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Abstract

Dataset condensation aims to condense the origi-
nal training dataset into a small synthetic dataset
for data-efficient learning. The recently proposed
dataset condensation techniques allow the model
trainers with limited resources to learn accept-
able deep learning models on a small amount of
synthetic data. However, in an adversarial envi-
ronment, given the original dataset as a poisoned
dataset, dataset condensation may encode the poi-
soning information into the condensed synthetic
dataset. To explore the vulnerability of dataset con-
densation to data poisoning, we revisit the state-of-
the-art targeted data poisoning method and cus-
tomize a targeted data poisoning algorithm for
dataset condensation. By executing the two poison-
ing methods, we demonstrate that, when the syn-
thetic dataset is condensed from a poisoned dataset,
the models trained on the synthetic dataset may pre-
dict the targeted sample as the attack-targeted label.
To defend against data poisoning, we introduce
the concept of poisoned deviation to quantify the
poisoning effect. We further propose a poisoning-
resilient dataset condensation algorithm with a cal-
ibration method to reduce poisoned deviation. Ex-
tensive evaluations demonstrate that our proposed
algorithm can protect the synthetic dataset from
data poisoning with minor performance drop.

1 INTRODUCTION

In the past decade, deep learning has significantly con-
tributed to many on-going advances regarding computer
vision and natural language processing. Big data is an es-
sential key to unlock the success of deep learning, which
though introduces an obstacle to hinder the clients with
limited resources from applying deep learning. To address

this issue, the community proposed dataset condensation—a
research topic studying how to condense the large training
dataset into a small synthetic dataset and simultaneously
maintain the utility of the synthetic data for model training.

Recent research on this topic has produced several effective
dataset condensation techniques [Zhao and Bilen, 2021a,
Zhao et al., 2021, Zhao and Bilen, 2021b, Cazenavette et al.,
2022, Liu et al., 2022, Cui et al., 2022]. For instance, Zhao
et al. [2021] proposed to match model gradients on the
synthetic data and the original data, for the purpose of main-
taining the performance of the model trained by gradient
descent on the synthetic data. Zhao and Bilen [2021a] pro-
posed to match the representations of synthetic and original
data. Cazenavette et al. [2022] matched the training trajec-
tories on real data and the training trajectories on synthetic
data to learn high-utility synthetic data. Liu et al. [2022] fac-
torized a dataset into data hallucination networks and bases
and generated synthetic samples via arbitrary combinations
between networks and bases.

Despite the remarkable progress, there has been little in-
vestigation on the vulnerability of dataset condensation to
attacks in real-world adversarial environments. For instance,
in practice, some training data may come from untrusted
sources, which gives an adversary opportunities to insert
poisoned data into the training dataset. Previous literature
[Wallace et al., 2021, Geiping et al., 2021, Zheng and Li,
2021, Schuster et al., 2021] has shown that a small subset
of poisoned data can mislead the trained models to output
adversary-defined (attack-targeted) predictions on targeted
samples in computer vision and natural language processing
tasks. Therefore, if the original dataset contains poisoned
data from untrusted sources, a natural question to ask is
whether dataset condensation will encode the poisoned in-
formation into the condensed synthetic dataset.

In this paper, we investigate the most scalable and efficient
method among [Zhao and Bilen, 2021a, Zhao et al., 2021,
Zhao and Bilen, 2021b, Cazenavette et al., 2022, Liu et al.,
2022], which is the distribution matching (DM) method
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Zhao and Bilen [2021a]*. We conduct the first study on
the vulnerability of distribution matching based dataset con-
densation against the state-of-the-art targeted data poison-
ing method, i.e., gradient matching attack [Geiping et al.,
2021]. Inspired by distribution matching [Zhao and Bilen,
2021a], we further propose a targeted data poisoning attack
to evaluate dataset condensation, which crafts the poisoned
perturbation by matching the representations of poisoned
data and the targeted sample.

To quantify the effect of data poisoning on dataset condensa-
tion, we introduce the concept of poisoned deviation, which
can be viewed as the major cause of the poisoning vulner-
ability. We show that, for the DM method, the poisoned
deviation in the average of the original data representations
scales in O(ε

√
dr), where

√
dr refers to the representation

dimension. The poisoned deviation could convey poisoned
information to the synthetic data representations during the
representation matching process. As a result, the models
trained on the synthetic data may output adversary-defined
predictions on the targeted data sample.

To defend against data poisoning, we propose a poisoning
resilient dataset condensation algorithm with a calibration
method to reduce the poisoned deviation. We prove that,
when the poisoned deviation is large with potentially signif-
icant impact on the representations, the calibration method
can reduce the magnitude of the poisoned deviation from
O(ε
√
dr) to Θ(ε2

√
dr) and thus alleviate the effect of the

poisoned deviation. Since our method improves the robust-
ness distribution matching to poisoned deviation, we call our
defense method as RDM-DC (Robust Distribution Matching
based Dataset Condensation).

We conduct extensive experiments with two targeted data
poisoning methods, including the state-of-the-art targeted
data poisoning method and our proposed data poisoning
method. We show that, even if the poisoning rate is small,
distribution matching based dataset condensation is still vul-
nerable to targeted data poisoning. We further demonstrate
that, the distribution matching method is more vulnerable
to our proposed distribution matching based attack than the
gradient matching based attack. This result indicates that our
proposed attack is a more suitable attack benchmark to eval-
uate the distribution matching based dataset condensation
method. We evaluate our proposed defense against those
two data poisoning attacks with multiple random seeds and
find that our defense is able to reduce the attack success rate
to 0% with mild utility loss.

2 BACKGROUND AND RELATED WORK

*We leave the investigations on other dataset condensation
methods for future research.

2.1 DEFINITIONS AND NOTATIONS

In this paper, we denote a neural network byfθ(·) with pa-
rameters θ. We denote a data sample by x and its label
by y. Let T and S represent the original dataset and the
synthetic dataset, respectively. For dataset condensation, we
have |S| � |T |, which means the size of the synthetic
dataset is expected to be much smaller than the size of the
original dataset. We denote the targeted data sample and the
adversary-defined prediction by xt and yadv, respectively.
We denote the poisoned samples by {xp}Pp=1 and the per-
turbation added to those poisoned samples by {δp}Pp=1. We
refer to the poisoned dataset as T ′. Formally, T ′ can be ex-
pressed as T ′ = (T /{xp, yadv}Pp=1)∪{xp+δp, yadv}Pp=1.

2.2 DATASET CONDENSATION

Dataset condensation is a recently emerged technique for
condensing the original training datasets into small synthetic
datasets and simultaneously maintaining the data utility for
training models to the greatest extent. Given the problem
objective, Wang et al. [2018] formulated the dataset conden-
sation problem as

argmin
S

E(x,y)∼T `(fθ(S)(x), y), (1)

where θ(S) = argmin
θ

E(x,y)∼S`(fθ(s), y).

Wang et al. [2018] proposed to solve the above bi-level
problem via meta-learning [Finn et al., 2017]. The proposed
solution consists of an inner optimization step to update
θ and a outer optimization step to update S. A drawback
of Wang et al. [2018]’s method is the heavy computational
cost to involve second-order information in the optimization
process. To address this drawback, Nguyen et al. [2020]
proposed an algorithm called kernel inducing points (KIP).

Zhao et al. [2021] proposed to match the model gradients on
the real and synthetic data for dataset condensation. Since
Zhao et al. [2021]’s method includes gradients in the objec-
tive, it implicitly uses second-order information in the opti-
mization process. Zhao and Bilen [2021b] further proposed
differentiable Siamese augmentation Aw(·) and found that
applyingAw(·) with random parametersw to both the origi-
nal and synthetic data samples can improve the performance
of Zhao et al. [2021]’s method.

To avoid using implicit second-order information, Zhao
and Bilen [2021a] proposed to match the representations
of the original and synthetic data for dataset condensation.
Zhao and Bilen [2021a] used the following formula as the
matching loss, i.e.,

Eθ∼Pθ
‖ 1

|T |

|T |∑
i=1

Φθ(Aw(xi))−
1

|S|

|S|∑
i=1

Φθ(Aw(si))‖22,

(2)
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where Φθ(·) refers to the feature extractor (not pretrained),
and θ is sampled from a random parameter distribution Pθ .

Cazenavette et al. [2022] proposed to learn the synthetic
data by expert training trajectories, which refer to the
model parameters during the training process. Specifically,
[Cazenavette et al., 2022] first trains models on the origi-
nal dataset and collect the training trajectories. Afterwards,
[Cazenavette et al., 2022] trains models on the synthetic
dataset and match the training trajectories with those col-
lected from the models trained on the original data. Finally,
[Cazenavette et al., 2022] backpropagates the matching loss
to optimize the synthetic data. This method achieves bet-
ter performance than [Zhao and Bilen, 2021a] but requires
much more computational cost.

Liu et al. [2022] proposed to factorize a dataset into data
hallucination networks and bases and feed the data bases
into the hallucination networks to generate synthetic data.
This dataset factorization approach can use limited storage
to represent more synthetic data compared to the previous
methods. We note that, although [Cazenavette et al., 2022,
Liu et al., 2022] achieve better testing accuracy than [Zhao
and Bilen, 2021a], [Zhao and Bilen, 2021a] is much more
efficient and scalable than [Cazenavette et al., 2022, Liu
et al., 2022]. This is because [Zhao and Bilen, 2021a] does
not need to train any expert models and does not need any
second-order derivative information to optimize the syn-
thetic data. In this paper, we mainly focus on designing a
defense for this efficient and scalable dataset condensation
technique, which could be attacked by the gradient matching
based poisoning attack and our proposed method introduced
in Section 3.

2.3 TARGETED DATA POISONING

In this paper, we mainly focus on targeted data poisoning.
We note that we have also evaluated untargeted data poi-
soning attacks against distribution matching based dataset
condensation, but we find that untargeted attacks could not
degrade the performance with a small poisoning rate like
1%. We conjecture that this is because the poisoned devia-
tion is not enough to have a significant overall impact with
a small poisoning rate (See discussion in Section 4.2).

The goal of targeted data poisoning is misleading the model
trained on poisoned data to output adversary-defined label
on certain targeted data. Given this objective, the adver-
sary could formulate the following objective to craft the
perturbation on the poisoned data:

argmin
δp

`(xt, yadv,θp), (3)

where θ = argmin
θp

E(x,y)∼T ′`(fθ(x), y); ‖δp‖2 ≤ ε.

Huang et al. [2020] proposed to solve above objective by
meta learning, with a step to update the model parameters

θp and another step to update the perturbation δp. A draw-
back of the meta learning method is that the second step
implicitly uses second-order information, leading to heavy
additional computational cost. To reduce the computational
cost, Zheng and Li [2021] derived a general targeted data
poisoning method that only uses first-order information to
update the perturbation. However, Zheng and Li [2021]’s
method needs to add color perturbation and watermarks
to the poisoned images. Geiping et al. [2021] proposed to
craft the perturbation by matching the model gradients on
the targeted data sample and poisoned data, which achieves
the state-of-the-art attack performance. We will detail this
gradient matching approach in the next section.

We note that some previous literature claims that if the
perturbation is large, it could be easily detected by human
beings. However, in practice, there may not be sufficient hu-
man labor to inspect every data sample in a dataset. Suppos-
ing that the dataset inspector randomly checks 50 samples
and the poisoning rate is 1%, then the probability that the in-
spector could not find any poisoned sample is approximately
60%, which is still very high. Therefore, if the poisoning
rate is only 1%, the setting of large perturbation is valid.

3 TARGETED DATA POISONING
AGAINST DATASET CONDENSATION

3.1 GRADIENT MATCHING

Gradient matching is the state-of-the-art targeted data poi-
soning method. The basic idea of gradient matching is to
match the model gradients on the poisoned data and the
targeted data sample. If the gradients are approximately
matched, updating the model to decrease the loss on poi-
soned data will be similar to updating the model to decrease
the loss on the targeted sample. The objective of gradient
matching based data poisoning can be expressed as

1−
〈∇θ`(xt, yadv,θ),

∑P
p=1∇θ`(xp + δp, yadv,θ)〉

‖∇θ`(xt, yadv,θ)‖ · ‖
∑P
p=1∇θ`(xp + δp, yadv,θ)‖

,

(4)

where {xp + δp}Pp=1 are the poisoned data samples. The
true label of those poisoned samples is the adversary-defined
label yadv . If the attack objective (4) is minimized to a small
value, then the average of the model gradients on the poi-
soning data, i.e., 1

P

∑P
p=1∇θ`(xp+ δp, yadv,θ), will have

same direction as the model gradient on the targeted data
sample and adversary-defined label, i.e.,∇θ`(xt, yadv,θ).

To boost the attack performance, the gradient matching at-
tack pre-trains multiple models for different epochs on the
clean training data and optimizes the perturbation with the
attack objective (4) on those pre-trained models. Besides,
the attack also runs the perturbation-crafting process for
multiple rounds with different initial values and output the
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perturbation with the best attack performance. For complete-
ness, we provide the algorithm of gradient matching based
data poisoning from [Geiping et al., 2021] in Algorithm 1.
Geiping et al. [2021]’s attack is mainly designed for the
standard classification model training process not for distri-
bution matching based dataset condensation. Therefore, in
this paper, we design a more suitable targeted data poisoning
attack for distribution matching based dataset condensation,
as introduced in the next subsection.

Algorithm 1 Gradient Matching based Data Poisoning

Require: Pretrained clean networks fθ(·); targeted sample
xt with targeted label yadv; number of poisoned samples
P � N (N is the total number of training samples);
perturbation bound ε; number of restarts R, number of
iterations T .
Randomly select P training images with true label yadv,
denoted by {xp, yadv}Pp=1.
for r = 1 to R do

Randomly initialize the perturbation δrp for xp.
for t = 1 to T do

Apply differentiable data augmentation to xp + δrp
Compute the objective by (4)
Update δrp by a step signed Adam/MSGD with the
gradient of (4) w.r.t. δrp.

end for
Choose the δrp with the minimal value of (4) as δ∗p .
Replace {xp, yadv}Pp=1 with {xp + δ∗p , yadv}Pp=1.

end for

3.2 DISTRIBUTION MATCHING POISONING

Our proposed targeted data poisoning method is called dis-
tribution matching poisoning (DM poisoning). The core
idea of DM poisoning is to match the representations of the
targeted data sample and the representations of the poisoned
data with the adversary-defined label. Based on this idea,
we define the objective of DM poisoning as

Eθ∼Pθ
‖Φθ(Aw(xt))−

1

P

P∑
p=1

Φθ(Aw(xp + δp))‖22.

(5)

where {xp}Pp=1 also refer to the poisoned samples with la-
bel yadv. After optimizing the perturbation with the above
objective, the similarity between the representation of the
targeted sample and the representations of the poisoned sam-
ples will increase. Since a small proportion of the condensed
synthetic data with label yadv is supposed to share similar
representations with the poisoned data with label yadv after
executing [Zhao and Bilen, 2021a], the representations of
those condensed synthetic data samples are also similar as
the representation of the targeted data sample. Therefore,

DM poisoning is able to encode the poisoning information
regarding the targeted sample into the synthetic data.

On top of the above objective, we propose an algorithm
(Algorithm 2) to craft poisoned data. In our DM poisoning
attack, we do not need to pretrain multiple models, and
thus our attack runs faster than the gradient matching
attack. In each iteration of DM poisoning, we first ran-
domly sample the parameters θ for the feature extractors
Φθ. After that, we sample the augmentation parameters w
and compute the representations by feeding the original and
synthetic data into the augmentation function followed by
the feature extractors. Finally, we compute the objective (5)
with the representations and update the perturbation by a
signed Adam optimizer, which is equivalent to a signed mo-
mentum SGD optimizer. To boost the attack performance,
we also run the algorithm for multiple rounds and output
the poisoning perturbation with the best attack performance.
DM poisoning is similar to feature collision attacks [Shafahi

Algorithm 2 DM Poisoning

Require: Targeted sample xt with targeted label yadv;
number of poisoned samples P � N ; perturbation bound
ε; number of restarts R, number of iterations T ; feature
extractors Φθ; parameter distribution Pθ; data augmenta-
tion Aw(·).
Randomly select P training images with true label yadv,
denoted by {xp, yadv}Pp=1.
for r = 1 to R do

Randomly initialize the perturbation δrp for xp.
for t = 1 to T do

Randomly sample θ from Pθ.
Randomly sample the augmentation parameters w.
Compute Representations: r(xp) = Φθ(Aw(xp))
and r(xt) = Φθ(Aw(xt)).
Update δrp by a step signed Adam/MSGD with the
gradient of (5) w.r.t. δrp.

end for
Choose the δrp with the minimal value of (5) as δ∗p .
Replace {xp, yadv}Pp=1 with {xp + δ∗p , yadv}Pp=1.

end for

et al., 2018, Zhu et al., 2019], but DM poisoning explores
far more random feature spaces compared to [Shafahi et al.,
2018, Zhu et al., 2019].

4 POISONING-RESILIENT DATASET
CONDENSATION

4.1 POISONED DEVIATION

To delve into data poisoning in dataset condensation, we
propose the concept of poisoned deviation as follows:
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Definition 4.1 (poisoned deviation) Given a variable or
metric z = zD+zB, if zD is computed on the original data,
and zB is computed on the poisoned data, then we define zB
as the poisoned deviation of z. Poisoned deviation can be
viewed as the main cause of the abnormal model behavior
desired by the poisoning attack.

Here we provide a practical example to help read-
ers understand the above definition: A model trainer
learns its deep learning model on a poisoned dataset
by stochastic gradient descent. In each learning step,
the model trainer samples a minibatch from the poi-
soned dataset. We denote the minibatch by {xi, yi}L1

i=1 ∪
{x′j , y′j}

L2
j=1, where {xi, yi}L1

i=1 refers to original data, and
{x′j , y′j}

L2
j=1 refers to poisoned data. The model gradient

w.r.t. the model parameters θ on the minibatch is g =
1

L1+L2
(
∑L1

i=1∇θ`(xi, yi)+
∑L2

j=1∇`(x′j , y′j)). According

to Definition 4.1, 1
L1+L2

∑L2

j=1∇`(x′j , y′j) is the poisoned
deviation of g, which causes the abnormal model behavior
desired by the poisoning attack.

4.2 POISONED DEVIATION IN DISTRIBUTION
MATCHING

In this paper, we mainly focus on distribution matching,
which is the most scalable dataset condensation method
among [Zhao et al., 2021, Liu et al., 2022, Zhao and Bilen,
2021a, Cazenavette et al., 2022]. We leave investigation on
the other dataset condensation methods for future research.
Distribution matching learns the synthetic data by matching
the mean of the subsampled original data representations
and the mean of the subsampled synthetic data representa-
tions, as shown in Eq. 2.

However, since the original dataset contains poisoned data
samples, 1

|T |
∑|T |
i=1 Φθ(Aw(xi)) is polluted by poisoned

deviation.

In the following, we show that the poisoned deviation scales
in O(ε

√
dr). We denote the poisoned dataset by T ′. Sup-

pose the fraction of the poisoned data samples (poisoning
rate) in T is ε, which means there exists ε|T ′| poisoned sam-
ples, then we could express T ′ as T ′ = O ∪ B, where
O ⊂ T , and B is the poisoned subset, then we have
|B| = ε|T |, and |O| = (1 − ε)|T |. The poisoned devia-
tion of the mean estimation could be expressed as

‖ 1

|T |

|B|∑
i=1

Φθ(Aw(x′i))‖2 = O(
|B|
|T |
√
dr) = O(ε

√
dr),

(6)

where dr is the representation dimension. Since the scale
of ‖ 1

|T |
∑|T |
i=1 Φθ(Aw(xi))‖2 is O(

√
dr), the poisoned de-

viation could not have a significant overall impact with a

small ε. But this poisoned deviation is enough to cause the
models trained by DM-generated synthetic data to make
adversary-defined prediction yadv on a certain sample xt.

4.3 POISONING-RESILIENT DATASET
CONDENSATION

We propose an algorithm for poisoning resilient dataset con-
densation by reducing the poisoned deviation with a mean
calibration method. We prove that, by executing the mean
calibration method, we could reduce the bound on the poi-
soned deviation by an order of magnitude. The algorithm
is given in Algorithm 3, which is similar to the algorithm
of distribution matching. The main difference between Al-
gorithm 3 and the distribution matching algorithm is that
we calibrate the mean of the original data representations to
reduce the poisoned deviation.

Algorithm 3 RDM-DC: Robust Distribution Matching for
Dataset Condensation
Require: Original Dataset T = T1∪T2...∪TC ; the number

of classesC; the number of data samples per classNc; the
number of synthetic samples per class M ; feature extrac-
tors Φθ; parameter distribution Pθ; data augmentation
Awc(·).
Initialize S = {{scj}Mj=1}Cc=1 with random noise from
N (0, Id)
for each iteration do

Sample θ from Pθ and initialize the loss as ` = 0
for each class c do

Sample the augmentation parameters wc.
Sample a minibatch BTc from Tc
Compute Representations: r(xci ) = Φθ(Awc

(xci ))
for the minibatch BTc and r(scj) = Φθ(Awc

(scj))

for Sc = {scj}Mj=1.

Mean calibration: µ̂ = Calibrate({r(xci )}
|BT

c |
i=1 )

Compute Loss: ` = `+ ‖ 1
M

∑M
j=1 r(s

c
j)− µ̂‖22.

end for
S = S − η∇`

end for
Output the synthetic dataset S = {{scj}Mj=1}Cc=1

The mean calibration method is illustrated in Algorithm 4,
which is inspired by [Tran et al., 2018]. Given a batch of
original data representations, we first estimate the mean and
covariance matrix. After that, we compute the eigenvector
of the covariance matrix. Since directly computing the first
eigenvector requires heavy computational cost, we approx-
imate the eigenvector using the power method [Van Loan
and Golub, 1996] with a few iterations. For completeness,
we provide the power method in Algorithm 5.

According to the lemma below (inspired by [Tran et al.,
2018]), the mean calibration method is able to reduce the
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Algorithm 4 Mean Calibration

Require: Representations {r(xi)}Ni=1

1. Estimate the mean and covariance matrix of the
representations by r = 1

N

∑N
i=1 r(xi) and Σr =

1
N−1

∑N
i=1(r(xi)− r)T (r(xi)− r)

2. Compute the top eigenvector of Σr, denoted by vr.
3. Assign |〈r(xi)− r,vr〉| as the score of r(xi).
4. Filter out [3εN ] samples with the largest scores (re-
maining data samples are denoted by {r(xi)}N−[3εN ]

i=1 ).
5. Recompute the mean r = 1

N−[3εN ]

∑N−[3εN ]
i=1 r(xi)

Algorithm 5 Power Method

Require: Covariance matrix Σr; number of iterations I
Randomly sample a vector v ∼ N (0, I).
for each iteration do
v = Σrv; v = v/‖v‖2.

end for
Output v.

poisoned deviation by an order of magnitude. In the follow-
ing, We denote the original representation distribution by D
and the poisoned representation distribution by B and their
means by µD and µB respectively. We denote the poisoning
rate by ε, and we denote the mean and the covariance matrix
of (1− ε)D+ εB by µP and ΣP , respectively. Given those
notations, we could present the lemma.

Lemma 4.1 Assuming that D and B have bounded co-
variance matrices ΣD,ΣB ≤ σ2I , and their means have
an apparent difference, i.e., ‖µD − µB‖22 ≥ ασ2

ε where
α > 2665

576 , then if we drop all the representations that sat-
isfies |〈r − µP ,v〉| ≥ t with a certain t, then we can re-
duce the scale of the poisoned deviation from O(ε

√
dr) to

Θ(ε2
√
dr).

Lemma 4.1 is similar but not identical to Lemma 3.1 in
[Tran et al., 2018]. We provide the proof of Lemma 4.1 and
the related lemmas in the supplementary material.

We remark that, if the assumption in Lemma 4.1 does not
hold, i.e., the difference between the mean of original repre-
sentations and the mean of the poisoned representations is
not significant, the poisoned deviation will be small. In that
case, the poisoning attack will not succeed on the distribu-
tion matching based dataset condensation method. This is
because, if ‖µD − µB‖22 < ασ2

ε , the poisoned deviation is
expected to be ‖µP − µD‖2 = ε‖µD − µB‖2 <

√
αεσ ∼

O(
√
ε). In practice, we also find that, if the perturbation

budget of the poisoned data is small, which indicates that
the difference between µD and µB is small, then distribu-
tion matching does not show vulnerability to the targeted
data poisoning attacks.

We also note that, in practice, it is intractable to compute
the t since µD and µB are unknown. But we know that, the
proportion of the dropped representations is expected to be
approximately 2ε, where B accounts for approximately ε of
the dropped data, and the other ε dropped data comes from
D. To ensure that we drop most of the poisoned representa-
tions, we set the dropping rate as 3ε, which means that we
drop [3εN ] representations given totally N representations
in each iteration, as shown in Algorithm 3. Note that if the
poisoned data only corresponds to one class, then we need
to use the proportion of the poisoned data to all the data
from that class as ε to calculate the dropping ratio.

To generalize our theoretical analysis to other dataset con-
densation methods such as gradient matching based dataset
condensation Zhao et al. [2021], Zhao and Bilen [2021b],
we could replace the representations in the theoretical anal-
ysis in this section with model gradients.

Figure 1: An application of poisoning-resilient dataset con-
densation. An trusted entity is responsible for collecting the
data and condensing the data into synthetic data.

4.4 APPLICATION OF RDM-DC

In this subsection, we discuss the potential applications of
our RDM-DC algorithm. One application of the algorithm
is to assist the establishment of a trustworthy data supply
chain for deep learning. We sketch the supply chain in Fig. 1,
where a trusted entity like the government, an agency, or
a hospital is responsible for collecting data from the users.
After data collection, the trusted entity executes our RDM-
DC algorithm on the collected data to generate synthetic
datasets and share the synthetic data with the third party
to train deep learning models. This supply chain inherits
the benefits of dataset condensation and simultaneously
addresses the threat of targeted data poisoning.

Another application of the algorithm is to store the core
information from a large amount of data, with tolerance to
a small subset of bad samples, into a small storage space.
Data explosion is a common problem faced by the many
institutions and users since their limited resources can not
store the astronomical amount of digital information gen-
erated by this world. Instead of deleting the historical data,
the institutions and users could condense the historical data
into a small synthetic dataset with the RDM-DC algorithm
so that they can keep the unpoisoned core information from
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the historical data with limited resources.

4.5 COMPARISON WITH EMPIRICAL ROBUST
AGGREGATION METHODS

We compare the mean calibration method with several ro-
bust aggregation methods, including Trimmed Mean, Trun-
cated Mean, and Median [Yin et al., 2018, Portnoy and
Hendler, 2020]. The advantage of those empirical methods
is that they are very efficient and thus do not add much ad-
ditional cost to the dataset condensation process. However,
the drawback of those methods is that they do not provide
any theoretical guarantees, and the poisoned deviation of
the mean may be still large after applying those empirical
robust aggregation. For instance, the maximum poisoned
deviation of the truncated mean still scales in O(ε

√
d). In

this paper, we compare our proposed method with those em-
pirical robust aggregation methods. For completeness, we
introduce the empirical robust aggregation methods below.

Truncated Mean Given the representations {r(xi)}Ni=1,
we first compute the mean by r = 1

N

∑N
i=1 r(xi). We then

compute the distance between each representation r(xi) and
the mean by di = ‖r(xi)− r‖2. Finally, we drop the r(xi)
with the top-k di and average the remaining representations
to obtain the truncated mean.

Trimmed Mean Given the representations {r(xi)}Ni=1,
we refer to the j-th dimension of r(xi) as rj(xi). For each
dimension j, we drop off the k/2 largest elements and the
k/2 smallest elements in {rj(xi)}Ni=1 and aggregate the
remaining elements to compute the mean for dimension j,
i.e., rj .

Median Given the representations {r(xi)}Ni=1, we also
refer to the j-th dimension of r(xi) as rj(xi). For each
dimension j, we use the median of {rj(xi)}Ni=1 as rj .

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset and Poisoning Budget We follow the previous
literature on targeted data poisoning [Geiping et al., 2021,
Zheng and Li, 2021, Yang et al., 2022, Huang et al., 2020] to
mainly conduct evaluations on CIFAR10 [Krizhevsky et al.,
2009]. We also conduct experiments on TinyImageNet Le
and Yang [2015]. We note that, although we follow the previ-
ous works on dataset condensation to mainly evaluate image
data, our theoretical analysis is generalizable to different
data formats.

We set the poisoning rate as 1%, which means the propor-
tion of poisoned data in the training dataset is only 1%.

With this attack setting, even if a dataset inspector ran-
domly inspect 50 samples, the probability that the inspec-
tor can not find a poisoned data sample is approximately
(1 − 0.01)50 ≈ 0.605. In another word, even if we set a
large perturbation size for those poisoned data samples, it
is still very likely that the inspector could not detect the
attack without investing much human labor into the inspec-
tion. Therefore, in our experiments, we set the perturbation
size as 64/255 by default, and we also conduct experiments
with other perturbation sizes. Note that in most experiments,
this perturbation size is not enough to change any poisoned
data sample into the targeted sample since in most cases,
even smallest `∞ distance between the targeted sample and
a poisoned data sample is larger than 64/255.

Figure 2: The targeted images for random seeds 0 ∼ 4. The
number before→ is original label, and the number after→
is the targeted label (adversary-defined label).

Attack Settings In general, we evaluate the dataset con-
densation methods against two attack baselines, i.e., gra-
dient matching and our proposed DM poisoning. For gra-
dient matching attack, we pretrain 16 models to craft the
perturbation. For both gradient matching attack and DM
poisoning attack, we set the attack step size for the sign
Adam optimizer as 1/255 to ensure that the perturbation
can be accurately discretized. We randomly select five tar-
geted samples with five random seeds (0 ∼ 4) and craft the
poisoning data for those targeted samples respective. We
show the targeted samples and corresponding original and
adversary-defined labels in Fig. 2. We employ attack success
rate to evaluate the attack performance. For an experiment,
if the trained model recognizes the targeted sample as the
adversary-defined label, the attack success rate is 100%.
Otherwise, the attack success rate is 0%. We compute the
mean and standard deviation of the attack success rate over
5× 5 (5 random seeds to generate attack datasets and 5 runs
of the dataset condensation method for each seed) experi-
ments for evaluating each dataset condensation method.

Dataset Condensation and Defense Settings In this pa-
per, we mainly consider distribution matching based dataset
condensation. By default, we set the number of synthetic
samples per class as 50. We set the batch size for sampling
the original data as 256. We use an SGD optimizer with
momentum 0.5 and learning rate 1.0 to update the synthetic
data. We follow [Zhao and Bilen, 2021a] to set the num-
ber of iterations as 20000. We use Gaussian noise instead
of real images to initialize the synthetic data. If using real
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ε Attack Test Acc ASR

64/255
Grad Match 59.59%± 0.38% 20.00%± 40.00%
DM Poison 59.25%± 0.33% 60.00%± 48.99%

128/255
Grad Match 59.37%± 0.36% 60.00%± 48.99%
DM Poison 59.23%± 0.40% 100.00%± 0.00%

Table 1: Comparing the attack results of gradient matching based data poisoning (Grad Match) and distribution matching
based data poisoning (DM poisoning).

Attack→ DM Poison

Method ↓ Test Acc ASR
DM 59.25%± 0.33% 60.00%± 48.99%

DM + Median 44.08%± 0.57% 60.00%± 48.99%
DM + Trim 51.14%± 0.73% 60.00%± 48.99%

DM + Truncated 57.04%± 0.45% 44.00%± 49.64%
RDM-DC 57.65%± 0.44% 0.00%± 0.00%

Table 2: Evaluate the dataset condensation methods and defenses against targeted poisoning attacks with ε = 64/255 and
poisoning rate 1%.

images that containing poisoning samples for initialization,
all the methods will be very vulnerable to poisoning attacks.
For the empirical robust aggregation methods, we set k to
[3εN ], where ε is the poisoning rate and N is the batch size.
We follow [Zhao and Bilen, 2021a, Zhao et al., 2021, Zhao
and Bilen, 2021b, Cazenavette et al., 2022, Liu et al., 2022]
to train deep learning models on the synthetic dataset and
employ the testing accuracy of the models on the original
testing dataset to evaluate model performance. To evaluate
the defensive performance, as mentioned before, we employ
attack success rate (ASR) as the evaluation metric. As afore-
mentioned, for each targeted sample (random seed), we run
five experiments with different random seeds and compute
the mean and variance of the attack success rate to evaluate
the defensive performance.

5.2 ATTACK PERFORMANCE

We first compare the attack performance of the gradient
matching based data poisoning and our proposed DM poi-
soning on distribution matching based dataset condensation.
We provide the attack results in Table 1, which shows that
our DM poisoning attack is more effective than gradient
matching based data poisoning here. We conjecture that
this is because gradient matching based data poisoning is
mainly designed for the classification task, and it attempts
to match the gradients of cross-entropy loss computed on
the targeted sample and poisoned samples. That means the
representations of the poisoned samples are not necessarily
aligned with the representations of the targeted sample in
certain feature spaces. Therefore, feature matching may not
be able to encode the poisoning information that can flip the

prediction of the targeted sample into the synthetic data. In
contrast, DM poisoning directly matches the representations
of the poisoned data and the target data sample in broad fea-
ture spaces so that feature matching can encode the desired
poisoning information into the synthetic data.

We also note that, as we increase the perturbation size to
128/255, DM poisoning achieves 100% success rate against
distribution matching based dataset condensation in all the
experiments. This result indicates that the O(ε

√
dr) poi-

soned deviation is enough to encode adversary-defined in-
formation about the targeted sample into the synthetic data.

Attack→ Grad Match

Method ↓ Test Acc ASR
DM 59.59%± 0.38% 20.00%± 40.00%

RDM-DC 57.78%± 0.41% 0.00%± 0.00%

Table 3: Evaluate the dataset condensation defense against
the gradient matching based attack.

Attack→ DM Poison (TinyImageNet)

Method ↓ Test Acc ASR
DM 18.49%± 0.23% 100.00%± 0.00%

RDM-DC 17.68%± 0.34% 0.00%± 0.00%

Table 4: Evaluate our attack and defense on TinyImageNet.
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Attack→ Direct Attack

Method ↓ Test Acc ASR
DM 59.29%± 0.38% 100.00%± 0.00%

RDM-DC 57.79%± 0.45% 0.00%± 0.00%

Table 5: Evaluate the dataset condensation methods and
defenses against the direct attack.

5.3 DEFENSIVE PERFORMANCE

We evaluate our proposed RDM-DC algorithm and compare
it with the empirical robust aggregation methods mentioned
in Section 4.5. As indicated by the results in Table 2, Median
and Trimmed Mean significantly hurt the utility of synthetic
data. We conjecture that this is because the Median and
Trimmed Mean methods disregard too much information in
the representations as they could not maintain the complete
information of any representation in the aggregation process.
Truncated Mean is similar to the mean calibration method
in the sense that Truncated Mean also disregards some rep-
resentations and aggregates the remaining representations.
The main difference between Truncated Mean and the mean
calibration method is that Truncated Mean disregards the
representations with large distances to the center (spherical
distances), while the mean calibration method disregards
the representations with large deviations along the principal
vector. With Lemma 4.1, we show that the mean calibration
method indeed can reduce the poison deviation, while Trun-
cated Mean does not have this guarantee. Therefore, it is not
surprising that RDM-DC has better defensive performance
than DM + Truncated Mean—DM poisoning can achieve
good attack performance against DM + Truncated Mean for
some random seeds.

Besides, we evaluate RDM-DC against the gradient match-
ing based attack and report the results in Table 3, which
shows that RDM-DC successfully defends against the gradi-
ent matching based attack. We also evaluate our attack and
defense on TinyImageNet and report the results in Table 4.
Table 4 shows that DM poisoning with ε = 64/255 can
achieve 100% success rate on TinyImageNet, and RDM-DC
successfully defends against DM poisoning.

To further demonstrate the outstanding defensive perfor-
mance of RDM-DC, we evaluate it against a very strong
attack, where we directly use the targeted sample with the
adversary-defined label as the poisoned data. We name this
strong attack as “direct attack”. As shown in Table 5, this
strong direct attack can achieve 100% ASR against [Zhao
and Bilen, 2021a], but RDM-DC is able to reduce the ASR
to 0%, indicating the strong defensive ability of RDM-DC.

6 CONCLUSIONS

In this paper, we study the vulnerability of dataset conden-
sation to targeted data poisoning. We evaluate the existing
dataset condensation approaches against the state-of-the-art
targeted data poisoning attack, i.e., gradient matching, and
our proposed data poisoning attack, i.e., DM poisoning. We
demonstrate that only 1% poisoned data can mislead dataset
condensation to encode poisoning information into the con-
densed synthetic dataset. As a result, the models trained on
the synthetic dataset will output adversary-defined predic-
tion for the targeted data sample. To quantify the effect of
poisoned data, we propose the concept of poisoned devi-
ation and show that the poisoned deviation in distribution
matching based dataset condensation scales in O(ε

√
dr).

We further propose a poisoning-resilient dataset condensa-
tion algorithm with a calibration method to reduce the poi-
soned deviation toO(ε2

√
dr). Extensive evaluations demon-

strate the effectiveness of our proposed poisoning-resilient
algorithm against targeted data poisoning.
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