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CMI: Client-Targeted Membership Inference in
Federated Learning
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Abstract—Membership inference is a popular benchmark attack to evaluate the privacy risk of a machine learning model or a learning
scheme. However, in federated learning, membership inference is still under-explored due to several issues. For instance, some
assumptions in prior works may not be practical in federated learning. Most existing membership inference methods stand on those
impractical assumptions or lack generalization ability, which may misestimate the privacy risk. To address these issues, we propose
CMI, an attack framework armed by a targeted poisoning method, to conduct a critical evaluation of client-targeted membership
inference in federated learning. Under CMI, we consider a strong adversary, refine the prior impractical assumptions, and apply simple
but generalizable attack methods. The evaluation results on multiple datasets demonstrate the efficacy of CMI under identically
independently distributed (i.i.d.) and non-i.i.d. settings. In terms of the defenses, although differetially private stochatic gradient descent
(DP-SGD) is effective under the i.i.d. setting, it does not provide satisfactory protection under label-biased non-i.i.d. settings. Thus, we
propose RR-Label, a modified random response algorithm, to defend against membership inference. Compared to DP-SGD and
Random Response Top-k (RRTop-k), RR-Label enables a better trade-off between model utility and defensive performance under
label-biased non-i.i.d. settings.

Index Terms—Federated Learning, Client-Targeted Membership Inference

✦

1 INTRODUCTION

In the recent decade, deep learning has achieved mon-
umental success in many applications with the assistance
of big data. Meanwhile, the rapid growth of this data-
demanding technique naturally increases data privacy con-
cerns. To alleviate these concerns, the community has de-
veloped decentralized learning schemes, such as federated
learning [1] and split learning [2], to keep the clients’ private
data on their local devices. In federated learning, the clients
only need to share their locally trained models with the
server to aggregate a high-performance global model. Each
client’s data is unseen to the server and the other clients.
Therefore, federated learning is considered effective to pre-
vent data leakage.

But prevention of direct data leakage does not indicate
safety against advanced privacy attacks. Owing to the con-
tributions of recent works [3], [4], [5], [6], federated learning
is revealed to be vulnerable to membership inference, a
benchmark attack for privacy risk evaluation. However,
most prior works either stand on some impractical as-
sumptions and requirements or apply a complicated but
not generalizable inference method. Specifically, Nasr et
al.’s attack [3] trains an auto-encoder on representations,
gradients, model outputs, loss, and labels for membership
inference, which significantly increases the complexity of
the inference model and thus may suffer from overfitting
and poor generalization on complicated datasets and net-
works. The attack in [4] assumes the server to be a passive
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adversary, which may underestimate the privacy risk in
federated learning. Pichler et al.’s attack [5] needs to embed
a special structure into the model architecture for member-
ship inference, making the attack very easy to detect. Gu et
al.’s attack [6] requires the server to have a large auxiliary
dataset to train shadow models and the attack model. But
in federated learning, it may not be easy for the server to
obtain a large amount of private data. Moreover, Gu et
al.’s attack [6] assumes the active adversary to select the
targeted client in all the rounds of federated learning, which
is almost impossible in practice, according to our analysis in
Section 4.3.

To evaluate membership inference in federated learning
under relatively more practical settings, we revise several
misleading or impractical assumptions in the previous lit-
erature. Specifically, we assume an active adversary who
can poison the model to improve the performance of mem-
bership inference. We assume that the server can select the
targeted client for a reasonable number of rounds instead
of all the rounds. We consider that the adversary only has
a small/medium-sized attack dataset since most client data
is private and thus may not be accessible to the server.
Also, beyond i.i.d. settings, we consider non-i.i.d. settings
where the attack dataset may not be distributed similarly
to the targeted client’s dataset. With these revised assump-
tions, we propose a new framework, called CMI, for client-
targeted membership inference in federated learning. CMI
considers a malicious server as the potential adversary and
targets at attacking any client who participates in federated
learning. Under CMI, the malicious server first selects the
targeted client for a reasonable number of attack rounds (i.e.,
[Rp + 2

√
Rp(1− p)] in Section 4.3). In each attack round,

the server poisons the model with our proposed targeted
poisoning method, which misleads the model to predict the
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Fig. 1: The key idea of CMI: We propose targeted poisoned
to mislead the model to predict the data that server attempts
to infer as specific wrong labels. The model training process
on the client side will correct the predictions of member
data, which separates member and non-member data.

attack data samples as their most probable wrong labels.
The server then sends the poisoned model to the targeted
client. After the client optimizes the model on its training
dataset, the model predictions of the member data in the
attack dataset will be corrected as the true labels, while the
model predictions of most non-member data still point to
the wrong labels due to the poisoning effect. As a result,
our targeted poisoning method increases the separation
between the privacy metrics of member and non-member
data (Fig. 5). Moreover, our targeted poisoning method can
accumulate its poisoning effect since the most probable
wrong labels remain the same for most attack data in the
last several attack rounds.

Following the final attack round, CMI computes the
privacy metrics of the attack data on the model from the
targeted client. After that, CMI considers two methods for
membership inference. The first method is to collect privacy
metrics with membership labels by training shadow models
on the attack dataset, and set sample-wise thresholds to
distinguish between the privacy metrics of member and
non-member data. Instead of using Song et al. [7]’s thresh-
olding scheme, we employ support vector machine (SVM)
to identify the sample-wise thresholds with larger margins
so that the thresholds could be more tolerant to deviations.
The first method is suitable for the i.i.d. setting where the
distribution of the server’s attack dataset is similar to the
distribution of the client data so that the shadow models be-
have similarly to the targeted model. The second method is
to cluster the privacy metrics of the attack data into member
and non-member groups by spectral clustering with nearest
neighbor affinity matrices. The clustering-based method is
more effective under non-i.i.d. settings, where the attack
dataset may not support the server to train shadow models
with similar behavior as the targeted client’s model.

With respect to the defenses, Naseri et al. [8] observed
that local DP-SGD [9] is an effective defense against mem-
bership inference under the i.i.d. setting. This observation
is also verified by our evaluation results. But under non-
i.i.d. settings, especially when the targeted client only has
data from a subset of classes, DP-SGD fails to provide sat-
isfactory protection. This is because DP-SGD does not ran-
domize labels; thus, DP-SGD still trains the local model on
a label-biased distribution, leading to not low membership
inference accuracy (See Section 6.1 for details). To address
the label bias issue, we propose RR-Label, a modified ran-

dom response method, to randomly flip the labels from the
majority label group into minority labels. We show that RR-
Label enables a much better trade-off between model utility
and defensive performance against membership inference
than DP-SGD [9] and RRTop-k [10] under the label-biased
non-i.i.d. settings.

We conduct extensive evaluations on commonly-used
datasets for membership inference evaluation, including
Purchase-100 [11], Texas-100 [12], CIFAR-10, and CIFAR-
100 [13]. We demonstrate that our targeted poisoning
method consistently improves the attack performance across
varied datasets, networks, and experimental settings. In
Table 2, we show that, if the clients do not apply defenses,
CMI (Shadow + TP) could achieve over 90% attack accuracy.
In Table 4, we show that our proposed RR-Label successfully
defends against CMI under the label-biased non-i.i.d. set-
ting, with superior performance than DP-SGD and RRTop-
k.

Our contributions are summarized as follows:

1) We revise some assumptions in the previous liter-
ature to formulate a more practical threat model
for evaluating membership inference in federated
learning.

2) We propose a new framework, called CMI, with a
targeted poisoning method to increase separation
between member and non-member privacy metrics
and two inference methods designed for i.i.d. and
non-i.i.d. settings.

3) We observe the unsatisfactory performance of DP-
SGD under label-biased non-i.i.d. settings, and we
propose RR-Label to provide better protection.

4) We conduct extensive evaluations and highlight
some takeaways summarized from the evaluation
results.

We organize the remainder of the paper as follows: We
first introduce the preliminary knowledge and related work
in Section 2. In Section 4, we formulate the threat model
with our revised assumptions. In Section 5, we present our
targeted poisoning method and CMI’s technical details. In
Section 6, we present potential defenses against membership
inference in federated learning including our proposed RR-
Label. We conduct extensive evaluations in Section 7 and
conclude the paper in Section 8.

2 PRELIMINARIES

2.1 Definitions and Notations
In this paper, we mainly focus on classification problems in
federated learning. We denote a data sample by x and its
label by y. We denote the label set by YK = {1, 2, ...,K}
with totally K labels. We denote a neural network by fθ(·)
with model parameters θ. fθ(x) refers to the softmax output
of x, and ℓ(fθ(x), y) refers to the cross-entropy between
fθ(x) and y. i.i.d. is the abbreviation of independent and
identically distributed. In terms of the hyperparameters of
federated learning, we denote the total number of rounds
by R and the total number of clients by M . We denote
the number of selected clients in each round by m. We
follow the prior works on membership inference in federated
learning [3], [6] to compute membership inference accuracy
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Fig. 2: The pipeline of each round of Federated Learning.

(attack accuracy) for evaluation and comparison. Future
work can try to combine CMI and the likelihood-based
method in [14] to compute False Positive Rate (FPR) for
further evaluation.

2.2 Federated Learning
Federated Learning (FL) is a decentralized learning tech-
nique for data privacy protection [1], [15]. Typical FL in-
volves a server and a number of clients to learn a high-
performance model through multiple-round training and
communication. As illustrated in Fig. 2, in each round
of normal FL, the server first selects several clients and
sends the current global model weights to the selected
clients. After that, the selected clients optimize the received
model weights on their local training datasets for several
epochs, and send the updated local model weights back to
the server. Finally, the server aggregates the local models
to update the global model and starts a new round. A
commonly-used method for model aggregation is FedAvg
[16], which utilizes the average of model updates from
the selected clients as the update for the global model. To
faciliate the progress of federated learning, the community
has implemented several open-source federated learning
platforms, such as FATE [17], FedScale [18], Plato [19], and
Flute [20]. Since FL keeps the clients’ data on their local
devices, it could prevent direct data leakage.

2.3 Membership Inference Attacks
Membership inference is a benchmark attack for privacy
risk evaluation. In general, membership inference aims to
infer whether certain data samples, referred to as attack data
in this paper, belong to the training dataset of a model. A
commonly-used threat model in most prior works assumes
that the adversary only has access to the outputs of the
targeted model. Under this assumption, some prior works
propose to collect training model outputs with membership
labels from shadow models, in order to train a neural net-
work (NN) to label the targeted model outputs [21]. When
the adversary has full access to the model, Nasr et al. [3] pro-
posed to train an NN (auto-encoder) on the representations,
gradients, model outputs, loss, and labels for membership
inference. Although the idea of training NNs for inference
is intuitive, the NN-based inference models are very com-
plicated and thus may suffer sub-optimal performance or
poor generalization due to inappropriate hyperparameter
settings [7]. To avoid this issue, some recent works [7],

[14], [22] propose non-NN based privacy metrics, which are
computed on the targeted model outputs, for membership
inference. We list those privacy metrics in Table 1. The
intuition of using those privacy metrics for membership
inference is: If the model is trained on certain data samples,
then the cross-entropy (CE) or other metrics should be low
for those samples. By empirical evaluations or theoretical
analysis, previous works [7], [14], [22], [23] demonstrate that
metric-based attacks can achieve comparable or better attack
performance than NN-based attacks.

2.4 Membership Inference Defenses
Some recent works [7], [24], [25] also focus on defenses
against membership inference. Here we roughly divide the
existing defenses into two categories, i.e., training-stage and
inference-stage defenses. Adversarial regularization [24] is
a typical training-stage defense, which employs an adver-
sarial network [26] to infer the membership labels in the
training stage, and updates the protected model to mini-
mize the original loss and deceive the adversarial network.
MemGuard [25] is a typical inference-stage defense, which
applies adversarial perturbation to the model outputs to
deceive the attack models. Nevertheless, most existing de-
fenses are designed for the centralized scenario and may not
be suitable for federated learning. For instance, adversarial
regularization requires the defender to have additional ref-
erence data and computational resources. Moreover, com-
petition between the adversarial network and the protected
model could not converge with local training for a few
epochs in each round. MemGuard is also not suitable for
federated learning since the adversary can generate the un-
perturbed model outputs with the access to the model. The
currently most appropriate defense for federated learning
is local DP-SGD, also referred to as local differential privacy
(LDP) in [8]. Therefore, we study local DP-SGD in this paper.

3 RELATED WORK

The threat of membership inference was first explored
by [21] with the assumption that the adversary only has
access to the outputs of the targeted model. Following [21],
Nasr et al. [3] studied membership inference under the
white-box setting where the adversary has full access to the
model [3]. Sablayrolles et al. [23] proved that representations
and gradients used in [3] do not really provide useful
information in addition to the model outputs for optimal
membership inference. Pichler et al. [5] proposed to embed
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a special structure into the model for membership infer-
ence in federated learning. Gu et al. [6] proposed to train
a neural network on the prediction confidence series for
membership inference in federated learning. [7], [14], [22]
proposed some non-NN metrics computed on the model
outputs, which are detailed in Section 5.2, for membership
inference. In terms of defenses, Nasr et al. [3] proposed
to improve model resistance against membership inference
by competition with an adversarial network. Jia et al. [25]
proposed to add adversarial noise on the model outputs
to mislead the attack models. Naseri et al. [8] conducted
extensive evaluations and demonstrated that local DP-SGD
is effective in defending against membership inference in
federated learning under the i.i.d. setting.

4 THREAT MODEL

4.1 Adversary’s Goal

In this paper, the potential adversary is a malicious server,
similar to [3], [8]. The adversary’s goal is to infer whether the
attack data samples belong to the targeted client’s training
dataset (so-called client-targeted membership inference). A
malicious client may also conduct membership inference
attacks, referred to as local membership inference in the
previous literature [3], [6]. Here we do not study the cir-
cumstance that the adversary is a malicious client, because
a malicious client only receives the aggregated model and
thus cannot conduct membership inference attacks on a
targeted client.

4.2 Adversary’s Knowledge

We assume that the malicious server has access to the
targeted client’s local model weights. Even if the clients
try to protect their model weights by secure multi-party
computation, the server still can create some fake clients
to obtain the targeted client’s local model weights (See
Section 6.3). The malicious server is likely to know the
optimizer used by the clients, which means there is high
probability that the malicious server knows the optimizer.
This is because the clients should use the same optimizer for
consistency; otherwise the global model may not converge.
Since the server is the one who can communicate with all the
clients, it is convenient for the server to set up the optimizer
and share it with all the clients. Even if the optimizer is
not set up by the server, the server may create a fake client
to obtain the shared optimizer. In this paper, we consider
the case that server knows the optimizer and the case that
the server does not know the server. The server may also
know whether the client uses a defense since it is usually
proposed in the protocol beforehand. Even if the knowledge
is not given in the protocol, the server still can try to infer
whether a client uses defenses by the accuracy of the client’s
local model on the attack dataset. If the model accuracy does
not increase or only increases a little bit in each round at the
beginning of the learning process, then it is likely that the
client uses certain defenses. In rare cases, if the server does
not know the optimizer and whether the client applies a
defense, it still can use spectral clustering for membership
inference under CMI.

4.3 Adversary’s Capabilities
One main capability of a server in federated learning is
control over model aggregation, which means the malicious
server can send a poisoned model to the clients. To be more
specific, instead of aggregating the local models from the
selected clients, the malicious server poisons the local model
from the targeted client and then sends the poisoned model
to the targeted client in each attack round*, as illustrated in
Fig. 3. This attack process is similar to the isolating attack process
in [3], [8]. For the other clients or beyond the attack rounds,
the server can execute normal model aggregation and send
the real global model. As a result, in the whole attack
process, the local model will only memorize the targeted
client’s data, and the poisoning method makes the model
leak more information for membership inference. Moreover,
we revise two assumptions in the prior works [3], [6], [8].

4.3.1 Reasonable Attack Rounds
Some prior works [3], [6], [8] assume that the malicious
server could select the targeted client in all rounds of feder-
ated learning. This assumption is unrealistic since it is almost
impossible with extremely low probability in practice. If we
consider client selection as a Bernoulli sampling process:
The probability of selecting each client in each round is
p = m/M , where M is total number of the clients, and m
is the number of selected clients per round. Given the total
number of rounds R, a client will be selected for n ∼ B(R, p)
rounds, where B(R, p) is a Binomial distribution. We then
have the probability that the server selects the targeted client for
all the rounds is p−R. If we set p = 0.1 and R = 100, the
probability of all-round selection is 10−100. If the malicious
server insists on selecting the targeted client for all the
rounds, the targeted client will be almost sure that the server
is malicious.

A natural question to ask is—what is a reasonable num-
ber of attack rounds to select the targeted client? Given that
the mean and standard deviation of n are µ(n) = Rp and
σ(n) =

√
Rp(1− p), our answer is [Rp + 2

√
Rp(1− p)]

(i.e.,[µ(n) + 2σ(n)]). When Rp and R(1 − p) are greater
than 5, we could approximate B(R, p) by Gaussian dis-
tribution N (Rp,

√
Rp(1− p)). Thus, the probability that

the server selects a client for greater than or equal to
[Rp + 2

√
Rp(1− p)] (i.e., µ(n) + 2σ(n)) rounds is approx-

imately 2%. If there are 100 clients, the probability that
at least one client is selected for greater than or equal to
[Rp + 2

√
Rp(1− p)] rounds is approximately 87%. There-

fore, [Rp+ 2
√
Rp(1− p)] is a reasonable number.

4.3.2 Attack Dataset
Some prior works [6], [7], [21] assume that the server
has a large auxiliary dataset with similar distribution as
the target client’s training data. However, in federated learn-
ing, this assumption may not hold since the server may not
have access to many private data records. Moreover, under
non-i.i.d. settings, it is very likely that the distribution of
server’s attack dataset is not similar to the distribution of
the targeted client’s dataset. Therefore, in this paper, we
consider i.i.d. and non-i.i.d. settings. We also consider the

*. In this paper, attack round refers to the round that the malicious
server selects the targeted client.
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Fig. 3: Five steps for client-targeted membership inference
in federated learning (CMI). The malicious client selects the
targeted client for [Rp+2

√
Rp(1− p)] rounds to repeat 1 ∼

4 in each round and finally conduct membership inference.

circumstance that the server only has a small/medium-
sized attack dataset. Under the i.i.d. setting, the adversary
could train shadow models to set sample-wise thresholds
for membership prediction. Under non-i.i.d. settings, the
adversary could use spectral clustering to unsupervisedly
cluster the privacy metrics for membership prediction.

5 CLIENT-TARGETED MEMBERSHIP INFERENCE

In this section, we introduce our membership inference
attack framework, called CMI. As illustrated in Fig. 3, in
each attack round, the malicious server first poisons the
model by our targeted poisoning method. The server then
sends the model to the targeted client. The client updates
the model on its local training dataset and sends the model
back to the server. The server selects the targeted client for
[Rp + 2

√
Rp(1− p)] rounds and repeats the above proce-

dure. Finally, the server computes the privacy metrics of
the attack data on the model and infers the membership
of the attack data by the shadow model-based method or
unsupervised clustering. The entire attack process is similar to
the isolating attack process in [8] but with a different poisoning
method and technical details of the inference methods. We first
introduce our targeted poisoning method in the following.

5.1 Targeted Poisoning

We propose a targeted poisoning method to improve the
performance of membership inference. The basic idea of
targeted poisoning is deceiving the model to predict the
attack data as certain wrong labels. With targeted poisoning,
we attempt to achieve the effect shown in Fig. 4—For the
member data in the attack dataset, the model predictions
will be corrected as true labels after the targeted client
optimizes the model on its training dataset (including the
member data) with true labels. For the non-member data in
the attack dataset, most of the model predictions will still be
wrong since the targeted client does not optimize the model
on the non-member samples to correct their predictions. As
a result, targeted poisoning can increase the separation between
the privacy metrics of member and non-member data, as indicated
by Fig. 5.

The main objective of our targeted poisoning method is

min
θ

ℓ(fθ(x), ỹ), (1)

where ỹ refers to the wrong labels. Instead of using random
labels, we propose to employ the most probable wrong labels for

the current model as the wrong labels to magnify the poisoning
effect, i.e.,

ỹ = argmax
k ̸=y

fθ,k(x). (2)

To realize targeted poisoning in practice, the malicious
server can optimize the objective in (1) with the same
optimizer† used by the clients for ⌊E/2⌋ epochs in each
round. E refers to the number of local epochs. The server
can start targeted poisoning from the [Rattack/3]-th round as
the local model training process becomes more stable than
the beginning, where Rattack is the number of attack rounds.

Compared to gradient ascent proposed by [3], one advantage
of targeted poisoning is that targeted poisoning can accumulate
its poisoning effect: For instance, in the last five attack rounds
on Purchase-100, ỹ remains the same for over 95% of the
attack data x. Therefore, our targeted poisoning method
deceives the model to predict x as the same ỹ for most
attack data across different rounds. Also, gradient ascent
maximizes the loss and thus may suffer from loss explosion in
some extreme cases, while targeted poisoning does not have this
issue. As shown in Table 2, target poisoning (TP) consistently
improves membership inference and outperforms gradient
ascent (GA) in most cases.

(a) No Poisoning (b) Targeted Poisoning

Fig. 4: Results on CIFAR10: Targeted poisoning deceives
the model to predict the attack data as wrong labels. The
predictions of member data in the attack dataset will be
corrected as the true labels by local training, but most
predictions of the non-member data will not be corrected
since the targeted client does not trains the model on the
non-member data.

(a) No Poisoning (b) Targeted Poisoning

Fig. 5: The histograms of SCL on CIFAR-10.

The readers may have a concern: Targeted poisoning
decreases the model accuracy, so the attack may be easy
to detect. But we note that, even if there is no attack, it is
still common that the accuracy of the client’s received global
model is lower than the accuracy of the client’s local model

†. In most circumstances, all the clients should use the same opti-
mizer for consistency. Otherwise, the global model may fail to converge.
Thus, even if the server does not know the optimizer, it still can create
a fake client to obtain the shared optimizer.
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Metric Expression
PE − log fargmax f(x)(x)
CE − log fy(x)

Mentr −(1− fy(x)) log fy(x)−
∑

i̸=y fi(x) log(1− fi(x))

SCL log((1− fy(x))/fy(x))

TABLE 1: Expressions of privacy metrics. For SCL, we use the
opposite of the definition in [14].

(only) on this client’s own data. Furthermore, in practical
federated learning, model accuracy may decrease due to
other factors. The decrease caused by targeted poisoning
depends on the ratio between the attack dataset and the
targeted client’s training dataset. If victim dataset is larger
than the attack dataset, then the decrease in accuracy is rel-
atively mild. Otherwise, the victim may observe significant
decrease in the accuracy. Therefore, if the server attempts
to infer the membership of a large number of data samples
in one federated learning process, we do not recommend
the server to use targeted poisoning, which may increase
the chance for the victim to detect the attack. In addition,
we note that gradient ascent in [3] also decreases the model
accuracy but is still considered a valid attack method that
can be leveraged by an active adversary (malicious server).

5.2 Privacy Metrics
We provide the expressions of some privacy metrics studied
in the recent works [7], [14] in Table 1, including prediction
entropy (PE), cross-entropy (CE), Mentr [7], and scaled logit
(SCL) [14]. For SCL, we use the opposite of the definition in
[14] for consistency with the other privacy metrics‡. We do
not consider to use prediction entropy under CMI, because
both correct and wrong predictions with high confidence
lead to small prediction entropy [7]. As shown in Table 1,
Mentr seems more informative since both CE and SCL are
the functions of fy(x), while Mentr contains the information
of f(x). But according to [23], if the targeted client uses
the CE loss for local training, the additional information in
Mentr is not helpful to optimal membership inference. Our
evaluation also indicates that, when we set thresholds for
membership inference, CE, Mentr, and SCL have compara-
ble performance, i.e., No one is always better than the others.

In terms of unsupervised clustering for membership
inference, SCL has the overall best performance in most
cases. We conjecture that this is because (1) SCL has the
largest value range, i.e., (−∞,+∞), so that the member
and non-member clusters are more separable according to
Euclidean distance. (2) The distributions of SCL are more
close to Gaussian distributions than the other metrics [14],
and [27] proves the optimality of spectral clustering on the
mixture of Gaussian distributions. By default, we use SCL
in the experiments.

5.3 Threshold Setting or Clustering
After computing the privacy metrics, the adversary needs to
predict membership labels based on those privacy metrics.
There are two methods for membership prediction based on
privacy metrics: (1) Shadow model based threshold setting

‡. We expect the privacy metrics of member data to be smaller.

Fig. 6: An illustration of the difference between SVM-based
threshold setting method and the threshold setting method
in [7]. SVM’s threshold is more tolerant to deviations.

(2) Unsupervised clustering. The first method is widely
used in the centralized training scenario in the previous
literature [7], [21], which predicts a data sample as a member
if its privacy metric is smaller than a threshold. [7] proposes
to set class-wise thresholds. However, in practice, the server
may not have sufficient data from all the classes with similar
distribution as the client’s dataset. For instance, if the server
has 200 data samples from with 100 classes, and the server
split the data into 100 samples for training the shadow
models and 100 samples for testing, then the probability that
each class has one training sample is only 100!

100100 ≈
√
200π
e100

(according to Stirling’s approximation). Therefore, it is not
practical to set class-wise thresholds when the server has limited
data.

Other choices include setting a general threshold or
sample-wise thresholds. Since different data samples may
have different properties, some data samples may be easy to
fit, while others may not. In this sense, different data sam-
ples may have different distributions of privacy metrics [14].
Therefore, by default, we set sample-wise thresholds instead
of a general threshold here. We use support vector machine
(SVM) to identify the threshold with large margins rather than
use [7]’s method to set one of the privacy metrics as the threshold.
As shown in Fig. 6, the threshold set by SVM is more
tolerant to deviations than the threshold set by the method
in [7].

Although the first method is intuitive and effective, it has
limitations in practical federated learning. One limitation is
that the server needs to know the learning scheme used
by the targeted client, including the optimizer, number of
local epochs, and the defensive mechanism. If the server
uses a different learning scheme to train the shadow models,
then the attack performance of the first method could be
unsatisfactory. Moreover, under non-i.i.d. settings, it is very
likely that the distribution of the server’s dataset is different
from the distribution of the targeted client’s data, so the
threshold set by the attack dataset does not generalize
to the victim dataset. Consequently, setting thresholds by
training shadow models on the server’s dataset may lead to
suboptimal attack performance.

Under the above circumstances, we may need to use
the second method, i.e., unsupervised clustering. This is
because clustering method is an unsupervised approach.
Since the privacy metrics of member and non-member data
are significantly separated by targeted poisoning, we could
use the clustering method for membership inference. Here
the idea of unsupervised clustering is to cluster the privacy
metrics into two clusters, and predict the cluster with the
smallest privacy metric as the member cluster. According to
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our analysis in Section 5.2, we use SCL here. We follow [3] to
use spectral clustering, which performs better than K-means
here. We use the nearest neighbor method to construct
the affinity matrix for spectral clustering, which has better
empirical performance than the radial basis function (RBF)
kernel method here.

6 POTENTIAL DEFENSES

As introduced in Section 2.4, the community has developed
several defenses against membership inference, but not all
of them are suitable for federated learning. For instance,
MemGuard is not applicable to federated learning since the
malicious server has the access to the local model. Adversar-
ial regularization requires the clients to have additional data
and computational resource for the adversarial learning
process, which is not affordable for some clients in federated
learning. Local DP-SGD seems to be a suitable defense,
according to [8]§. Although DP-SGD has good defensive
performance under the i.i.d. setting, which is verified by [8]
and our experimental results, it may not provide satisfactory
protection under non-i.i.d. settings, as discussed below.

6.1 DP-SGD’s Limitation under label-biased Distribu-
tion

In some cases, a client may only have data from a subset
of classes. In that case, even if the client applies DP-SGD
locally, the local model is still only trained on label-biased
data distribution. As a result, DP-SGD may not provide
satisfactory protection. Here we provide a simple example
for the readers to understand the reason: Suppose that the
total number of classes is K , and the targeted client only
has training data from K1 classes. After local training, the
local model will tend to recognize a data sample as one of
those K1 classes. Consequently, the local model will tend to
have relatively smaller privacy metrics on the member data
from those K1 classes and larger privacy metrics on the non-
member data from the other K −K1 classes, leading to not
low membership inference accuracy. The privacy metrics of
non-member data from those K1 classes may also affect the
attack accuracy, but anyway, the attack accuracy is usually
not very low according to the results in Table 4.

6.2 RR-Label against Membership Inference

To defend against membership inference under the non-
i.i.d. settings with label-biased data distribution, we propose
to randomize the labels by a modified random response
method, namely RR-Label. Ghazi et al. [10] recently pro-
posed a random response based algorithm, called RRTop-
k, to protect label privacy in deep learning. Our random
response method is different from the method in [10] since
our objective is to reduce membership inference accuracy.
We specify RR-Label in Alg. 1 and introduce the notations in
Alg. 1 in the following. Suppose that a client’s data is mainly
from K1 classes (K1 < K). We name the K1 classes as the
majority label group, denoted by YK1

. We name the other
classes as the minority label group, denoted by YK/YK1

.

§. Local differential privacy (LDP) in [8] means that the clients apply
DP-SGD to local training for privacy protection.

Algorithm 1 RR-Label (for Unbalanced Non-i.i.d. Settings)

RR-Label(y):
Sample b from Bernoulli distribution Bernoulli(q).
if b < 0.5 and y ∈ YK1

then
Output a random label y′ ∈ YK/YK1

else
Output y′ = y

end if

The main difference between RR-Label and RRTop-k [10]
is that RRTop-k (k = K1

¶) always outputs a label from YK1
.

Although RRTop-k can guarantee ϵ-DP privacy on a single
label [10], it does not address the label bias issue. Since
RRTop-k only trains the local model on labels from YK1

, the
RRTop-k trained model tends to recognize a data sample as
the label from YK1

. Thus, RRTop-k has the same limitation
as DP-SGD here. In contrast, RR-Label always optimizes
the model on labels from both YK1

and YK/YK1
. So the

predictions of RR-Label trained model point to the labels
from both YK1

and YK/YK1
. As indicated by results in

Table 4, RRTop-k has similar defensive performance as DP-
SGD since they both fail to address the label bias issue, while
RR-Label reduces the membership inference to nearly the
accuracy of random guess and maintains acceptable model
utility.

6.3 Multi-Party Secure Computation
Secure multi-party computation (SMC) is another potential
defense against client-targeted privacy attacks in federated
learning. To apply SMC to federated learning. we could first
set up a random vector with the same dimension as the
model weights between Client i and j, denoted by rij . In
each round, before the n selected clients send their model
updates to the server, they randomize their model weights
as follows:

θ̃i = (θi +
n∑

j=i+1

rij −
i−1∑
k=1

rki) mod Θ,

where Θ is a certain bound on the model weights [28]. By
the shared randomness between the n selected clients, SMC
seems to prevent the leakage of the clients’ local model
weights. However, if the server creates a few fake clients or
collaborates with some clients, and intentionally selects those
clients and the targeted client in the same round, then the server
will know all the rij in this round. With this trick, the server still
can obtain the targeted client’s local model weights. Therefore,
in federated learning, we recommend the clients to use DP-
SGD or RR-Label to defend against membership inference.

7 EXPERIMENTS

7.1 Experimental Setup
7.1.1 Datasets
We follow [3], [7], [8] to use Purchase-100, Texas-100, CIFAR-
10, and CIFAR-100 for evaluation. For Purchase-100 and
Texas-100, we randomly select 50000 samples for training

¶. The optimal k is K1 if the client mainly has data from K1 classes
with a uniform prior, according to [10].
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and 10000 samples for testing as CIFAR-10 and CIFAR-100.
We randomly divide the training samples into 100 training
datasets and allocate them to 100 clients. We measure the
testing accuracy (of the aggregated model) on all the testing
samples.

7.1.2 Networks
On Purchase-100 and Texas-100, we follow [3], [7] to use
a multi-layer perception network with four hidden lay-
ers. The numbers of neurons in the hidden layers are
[1024, 512, 256, 128], and the activation function is Tanh
function [7], [21]. On CIFAR-100, we use ResNet-18 [29].

7.1.3 Federated Learning
We set the number of clients as 100 rather than only 4 in [8].
By default, we use an SGD optimizer with momentum 0.9
and learning rate 0.01 for the clients to optimize their local
models. We set the number of local epochs as 5 and the
batch size as 32. The total number of rounds is set at 100.
The server selects 10 clients to aggregate their local models
in each round. We evaluate the non-i.i.d. setting where each
client only has training data from half of the total classes,
i.e., K1 = K/2.

7.1.4 Attack Settings
According to the settings of federated learning, the ma-
licious server selects the targeted client for 16 rounds
(Rp = 10 and

√
Rp(1− p) = 3). By default, we set the

size of the attack dataset at 200, in which 100 samples
are randomly sampled from the targeted client’s training
dataset, and 100 samples are randomly sampled from the
testing dataset. Therefore, under the i.i.d. setting where the
client’s training dataset and the testing dataset are from the
same distribution, the attack dataset and the victim dataset
share a similar distribution. But under the non-i.i.d. setting
where the client’s training dataset and the testing dataset
are not from the same distribution, the attack dataset and
the victim dataset do not share a similar distribution. For
targeted poisoning, we also use an SGD optimizer with
momentum 0.9 and learning rate 0.01, and we optimize the
objective in (1) for ⌊E/2⌋ = 2 epochs. By default, we use
SCL. For the shadow model based method, we train 256
shadow models to set thresholds. For the attack baselines [3]
and [6], the server also only selects the targeted client for 16
rounds, not all 100 rounds. We do not use [4] and [5] as baselines
here, because [4]’s attack is designed for a completely different
threat model, and [5] needs to embed a special structure into the
neural networks.

7.1.5 Defense Settings
We use Opacus [30] to implement DP-SGD in federated
learning. For DP-SGD, set ϵ = 5 or 10 and δ = 10−5 for
each round of training. The maximum gradient norm is set
at 1. For RR-Label, we set q = 0.15 ∼ 0.3 for Bernoulli(q)
in Alg. 1. We do not use SMC as a baseline, because SMC will be
broken if the server uses a simple trick, as explained in Section 6.3.

7.2 Empirical Results under i.i.d. Setting
7.2.1 Attack Results
We report the attack results in Table 2, where GA refers to
gradient ascent, TP refers to targeted poisoning. Shadow

(a) Purchase-100 (b) Texas-100

(c) CIFAR-10 (d) CIFAR-100

Fig. 7: The test accuracy of FedAvg and FedAvg + DP-SGD
under the i.i.d. setting. DP-SGD causes significant degrada-
tion in model accuracy in federated learning, especially on
more complicated datasets such as CIFAR-100.

refers to training shadow models to set sample-wise thresh-
olds (by SVM) for membership inference. Cluster refers to
spectral clustering with nearest neighbor affinity matrices
for membership inference. As shown in Table 2, our pro-
posed targeted poisoning consistently improves the attack
performance and outperforms gradient ascent [3] in most
cases. Notably, CMI (Shadow + TP) achieves over 90%
accuracy on all the datasets and significantly outperforms
[3] and [6] under the i.i.d. setting.

7.2.2 Defense Performance
We evaluate the defensive performance of local DP-SGD
and provide the evaluation results in Table 3. We do not
evaluate RR-Label under the i.i.d. setting because RR-Label
is proposed to address the issue of DP-SGD under label-
biased non-i.i.d. setting, and RR-Label is not applicable to
i.i.d. settings where there is no majority label group. We
confirm [8]’s observation that local DP-SGD is an effective
defense against membership inference under the i.i.d. set-
ting. Nevertheless, DP-SGD also significantly reduces the model
accuracy, which is not reported in [8]. We also show the evolu-
tion of testing accuracy in Fig. 7, which indicates federated
learning with local DP-SGD converges slower than standard
federated learning. A surprising result is that on CIFAR-100,
if the clients apply DP-SGD, the global model accuracy will
be very low. This is probably because CIFAR-100 is more
complicated than Purchase-100 and Texas-100 and has 10×
more classes than CIFAR-10.

A natural question is—why [8] does not observe the severe
degradation in model performance caused by DP-SGD? One
reason is that [8] only considers four participants in the
membership inference experiments. If we use similar set-
tings, the testing accuracy of DP-SGD can increase by about
10% on CIFAR-100. Another reason is that the results reported
by [8] are questionable: According to [31] (a Github project
with 1.5K stars), even with centralized training and no
defense, AlexNet only achieves approximately 44% testing
accuracy on CIFAR-100. But [8] reports 82% testing accuracy
with AlexNet on CIFAR-100. In fact, even in the centralized
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Attack Method Nasr’s Attack [3] Gu’s Attack [6] Shadow Shadow + GA Shadow + TP Cluster Cluster + GA Cluster + TP

Purchase-100 Best 96.0% 89.5% 93.0% 96.0% 99.0% 97.0% 98.5% 100%
Avg 91.5% 88.2% 91.8% 92.8% 97.3% 96.3% 98.0% 99.8%

Texas-100 Best 87.5% 80.0% 84.5% 88.0% 91.5% 84.0% 88.5% 87.5%
Avg 85.5% 78.0% 82.8% 87.7% 90.3% 83.0% 86.7% 86.3%

CIFAR-10 Best 65.0% 71.0% 75.0% 79.5% 93.5% 78.0% 74.0% 89.0%
Avg 58.7% 67.3% 73.8% 78.0% 90.8% 76.0% 70.3% 86.0%

CIFAR-100 Best 82.0% 94.0% 97.5% 99.0% 99.0% 98.0% 98.5% 100%
Avg 65.5% 89.5% 96.5% 97.3% 98.3% 85.8% 95.5% 99.5%

TABLE 2: Comparison between different attack methods under the i.i.d. setting: We report the best and the averaged membership
inference accuracy over three runs. The targeted client updates its local model on 500 training samples, while the server only
has 100 training samples to train the shadow models. Nevertheless, the shadow model based inference method is more
suitable for the i.i.d. setting according to the results. GA: Gradient Ascent; TP: Targeted Poisoning.

Defense Method No Defense DP-SGD
Test Acc Mem Acc Test Acc Mem Acc

Purchase-100 Best 85.6% 100% 47.0% 70.5%
Avg 85.2% 99.8% 46.8% 68.8%

Texas-100 Best 55.8% 87.5% 40.1% 64.0%
Avg 55.7% 86.3% 39.7% 63.8%

CIFAR-10 Best 88.5% 89.0% 36.8% 57.0%
Avg 88.2% 86.0% 36.3% 54.5%

CIFAR-100 Best 59.4% 100% 4.4% 59.0%
Avg 59.1% 99.5% 4.3% 56.7%

TABLE 3: The defensive performance of DP-SGD under the
i.i.d. setting. We use Cluster + TP which does not need a
similarly-distributed dataset to train shadow models.

scenario, we may need to use more complicated neural net-
works such as WRN-28-10 and ResNeXt-29 to achieve over
80% accuracy on CIFAR-100, according to [31]. Apparently,
our experimental results are more convincing than [8]’s
results.

All in all, we confirm that local DP-SGD is an effective
defense against membership inference in federated learning.
But we reveal that, in practical federated learning, DP-SGD
significantly degrades model accuracy, especially on more
complicated datasets such as CIFAR-10 and CIFAR-100.

7.3 Empirical Results under non-i.i.d. Setting
We report the main results in Table 4. We show that, even
sacrificing a lot of model accuracy, DP-SGD [8], [9] still can
not achieve satisfactory defensive performance under the
non-i.i.d. setting. To be specific, under the non-i.i.d. setting,
CMI achieves over 70% membership inference accuracy
against DP-SGD. This is because DP-SGD does not ad-
dress the label bias issue since in the training process, DP-
SGD still only optimizes data pairs with labels from YK1

(K1 = K/2).
Although RRTop-k [10] guarantees ϵ-DP on a single

label, it still only optimizes the model on the data with
labels from YK1

. Therefore, RRTop-k also does not address
the label bias issue and thus can not provide satisfactory
protection. In contrast to DP-SGD and RRTop-k, RR-Label
optimizes the model on the data with random labels from
YK/YK1

to address the label bias issue. As shown in Table 4,
RR-Label reduces the membership inference accuracy of
CMI by 35% ∼ 45% with a sacrifice of 15% ∼ 30% model
accuracy. All in all, RR-Label achieves a much better trade-
off between model accuracy and defensive performance
against membership inference, compared to DP-SGD and
RRTop-k.

(a) No Defense (b) DP-SGD

Fig. 8: Compare the averaged membership inference accuracy
of Shadow + TP with Cluster + TP over three runs under
the non-i.i.d. setting. In most cases, the clustering method
achieves better attack performance under the non-i.i.d. set-
ting.

(a) Purchase-100 (b) Texas-100

(c) CIFAR-10 (d) CIFAR-100

Fig. 9: The test accuracy of FedAvg, FedAvg + DP-SGD,
FedAvg + RRTop-k, and RR-Label under the label-biased non-
i.i.d. setting.

Besides, we compare Shadow + TP and Cluster + TP
under the non-i.i.d. setting in Fig. 8, which shows that the
clustering method is more suitable for membership predic-
tion here. We also plot the evolution of testing accuracy in
Fig. 9, which shows that, under non-i.i.d. settings, the global
model accuracy experiences more fluctuations than under
the i.i.d. setting.

7.4 Ablation Studies
7.4.1 Attack Rounds
One important revised assumption is that the server only
selects the targeted client for a reasonable number of rounds.
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Defense Method No Defense DP-SGD RRTop-k RR-Label
Test Acc Mem Acc Test Acc Mem Acc Test Acc Mem Acc Test Acc Mem Acc

Purchase-100 Best 84.9% 99.5% 45.7% 80.5% 50.7% 79.0% 56.1% 58.5%
Avg 84.2% 99.3% 45.4% 80.2% 49.8% 77.3% 55.1% 56.2%

Texas-100 Best 53.3% 92.5% 40.4% 71.5% 21.6% 73.0% 40.2% 57.0%
Avg 52.9% 91.5% 39.7% 71.3% 19.4% 72.3% 39.5% 55.3%

CIFAR-10 Best 82.5% 91.0% 35.2% 75.0% 26.2% 75.0% 65.0% 55.0%
Avg 81.0% 88.3% 31.4% 75.0% 24.9% 75.0% 63.9% 51.8%

CIFAR-100 Best 57.0% 99.0% 3.6% 74.5% 17.4% 74.5% 29.5% 60.5%
Avg 56.7% 98.0% 3.0% 72.7% 15.6% 73.7% 28.2% 54.8%

TABLE 4: The model performance and defensive performance of different methods under the non-i.i.d. setting. We use
Cluster + TP here. Test Acc refers to model testing accuracy, and Mem Acc refers to membership inference accuracy.

Attack Rounds µ+ 2σ µ+ 3σ µ+ 4σ µ+ 5σ

Texas-100 86.3% 91.8% 95.6% 97.3%
CIFAR-10 86.0% 91.5% 92.3% 93.2%

TABLE 5: The averaged attack accuracy of Cluster + TP over
three runs with different attack rounds.

Small Attack Dataset P100 T100 C10 C100
Shadow + TP 100% 90% 83% 98%
Cluster + TP 100% 87% 85% 100%

TABLE 6: The averaged attack accuracy over three runs on a
small attack dataset with 20 samples. To save space, we use the
initial plus the number of classes to denote a dataset here.

We set the number as [µ(n) + 2σ(n)], according to the
analysis in Section 4.3. But readers may wonder what will
happen if we increase the number of attack rounds. To
answer this question, we use Cluster + TP as an example
and show the results in Table 5 (µ = 10 and σ = 3). We only
show the results on Texas-100 and CIFAR-10 because on
Purchase-100 and CIFAR-100, CMI already achieves nearly
100% attack accuracy with µ+ 2σ attack rounds. According
to Table 5, as the number of attack rounds increases, it is
not surprising that the membership inference accuracy also
increases. Therefore, the clients should reject uploading the
model if they are selected for an unreasonable number of
rounds in federated learning.

7.4.2 Attack Dataset
In the previous experiments, we use a medium-sized attack
dataset with 200 data samples for evaluation. Here we
evaluate CMI on 20 attack samples to verify the applicability
of CMI to small-sized attack datasets. As indicated by the
results in Table 6, CMI can also achieve good attack results
on small attack datasets. Therefore, the effectiveness of CMI
does not highly depend on the data size.

7.4.3 Defense Budgets
A natural question regarding defense is—Could we improve
defensive performance by tighter budgets? Here we use DP-

Tighter Budget P100 T100 C10 C100

DP-SGD (i.i.d.) Test Acc 2.1% 8.5% 16.6% 1.4%
Mem Acc 48.3% 51.2% 51.0% 52.7%

TABLE 7: The averaged results of DP-SGD with a tighter
budget (ϵ = 1) over three runs.

SGD as an example. We conduct evaluations with ϵ = 1 and
show the results in Table 7. As indicated by Table 7, with a
tighter budget, DP-SGD could reduce the attack accuracy to
about 50% (approximately the accuracy of random guess).
But the model accuracy also drops to an unacceptable level
on all datasets. Thus, it is crucial to select an appropriate
defense budget.

7.5 Takeaways
We highlight some takeaways summarized from the eval-
uation results: (1) Even if the malicious server only has
a small/medium-sized dataset and only selects the victim
for limited rounds, federated learning is still vulnerable
to client-targeted membership inference. (2) Although DP-
SGD is an effective defense against membership inference
under the i.i.d. setting, it causes significant degradation in
model accuracy. (3) DP-SGD could not provide satisfactory
protection when a client only has data from a subset of
classes. (4) Under label-biased non-i.i.d. settings, appropri-
ately randomizing the labels in the local training process
could provide protection against membership inference.

8 CONCLUSIONS

In this paper, we provide a more practical threat model
for membership inference in federated learning by revising
several impractical assumptions in prior works. Under the
revised threat model, we propose CMI, an attack framework
with a targeted poisoning method. The targeted poisoning
method could increase the separation between the privacy
metrics of member and non-member data and accumulate
its poisoning effect to improve the attack performance.
Under CMI, we further refine some technical details such
as setting the thresholds by SVM to improve the tolerance
of the thresholds to deviations. Due to the limited effec-
tiveness of DP-SGD under label-biased non-i.i.d. settings,
we propose a modified random response algorithm, called
RR-Label. Since RR-Label addresses the label bias issue
by randomizing the majority labels into minority labels,
it could provide protection against membership inference
under label-biased non-i.i.d. settings. Extensive evaluations
on multiple datasets verify the efficacy of our proposed
attack and defense methods.

REFERENCES

[1] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, “Federated
learning,” Synthesis Lectures on Artificial Intelligence and Machine
Learning, vol. 13, no. 3, pp. 1–207, 2019.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3346692

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Missouri-Kansas City. Downloaded on January 26,2024 at 06:35:00 UTC from IEEE Xplore.  Restrictions apply. 



11

[2] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split
learning for health: Distributed deep learning without sharing raw
patient data,” arXiv preprint arXiv:1812.00564, 2018.

[3] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy
analysis of deep learning: Passive and active white-box inference
attacks against centralized and federated learning,” in 2019 IEEE
symposium on security and privacy (SP). IEEE, 2019, pp. 739–753.

[4] H. Hu, Z. Salcic, L. Sun, G. Dobbie, and X. Zhang, “Source
inference attacks in federated learning,” in 2021 IEEE International
Conference on Data Mining (ICDM). IEEE, 2021, pp. 1102–1107.

[5] G. Pichler, M. Romanelli, L. R. Vega, and P. Piantanida, “Perfectly
accurate membership inference by a dishonest central server in
federated learning,” arXiv preprint arXiv:2203.16463, 2022.

[6] Y. Gu, Y. Bai, and S. Xu, “Cs-mia: Membership inference attack
based on prediction confidence series in federated learning,”
Journal of Information Security and Applications, vol. 67, p. 103201,
2022.

[7] L. Song and P. Mittal, “Systematic evaluation of privacy risks of
machine learning models,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 2615–2632.

[8] M. Naseri, J. Hayes, and E. De Cristofaro, “Local and central differ-
ential privacy for robustness and privacy in federated learning,”
in 29th Annual Network and Distributed System Security Symposium,
NDSS 2022, 2022.

[9] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,”
in Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, 2016, pp. 308–318.

[10] B. Ghazi, N. Golowich, R. Kumar, P. Manurangsi, and C. Zhang,
“Deep learning with label differential privacy,” Advances in Neural
Information Processing Systems, vol. 34, pp. 27 131–27 145, 2021.

[11] “Acquire Valued Shoppers Challenge,” https://www.kaggle.
com/c/acquire-valued-shoppers-challenge.

[12] “Texas Department of State Health Services,” https://www.dshs.
texas.gov/THCIC/Hospitals/Download.h.

[13] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of
features from tiny images,” 2009.

[14] N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer,
“Membership inference attacks from first principles,” in 2022 IEEE
Symposium on Security and Privacy (SP). IEEE Computer Society,
2022, pp. 1519–1519.

[15] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process-
ing Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[16] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Ar-
cas, “Communication-efficient learning of deep networks from
decentralized data,” in Artificial intelligence and statistics. PMLR,
2017, pp. 1273–1282.

[17] Y. Liu, T. Fan, T. Chen, Q. Xu, and Q. Yang, “Fate: An industrial
grade platform for collaborative learning with data protection,”
The Journal of Machine Learning Research, vol. 22, no. 1, pp. 10 320–
10 325, 2021.

[18] F. Lai, Y. Dai, S. S. Singapuram, J. Liu, X. Zhu, H. V. Madhyastha,
and M. Chowdhury, “FedScale: Benchmarking model and system
performance of federated learning at scale,” in International Con-
ference on Machine Learning (ICML), 2022.

[19] B. Li, N. Su, C. Ying, and F. Wang, “Plato: An open-source research
framework for production federated learning,” in Proceedings of the
ACM Turing Award Celebration Conference-China 2023, 2023, pp. 1–2.

[20] M. Hipolito Garcia, A. Manoel, D. Madrigal Diaz, F. Mireshghal-
lah, R. Sim, and D. Dimitriadis, “Flute: A scalable, extensible
framework for high-performance federated learning simulations,”
arXiv e-prints, pp. arXiv–2203, 2022.

[21] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
symposium on security and privacy (SP). IEEE, 2017, pp. 3–18.

[22] L. Song, R. Shokri, and P. Mittal, “Privacy risks of securing
machine learning models against adversarial examples,” in Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 241–257.

[23] A. Sablayrolles, M. Douze, C. Schmid, Y. Ollivier, and H. Jégou,
“White-box vs black-box: Bayes optimal strategies for membership
inference,” in International Conference on Machine Learning. PMLR,
2019, pp. 5558–5567.

[24] M. Nasr, R. Shokri, and A. Houmansadr, “Machine learning
with membership privacy using adversarial regularization,” in

Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 634–646.

[25] J. Jia, A. Salem, M. Backes, Y. Zhang, and N. Z. Gong, “Memguard:
Defending against black-box membership inference attacks via
adversarial examples,” in Proceedings of the 2019 ACM SIGSAC
conference on computer and communications security, 2019, pp. 259–
274.

[26] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
nets,” Advances in neural information processing systems, vol. 27,
2014.
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