)

on the most recent observatids(t — 1), a(t — 1), s(t), (t)). Randomlv choosé state-acti L
For improved efficiency, we adopt th@-learning method fO?r;”or(r;yag 00sé state-action pairgs, a}

that improves decision policies with the aid Qtvalue func- UpdateQ(s, a) by Eq. (3)
tions Q : (s,a) — Q(s,a),s € S;a € A, whereQ(s,a) is
the @Q-value associated with the state-action paira), and
represents thexpected returnvhen taking actior: in states Given all the@-values of state-action pairs associated with
and then following the current policy to the end. The expeéctdhe current state, the probability of taking actiom follows

return is expressed as follows: the Boltzmann distributiorgiven by:
S EfFr(e+ b) 2 e 4
7T (als) = S Q) (4)
k=1 a

wherey € [0,1) is adiscounting factotthat discriminates the ~Wherea is a positive constant that controls the “sharpness”
impact of reinforcements that are farther away. The stahddf differentiating actions corresponding to differeptvalues.
updating rule forQ-learning is given as: C. Playing by RL
Q(s(t—1),a(t — 1)) < Q(s(t —1),a(t — 1)) + A : : .
{ A — B[r(t) + ymax, Q(s(t),a) — Q(s(t — 1), a(t — 1))] We wish tp _Ieverag_e reinforcement Iear_nl_ng methods to
2) solve the decision making problem for the pricing game, thase
where 3 indicates thelearning rate The determination of a on the following justifications.
decision policy starts with the iteration of@value function;  — First, each node is presented with an external environment
the latter is considered to have converged to the optimahwhe composed of all other competitive upstream nodes as
its value for each state-action pair is no smaller than tifiat o well as downstream nodes. Each nodemay locally
any other value functions. observe its own residual bandwidth(t), which is the
However, Eq. (2) only updates thg-value for one state- original capacityC; subtracted by the total bandwidth
action pair after each iteration with the environment, viahic being consumed by all ongoing flows, as the state of the



environment. By adjusting the transmission prigé¢t), believing environment states are frequently in transitisdren
node i receives the corresponding utility (characterizedbserved values vary around section borders, we introduce a
by the secondog(-) term and the economic revenudransition threshold that is0.15 times of the average size of
term in Eqg. (1)) as feedback. All upstream nodes se@ksection to filter unnecessary transitions. Thus, a statey
to maximize the sum of the feedback in the long run. still belong to a sectioffa,b), even ifs < a buts > (a —¢),
— Second, it is not feasible to obtain information abouwr if s > b buts < (b+ €).
the game itself, including (1) utility functions of other 3) Convergence of learningConventional reinforcement
players; (2) prices and performance metrics observéghrning models require that the state transition of théreny
by downstream nodes; (3) preferences of downstreanent, as well as the distribution of reinforcement values, b
nodes, and (4) distribution of service requests. It is mosgtationary meaning thaf P, } and{ R%,, } do not change over
practical to model the interaction between the node atiche. Overlay networks do not satisfy this requirementcsin
the remainder of the game as a Markov process. both quantities are affected by unpredictable network dyna
— Third, as theQ-function converges, the agent will formics and variations of transmission requests. However, &g lo
a decision policy that maps an environment state a as{P<,} and{R%,} are only varying mildly and gradually,
probability distributionP(a|s) over all possible actions RL algorithms are still effective solutions to optimal d&oin
(Eq. (4)), which exactly corresponds to the spirit of anaking problems, where we have difficulty to mathematically

mixed strategy equilibrium in our game. characterize the dynamics of the environment [23].
— Finally, theDyna-Q learning algorithm is very amenable
to incremental implementations. V. TRADING ON THE MARKET

Formally, we define the RL-based solution for the pricing As described by the market model in Sec. Ill, once trans-
game players as follows. A nodewhen acting as an upstrearmmission prices are determined, the downstream node needs
node, is represented by a RL agent that locally observes themake decisions to select the best upstream node and the
environment staté; (¢) at the end of time slot, and maintains session throughput of the one-hop flow. Such decisions are
the integer-valuedransmission pricey; (¢t + 1) «— p;(t) + Ap, Made based on the respective utilities brought by the gstre
by choosing actions from the action spate = {—1,0,1}. candidates.

When its new price is exposed to the environment in time slot
(t+ 1), the agent receives a reinforcement of A. Evaluating utilities

For each upstream candidate, a downstream riodey

rt+1) = pi(t+1) > b(t+1) envision its benefit or loss when receiving from nogleat
keD; (t+1) rate b] (t) based on the utility function Eq. (1). Two design

Z bi(t+1) (5) alternatives are possible: nodemay either evaluate ittotal
keD; (t+1) utility that considers all current incoming flows (including the

+ elog |1 Ci new flow) using Eq. (6), or consider thedditional utility

brought by the new flow using Eq. (7).

by the end of that slot. The objective of the agent is to wl () = e log <1+ bf(t”&’ggm b} (t))

obtain an optimal decision polic P(Ap|b;(t))}, so that ’ , ' .

S E{¥*r(t + k)} is maximized at any time. — i)Y (t) = X jev, @ P (0 (£)
Before deploying theDyna-Q algorithm, there are a few

outstanding problems that we need to address. ) o log ( b7(f)+zj,eu o b (,)>

(6)

1) Dividing the state spaceThe residual bandwidth of a Ug,D(t) =
node is essentially a continuous variable, hence the gtates _ i’ (4
— € log ( Ziteuyn & )>

C;

)

potentially contains an infinite humber of states. Soligion —p; ()b (1)

to this problem involve eithedividing continuous states into ‘

sections, orgeneralizing@-functions to the continuous do- The subscriptD and superscripj in ug’D(t) indicate that

main. Since generalization methods usually require a heutlae value is computed by nodeas a downstream node of

network to approximate the continuous function, while disiodej. In subsequent discussions, we assume all nodes use

crete solutions only require table-based mapping, we @&odsqg. (7), as it requires less computation. Our market model,

to divide the state space to reduce the complexity. In obowever, does not favor one over the other, and leave it as an

mechanism, since the residual bandwidth at noidebounded option to applications or different selfish nodes.

by [0, C;], it may be simply divided inton;, equalsections

though equal division is not required for the RL algorithras tB- Determining optimal transmission throughput

work successfully. In addition to evaluating each upstream candidate in terms
2) Filtering unnecessary state transition®n observing of its induced utility, a downstream nodealso computes the

b;(t) from the environment, agent needs to decide which most preferable receiving throughput from the candidage, b

state the environment currently resides in. To avoid mestgk maximizing Eq. (7):



Nodes may adjust their behavior in different applicatiohs a
, the same time, based on the same mechanism, as long as
rip(t) = arg maxXys (4 [e11og(1 + their selfishness about the bandwidth resource can be inte-
(LA )l grally characterized by the same utility function. We dsgu
S.t. bmln <) (t) < buax outstanding issues with respect to the implementation ef th
(8) proposed market mechanism as follows.
whereb,,;, andb,,., are feasibility constraints on the possible ) . )
end-to-end throughput from nodgto nodei. Eq. (8) also D- Price and bandwidth probing
suggests the order of magnitude has to take in order to As described above, a downstream node needs to probe each
keep the value of Eq. (8) positive. For instaneg,~ 2C;P; upstream candidate for its transmission price and accleptab
should be a valid choice, wher® is the maximum acceptabletransmission rates, and measures the available bandwidth
transmission price to node between the two. Practically, these two probing tasks can be
combined in one step.
Initially, the downstream nodeé sends gorice probe(PP)
Since delivering flows incurs empirical loss to the Upstreamessage to each upstream Candujﬁt@vhmh contains the
node, it might be possible, especially when the transmissigource node 1D and the message ID (PP). Upon receiving the
price is low, that nodg’s utility at time slot¢ becomes nega- pp message, nodeimmediately returndour identical price
tlve if it delivers a flow to node at rater’ D To address this rep|y (PR) messages back-to-back. A PR message contains
problem, we introduce a two-step rate negot|at|on mechanishe source IDj, its transmission price, the current local

to determine the bandwidth allocated to an one-hop flow.&Singme at nodej, and its minimum and maximum acceptable
downstream nodes are the primary decision makers regardifghsmission rateg’”? and sV

min max"*

one-hop flows, we require nodeto first compute the range  Hence, nodei may estimate the available bandwidth be-
of its acceptable transmission rateg;, 7%, ) that keeps its tween them based on the arrival times of the messages, as in

bl ()+3 v, ) bl <t>)

i

C. Rate negotiation

utility positive, arjlc[i] then ad(yertlse it to node the simpleReceiver Only Packet Painethod [24]. Since PR
The values of;;,, andr};;, may be computed as the rootsmessages are short and only four messages are sent on each
to the following equatlon request, they do not form intrusive traffic to the networkijlerh
2+ Y e, (1) VA (1) still giv_ing overlay nodes a reasonable estimate of avkdlab
e2log {1 — ——F—— bandwidth between them [25].
2keD; () b, (t) ©)
—elog (1 - ——45—— ) +pi(t)r =0 TABLE I
! MESSAGES IN MARKEFDRIVEN BANDWIDTH ALLOCATION MECHANISM
which may be numerically approximated, since Eqg. (9) is Price probe (PP)
transcer_ldental. u Source| Type Message body
Knowing nodej’s acceptable rangeﬁmn,vfngx) and hav- i PP NULL
ing measured the available bandwidsf from nodej to itself, Price reply (PR)
nodei may decide the feasibility constraints as: Source | Type Message body
iU J PR Tfngﬂrgngxa <pjatjaj>117"i1/j
buin = Thin (10) Start request (SR)
bmax = min{ Bg7rrj‘n gx} So_urce Type Message body
I SR z D> <<pj7tj7.7> <p]7 tJ7J>P7"Z’U >PTW7

and Computes{D by Eq. (8). The achievable utility can be .
further evaluated by Eq. (7). If the resulting utility is fitbe E. Transmission request and avoidance of prlce dispute
and the highest among all the relevant upstream candidates{nowing r Un and r%Y , nodei computesr’ p and the
node: then proceeds to establish the one-hop flow with nodgerresponding utility. If satisfied with the ut|I|ty, it the
j and start to receive data at rag{e includesr’ 7 p In a start request(SR) message and sends it
In summary, we have deS|gned a market-based mechanlwnnodej, otherwise, it does not need to take any action.
which encourages selfish nodes to contribute their spard-baAs node: requests nodg to transmit its required data, one
width and prevents them from excessively consuming bangkoblem may occur. Since transmission prices are dynalyical
width at other nodes by means of transmission prices. Twpdated, by the time a downstream nadgecides to contact
properties of the mechanism help to provide high-perforeanan ideal upstream nodg¢ to receive data, nodeg's price
bandwidth allocation: (1) upstream nodes have the capabilmay have changed. In order to eliminate such disputes and
to wisely control their revenue and residual bandwidth gisirensure that node is still eligible for the previous price, we
their prices; and (2) downstream nodes aim to maximize th@iropose a simple signature-based solution using the pkiyic
private utility by receiving data from nodes that have batfhh infrastructure (PKI), as follows.
residual bandwidth and low price. After receiving the PP message from nagd@ode; replies
We should point out that our proposed mechanism is neith a PR message that contains #igned ID, price and
confined to any particular data dissemination applicatioourrent local timexp;,t;, j),riv;- Nodei, upon receiving the



signed message, is able to decrypt it using the public key aff simulation time, overlay nodes sequentially establisktad
node j and view the price(p;, t;, j)priv, pub; (pj t;,4). If transmissions in randomly chqsen time slots. At any time, a
it decides to take nodg as its upstream node, nodesends Node may request for a data item with probabilkty= 0.1.

to node; a start requesSR) message that includes the fol¥Ve assume servic.e discovery mechanisms exist, such that a
lowing signed component{p;, t;, 1), (pjs L §)priv, ) priv: - BY downstre_am node is able to locate all the upstream nodes that
decrypting the component, encrypting the first part, ¢;,j) €an provide the requested item. All nodes are assumed to be
using priv;, and comparing the result with the second parglatelessi.e., we QO not consider thg case where nodes c.ache
node; is able to verify that node quoted an authentic price downloaded copies and become eligible upstream candidates
issued by itself when its local time was. If the price is no in the future. _ , .
older than one time slot, nodgwill proceed to transmit to  For fair comparisons, we seek to keep the simulation envi-
nodei and still use the previous price; otherwise, it simplyonment consistent across different schemes under igeesti
sends another set of PR messages, without starting the di8- Our simulation environment include the physical rerkw
transmission. topology, the assignment of link capacities, backgrouatfitr,

For convenience, Table Il lists all the messages employ@8 Well as events of node participation and downloading
by our proposed mechanism, where notlasd; are assumed €quests.

to be a downstream and an upstream node, respectively. In our market-driven bandwidth allocation mechanism (re-
ferred to asmarketin simulation results), upstream nodes
VI. PERFORMANCEEVALUATION updateQ-values even0 steps, coefficients; ande, are set

Given the market-based mechanisms proposed in the pap@i00C; and0.5C;, respectively, wher€; is the bandwidth
the question that remains to be answered is whether thég@acity of node. Transmission prices are initialized %o
!teratlve selfish deCISIOT?S Wl_II lead to an overall outcorhatt 91 Strategies used in comparisons
is comparable to the situation that all nodes are respgnsib ) ] )
maintaining the shared bandwidth resource. Our simulation T0 bé used as control in our comparisons, we have imple-
based results show the validity of the proposed mechanisménted four other fully decentralized strategies thatrdeites
as well as its performance under various simulated scenari® bandwidth allocations for one-hop flows.
In particular, we show that the proposed mechanism is able to- The GreedyCoogstrategy. In this strategy, a downstream
generate bandwidth allocations comparable to or bettar tha node greedily chooses the upstream node that can deliver

cooperative situations. the data item at the highest throughput, which is the
) ] available bandwidth between the selected upstream node
A. Simulation methodology and itself. In GreedyCoop the downstream nodes are

In our simulations, topologies of the underlying backbone greedy to exploit available resources, but the upstream
IP-layer network are randomly generated by the BRITE nodes always choose to be cooperative, and to provide
universal topology generator [26], and overlay nodes are the requested data item.
randomly connected to backbone routers in the IP network- The GreedySelktrategy. In this strategy, the downstream
throughlast-mileaccess links. In all our experiments, the back-  node is still greedy, but the selected upstream node may

bone IP network consists &f12 routers andl024 backbone choose to deny the request for service at a particular
links. Capacities of the backbone links follow a heavyetil transmission rate with a probability, which represents
distribution betweerd 0M bps and 1024 M bps. The bandwidth the degree of selfishness at the upstream node.
capacities of théast-milelinks were exponentially distributed — The CoopCoopstrategy. In this strategy, downstream

with an expectation of0M bps. The overlay network contains nodes are cooperative, and only ask for half of the maxi-
256 overlay nodes. We model background traffic as random mum available bandwidth in data transmission, and avoid
noise that is independently generated for each link, with th  transmissions with rates below a certain threshold, such

magnitude uniformly distributed frord to a small valuee.qg, as 20 Kbps in our experiments. The upstream nodes are
5% of the link capacity. Thevidestrouting algorithm is used also cooperative, satisfying all requests at the requested
to select a IP-layer path of the highest bandwidth between tw  transmission rate

overlay nodes. — TheCoopSelktrategy. In this strategy, downstream nodes

In the overlay application being simulated, overlay nodes are still cooperative as in th€oopCoopstrategy, but
query for large data items, then directly download from the upstream nodes may choose to deny service requests with
upstream node that it has selected. While downloading a data probability 7.
item, a node probes all eligible upstream candidates eM@ry |n all these strategies, a downstream node may switch to
time slots, and attempts to switch to another upstream rfodeyidifferent upstream node if it perceives a higher receiving
it helps to increase its utility. throughput from the new upstream.

2000 items of identical sizes300 Mb) are randomly dis- ] ] ] ]
tributed among overlay nodes, each havingeparate copies. C- Evaluation metrics and simulation results
Experiments were run fod000 time slots, with each time For applications involving one-hop overlay data transmis-
slot interpreted a$ seconds in reality. During the first halfsions, we are most concerned with the total end-to-end



throughput of the entire overlay, how many transmission rswer than the minimum threshold. @oopSelf either of the
guests can be successfully handled, and bandwidth uidlizat above two reasons can lead to denied requests. For singplicit
1) Total end-to-end throughputiVe first analyze the total in GreedySelaind CoopSelfstrategies, a request is considered
end-to-end throughput of all active one-hop flows in the overejected when the best upstream candidate denies the teques
lay with the market-based bandwidth allocation mechanism,Fig. 4(A)-(E) show that all other strategies stabilizes to a
as compared to the other decentralized strategies. As shaimilar mean percentage of rejected requests — ardifig
in Fig. 3, as time progresses, total throughput rises Ihitin ~ while the market-basednechanism stabilizes to arouBd%.
all the strategies, and then stabilizes as all the nodes haves is a very desirable property. It indicates that under th
joined the overlay. TheGreedyCoopstrategy leads to the market-based mechanism, downstream and upstream nodes are
highest total end-to-end throughput due to the greedy eatunore likely to be able to manage one-hop flows between them
of downstream nodes and the altruistic nature of the upstreaaccording to their needs. In Fig. 4, the percentage of reject
which can be treated as the ideal case when evaluating tetajuests is visibly higher in the first half of time, because
end-to-end throughput. In contrast, tl@reedySelfstrategy many nodes have not joined the overlay, and their data items
emulates an unregulated selfish network. When the degreear# not yet discovered. Similarly, Fig. 5 has shown that gt an
selfishness at upstream nodes is moderate ().5), its total time, marketand CoopCoophave the largest number of active
throughput is slightly below the market-based mechanism. Wows being transmitted.
have also tested théreedySelstrategy with other values.

As intuitively expected, lowerr values (less thar.5, not 10 ‘
shown) lead to a total end-to-end throughput very similah&o | [T,
GreedyCooystrategy, and higher values ¢ 0.5) will produce | |- e

significantly worse total throughput. THeoopCoopstrategy
emulates a cooperative overlay, and the result is sligldjiger

than the market-based mechanism. With= 0.5, the total
end-to-end throughput with th@oopSelfstrategy is evidently
lower than that of the other strategies. From these resués,
observe that the total throughput of proposed market-based | ,
mechanism approaches the ideal caseGoéedyCoop and -
matches or exceeds the throughput achieved by cooperative I -
strategies. 1

Number of active flows
o

1 1 1
N ™ : % 2000 4000 6000 8000 10000 12000
larket .

— GreedyCoop Time (second)

— - GreedySelf prob.=0.5
----- GreedySelf prob.=0.9
--- CoopCoop

20 | --- CoopSelf prob.=0.5

Fig. 5. The total number of active flows in the network.

3) Downloading time distributioniFor successfully down-
loaded items, we record the total downloading time for each
item, and plot the cumulative density functions for all tra
gies in the comparison, as shown in Fig. 6. We have found
that theGreedyCoopGreedySelfwith = = 0.5) andCoopSelf
perform similarly, the market-based mechanism has thedbwe
average downloading time, andoopCoophas the highest.
Combined with previous figures, our results so far indichs t

Throughput (Mbps)

0= pr) 5000 w000 o000 220 our market-based mechanism delivers comparable or superio
Time (second) . .
performance compared to the cooperative strategies.
Fig. 3. Total end-to-end throughput of the market-based nréshi com- 4) Bandwidth utilization on last mile linksFig. 7 shows

pared to other decentralized strategies with differentelegof selfishness. the bandwidth utilization as a percentage of utilizing -iaste

2) Percentages of rejected request¥he percentage of access link capacities at each of the overlay nodes, an@ Tabl
rejected requests in all transmission requests also refleet Il lists bandwidth utilization averaged over all overlagdes,
capability of a strategy to utilize available resources he t obtained aftes rounds of simulations.
overlay. In our experiment, a request is considered to beWe observe that in all strategies exc€uopSelfiwith 7 =
rejected by the overlay, if the downstream can not find arfly5), bandwidth utilization is quite high, mostly ranging from
upstream nodes from which it may download the request&d’% to 100%. GreedyCoopand CoopCoophave the highest
data item. In our market-based mechanism, this may ocawerall bandwidth utilization, due to the cooperative matu
when the available bandwidth is low or when the prices amd upstream nodes. Our market-based mechanism performs
high. In theGreedySelktrategy, such denied requests are dwmilarly to the GreedySelEtrategy.
to the selfishness of upstream nodesCbopCoopthe reason 5) Convergence of)-value and variation of price:We
may be that the available bandwidth to the downstream nodeie further concerned with convergence(@fvalues and the
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resulting transmission prices in our market-based meshani number of hypothetical iterations, is equal to5 in Fig. 8(A),

In our simulations, we have carefully chosen the number ahd it is 15 in Fig. 8(B). The figures show tha®)-values

discrete statesnf;), learning rate § in Eq. (2)), number of converge quickly afte6000 seconds from the starting point of

hypothetical iterationsk{), and « in Boltzmann distribution, the simulation, while the learning curves with hypothetical

in order to achieve fast convergence and reasonable rangétefations change more sharply.

prices. We use the following figures to show the effects of

parameter settings, withy, = 5, 5 = 0.5, and~y = 0.9. Fig. 8(C)(D) showQ-values of another node when was
set t00.001 (Fig. 8(C)) and0.01 (Fig. 8(D)), respectively.

Fig. 8 has showr@-value curves corresponding to all theAs shown in Fig. 9, the transmission price mostly stays on
state-action pairs at an arbitrary node that joins the inésis a positive level whemy = 0.01, while frequently touching
sions at around 200 seconds after the simulation starts. Thé when o = 0.001. This is because a very small offers
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Fig. 6. Cumulative density functions of downloading times.

TABLE Il

AVERAGE BANDWIDTH UTILIZATION ON LAST MILE LINKS

Scheme Bandwidth utilization %0)
Market 70.485
CoopCoop 73.305
CoopSelf 61.31
GreedyCoop 72.93
GreedySelf 70.99

L .| — alpha=0.01
18 — - alpha=0.001

14+
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Fig. 9. Variation of transmission price.

increases linearly with the number of overlay nodes and is
guite moderate.

To summarize, our simulation results have clearly shown
the advantages of our proposed market-based mechanisms
as compared to other strategies with different degrees of
selfishness. It is also clear that, using reinforcemenniagr
upstream nodes can efficiently adjust their behavior under
system dynamics. For example, learning can be performed
while nodes dynamically join the overlay, which gradually

little discrimination among different state-action paiss that 1€2ds to better performance. Further, the market-basetianec
the price may probabilistically stay &, while a relatively NISM leads to a total end-to-end throughput comparableeo th
larger o may bring the price to a reasonable positive valugreedyCoopstrategy, the number of active flows comparable
at the equilibrium. We have also tested even lagermlues, to.theCoopCoopstrategy, as well as the lowest percentage of
e.g, a = 2.0, the resulting price may rise without bound orejected requests. These rf_esults have s_upported our diaim t
stay infinitely at zero, because a largeessentially prevents the market-based mechanism has achieved desirable system-
reasonable exploration in the state-action space.
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Fig. 8. Convergence af)-values under different parameter settings.
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wide properties with respect to bandwidth allocation irfiskl
overlay networks.

VIl. CONCLUSIONS

In this paper, we have addressed the problem of bandwidth
allocation in overlay networks comprised of selfish nodes,
and designed a market-based mechanism that consists of a
pricing game and local utility optimizations at downstream
and upstream nodes. We propose distributed solutions that
feasibly solve the pricing game, and discuss the local aetis
problems regarding each one-hop flow. The highlights of this
paper are as follows. First, the selfish behavior of overlay
nodes is modeled as local maximization. With adequatergici
mechanisms, upstream nodes are obliged to contribute their
bandwidth as much as possible, while maintaining sufficient
residual bandwidth at the same time; downstream nodes are
forced to consume bandwidth wisely, while maintaining a
certain level of empirical benefits. Second, we introduce th
learning capabilityto overlay nodes, so that they are able to
infer the dynamics of the external environment, and to act

6) Message overheadince a downstream node only needadaptively and optimally. We believe that the general servi
to send its PP message to a few candidate nodes when it ipiavisioning framework used in this paper can be utilized to
need of some data, and each candidate only regliesck to solve other similar problems that involve the provisionifg
back messages, the total number of messages sent in a netwerkices in dynamic settings.
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