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Abstract—Big client data and deep learning bring a new
level of accuracy to wireless traffic prediction in non-adversarial
environments. However, in a malicious client environment, the
training-stage vulnerability of deep learning (DL) based wireless
traffic prediction remains under-explored. In this paper, we
conduct the first systematic study on training-stage poisoning
attacks against DL-based wireless traffic prediction in both
centralized and distributed training scenarios. In contrast to
previous poisoning attacks on computer vision, we consider a
more practical threat model, specific to wireless traffic prediction,
to design these poisoning attacks. In particular, we assume that
potential malicious clients do not collude or have any additional
knowledge about the other clients’ data. We propose a pertur-
bation masking strategy and a tuning-and-scaling method to fit
data and model poisoning attacks into the practical threat model.
We also explore potential defenses against these poisoning attacks
and propose two defense methods. Through extensive evaluations,
we show the mean square error (MSE) can be increased by over
50% to 10° times with our proposed poisoning attacks. We also
demonstrate the effectiveness of our data sanitization approach
and anomaly detection method against our poisoning attacks in
centralized and distributed scenarios.

Index Terms—data and model poisoning attacks, deep learning,
wireless traffic prediction

I. INTRODUCTION

Wireless traffic prediction is one of the keys to enable more
intelligent wireless communications. A high-accuracy wireless
traffic prediction model can guide the servers and routers to
wisely organize wireless traffic and mitigate network conges-
tion caused by unexpected traffic overhead. To facilitate in-
telligent wireless communications, recent advances fuse deep
learning techniques and big client data for training wireless
traffic prediction models, leading to substantial performance
gains [1]-[4], compared to the conventional methods.

For instance, in the centralized training scenario, Wang et
al. [1] proposed a hybrid deep learning solution for wireless
traffic prediction with an autoencoder for spatial modeling
and long short term memory units (LSTM) for temporal
modeling. In terms of the mean square error (MSE) of the
predictions, it outperformed the conventional methods, such
as AutoRegressive Integrated Moving Average (ARIMA) [5]
and Support Vector Regression (SVR) [6], by more than 30%.
As another example, Zhang et al. [4] proposed a dual attention
based federated learning scheme (FedDA) for wireless traffic
prediction, leading to performance gains of 10% to 30% over
previous baselines in the distributed training scenario.

However, current achievements of using deep learning on
wireless traffic prediction are accomplished in non-adversarial

environments, and it can be a completely different story in a
malicious client environment. To enable model training on big
client data, the cloud server has to involve a large group of
clients (e.g., base stations) in the training stage, which might
contain quite a few malicious clients. In a centralized training
scenario, the cloud server collects the training data from the
clients, which provides the chance for the malicious clients to
launch data poisoning attacks [7]-[11] by injecting poisoned
data into the training dataset. In a distributed training scenario
(e.g., federated learning [12]), the cloud server aggregates the
model updates from a group of clients, providing a malicious
client with the chance to launch model poisoning attacks by
submitting poisoned model updates to the server.

Recent studies have investigated the severe negative impacts
caused by the training-stage poisoning attacks in some other
applications. In computer vision, [8], [10], [11], [13] demon-
strate that data poisoning can mislead deep learning models to
output targeted predictions on targeted data with a small set
of poisoned data. [14] shows that poisoning attacks can teach
neural code autocompleters to suggest the insecure ECB mode
for AES encryption or a low iteration count for password-
based encryption. The data poisoning attack proposed in
[15] pushes deep learning based recommendation systems to
recommend attacker-chosen items to many users by injecting
a few fake users with well-crafted ratings into the training
dataset. [16] shows that attackers can implant a backdoor into
deep learning models by submitting poisoned model updates.

Despite the recent rich research on poisoning attacks, the
training-stage vulnerability of deep learning (DL) based wire-
less traffic prediction is still under-explored. To fill this re-
search gap, we conduct the first systematic study on poisoning
attacks against DL based wireless traffic prediction. In our
study, we consider a generally more practical threat model for
wireless traffic prediction, compared to some related works in
the other applications, to design the poisoning attacks. Specif-
ically, in both centralized and distributed training scenarios,
we assume that a malicious client only has the access to its
own traffic data, without any additional knowledge about the
other client data. Also, in the distributed training scenario, we
assume no collision between malicious clients, which means
a malicious client needs to manipulate its poisoned model
update individually. A malicious client can not manipulate
multiple model updates or optimize its update based on the
other client’s model updates. The main benefit of assuming
the above threat model is that the poisoning attacks designed
under such a practical threat model can pose a real-world threat



to DL based wireless traffic prediction.

Most of the recent poisoning attacks assume that the adver-
sary has the knowledge about the other clean data or the other
clients’ model updates, and thus are not directly applicable to
our practical threat model. To fit data and model poisoning at-
tacks into our threat model, we propose a perturbation masking
strategy for data poisoning and a tuning-and-scaling method
for model poisoning. The attempt of the perturbation masking
strategy is to mimic the centralized model optimization pro-
cess with limited data. In each perturbation crafting step, a
malicious client randomly samples a mask ¢ from a Bernoulli
distribution Bern(p) for each data sample and multiplies the
corresponding perturbation by £ (see Section IV-A). Then the
malicious client crafts the perturbations on the surrogate mod-
els. In this regard, the surrogate models seem to be optimized
on 100(1 — p)% clean data (£ = 0) and 100p% poisoned data
(¢ = 1) in the perturbation crafting process, which is similar to
the centralized model optimization process and thus improves
the generalizability of the crafted perturbations. The tuning-
and-scaling method is proposed for non-collusive malicious
clients in the distributed scenario. In this method, a malicious
client first initializes the poisoned model update as the negative
of the previous global model update and then fine-tunes the
poisoned update on its traffic data by maximizing the MSE.
Finally, the malicious client sets a scaling factor and multiplies
the update by the factor to magnify the effects of the poisoned
update or bypass anomaly detection (see Section IV-B).

Beyond designing poisoning attacks, we also investigate
potential defenses against the poisoning attacks on wireless
traffic prediction. For data poisoning, we implement and
evaluate data sanitization and randomized smoothing based
defenses [17]-[19]. Since in practice, those defenses are not
very effective against our data poisoning attacks on wireless
traffic prediction, we propose a more suitable data sanitization
method for wireless traffic data. Our intuition is that the natural
wireless traffic volume rarely changes too much between two
adjacent time points in practice. Thus, we define a metric as the
sum of absolute traffic volume differences between two adja-
cent time points, called adjacent distance, and remove the data
samples with the largest adjacent distances (See Section V-A).
To defend against model poisoning, we implement state-of-
the-art robust aggregation methods including Multi Krum,
Trimmed Mean, and Median [20], [21] and evaluate their
performance on wireless traffic prediction. We also design an
anomaly detection method for detecting the poisoned model
updates with abnormal magnitude (¢2-norm).

We conduct an array of experiments on the real-world
wireless traffic data from Telecom Italia [22]. We evaluate
the poisoning attacks against four baselines in the centralized
or distributed training scenarios, including centralized training
on LSTM, centralized training on ConvLSTM*, federated
averaging (FedAvg) on LSTM, and FedDA on LSTM [4].
The empirical results show that our poisoning attacks can
increase the MSE of the four baselines by over 50% to

*ConvLSTM refers to 1d convolution layer followed by LSTM

more than 10® times (almost an arbitrary level). We also
evaluate data sanitization and randomized smoothing against
our data poisoning attack and Multi Krum, Trimmed Mean,
Median, and the anomaly detection method against our model
poisoning attack. The evaluation results show that our data
sanitization approach and anomaly detection method achieve
the overall best performance against our poisoning attacks.
The contributions of this paper are summarized as follows:

1) We conduct the first systematic study on the training-
stage vulnerability of deep learning based wireless traffic
prediction in centralized and distributed scenarios.

2) We consider a practical threat model and fit data and
model poisoning attacks into the threat model with our
proposed masking and tuning-and-scaling methods.

3) To defend against the poisoning attacks, we implement
several defenses and design a data sanitization method
and an anomaly detection method.

4) We conduct extensive evaluations to verify the effec-
tiveness of our poisoning attacks and examine the per-
formance of several defenses on different types of real-
world wireless traffic data from Telecom Italia.

The remainder of the paper is organized as follows: We begin
with introducing the background and related work in Sec-
tion II. In Section III, we formulate the problem and introduce
our practical threat model. We introduce the poisoning attacks
in Section IV and potential defenses in Section V. We conduct
extensive evaluations and show the results in Section VI.
Finally, we conclude the paper in Section VIL.

II. BACKGROUND AND RELATED WORK
A. Definitions and Notations

In general, we denote a sequence of wireless traffic data
by v = {v1,vs,...,up} with a total of T time points. v;
refers to the traffic volume at the time point ¢. The attempt
of wireless traffic prediction is to predict the traffic volume
at a time point based on the previous traffic volumes. The
previous literature on deep learning based wireless traffic
prediction utilizes part of the previous traffic volumes, e.g.,
{Vt—1,V4—2, ..., V4—p1..., Vt_gq}, to predict the traffic volume
v;. p and ¢ refer to two sliding window sizes for capturing
the dependence of v; on the closest historical data and the
periodicity of the traffic data, and ¢ refers to the period. For
simplicity, we denote {v;_1,v;_2, ..., V_p1..., Vi—pq} DY Xy
and the target v; as y;. We denote the dataset owned by the k-
th client (e.g., base station) by Dy, = {xF, yf}f&l We denote a
wireless traffic prediction model as fg(-) and its prediction as
J: = fo(xt), where 0 denotes model parameters. The previous
literature usually trains fg(-) to minimize the mean square
error between 7; and y;, denoted by || — v:||3. We denote
the perturbation added on x¥ by &, and the perturbation on

y¥ by 4, (poisoned data refers to >7<f + &, and y¥ + Oy).

B. Wireless Traffic Prediction

In general, wireless traffic prediction is a time-series fore-
casting problem, which means the approaches developed for



time-series forecasting are applicable to wireless traffic predic-
tion. The earlier works on traffic prediction utilize traditional
time-series forecasting methods, such as autoregressive inte-
grated moving average (ARIMA) and support vector regres-
sion (SVR), to predict wireless/urban traffic load [5], [6], [23].
Recent advances focus on the application of deep learning
techniques to wireless traffic prediction. For instance, Wang
et al. [1] proposed a hybrid deep learning model with an
autoencoder-based deep model for spatial modeling and long
short memory units (LSTM) for temporal modeling. Based
on LSTM, Qiu er al. [24] developed a centralized multi-
task learning architecture to explore the commonalities and
differences between cells for performance improvement. In
the distributed training scenario, Zhang et al. [4] recently
proposed to cluster the base stations based on their geometrical
information and augmented traffic data and aggregate the local
models under a hierarchical architecture by a dual attention
based model aggregation mechanism (FedDA).

C. Data Poisoning against Deep Learning

Data poisoning refers to training-stage attacks that can
degrade model performance or mislead the model to output
targeted predictions by injecting a subset of carefully crafted
data, referred to as poisoned data, into the training dataset.
Data poisoning assumes that the adversaries only participate
in data preparation, without any control on model optimization
and the inference stage. In terms of the adversary’s goals,
existing poisoning attacks (including model poisoning attacks)
can be divided into targeted and untargeted attacks. The
targeted data poisoning attacks mislead the model to output tar-
geted predictions on the targeted data. The untargeted attacks
focus on degrading the model performance on all the testing
data. In terms of the adversary’s capabilities, existing data
poisoning attacks include clean-label data poisoning, label-
flipping attacks, etc. Clean-label data poisoning assumes that
the adversary does not have control on the labeling process [8],
[10], while label-flipping attacks refer to the attacks conducted
by flipping the labels of the poisoned data [25], [26]. To
mitigate the effects of data poisoning, the community has
developed defenses against data poisoning based on the theory
of robust statistics, differential privacy, etc. [17], [19], [27].

D. Model Poisoning against Federated Learning

In contrast to the centralized training scenario, a malicious
client can directly modify the uploaded model updates in
federated learning. Compared with the indirect effects caused
by data poisoning on model weights, the direct manipulation
on model weights by poisoned model updates substantially im-
proves the attack performance [16]. A commonly-used method
is to craft the poisoned updates on a poisoned dataset and then
multiply the updates by a scaling factor to magnify their effects
[16]. But the poisoned updates generated by this method can
be discarded by some advanced Byzantine-robust aggregation
algorithms such as Multi-Krum and Trimmed Mean (detailed
in Section V-C). To improve the attack performance against
Byzantine-robust aggregation algorithms, the malicious clients

can instead formulate the attack as an optimization problem
for optimizing the poisoned updates, with the knowledge about
other clients’ data or collision between malicious clients [28],
[29]. Note that [28] assumes that an adversary compromises
multiple worker devices, and each worker device sends a
(poisoned) model update to the master device, which is similar
to collision between multiple malicious clients. [29] assumes
that the adversary controls multiple clients and may have
access to other client data (distribution). Since our practical
threat model assumes no collision between malicious clients
and no additional knowledge about the other clients’ data, we
could not directly utilize the attacks in [28], [29].

E. Related Work

The previous works have studied data and model poisoning
attacks in a wide range of applications. For instance, previous
works [7], [9]-[11], [30] proposed several basic data poisoning
methods and applied them to computer vision. [14], [31]-[33]
developed several data poisoning attacks on natural language
processing. Bagdasaryan et al. [16] first introduced a model
poisoning attack and demonstrated its effectiveness in image
classification and word prediction. Following [16], [28], [29]
proposed advanced optimization methods for generating the
poisoned model updates and applied them to classification
tasks. Compared to computer vision and natural language pro-
cessing, fewer studies focus on the training-stage vulnerability
of deep learning based models for wireless communications.
Ali et al. [34] studied the effects of poisoning attacks on
deep learning based intrusion detection systems for heteroge-
neous wireless communications. Zheng et al. [11] conducted
a case study to evaluate the first-order data poisoning method
against network traffic classification. To our best knowledge,
we conduct the first systematic study on the training-stage
vulnerability of deep learning based wireless traffic prediction
to data and model poisoning attacks. The previous works
also developed several defense methods against data poisoning
attacks, including data sanitization [17], [35], differentially-
private learners [27], randomized smoothing [19], etc. Also,
multiple Byzantine-robust aggregation methods were proposed
to defend against the manipulated model updates uploaded by
malicious clients, including Multi-Krum [20], Trimmed Mean
[21], Median [21], etc.

III. PROBLEM FORMULATION
A. Deep Learning based Wireless Traffic Prediction (WTP)

In this section, we first formulate the attack problem in both
centralized and distributed training scenarios. We then intro-
duce our practical threat model for wireless traffic prediction.

a) Centralized Scenario: In the centralized scenario, the
participating clients agree to upload their wireless traffic data
to cloud server for training a global model. After uploading the
data, the clients are blind to the model optimization process,
and the cloud server will train a model on the collected data
by a standard model optimization scheme. As shown in Fig. 1
(left), the malicious base stations can attack the global model



by uploading carefully crafted poisoned data. In this scenario,
we could formulate the attack as an optimization problem, i.e.,

1 f5(x) — yll3 (1

b2.0, |D‘ x;p 9 2

st 0= argmm Z | fo(x+02) (y+5y)”§a
x’qE'D

where d, and ¢, are the perturbations of the poisoned data.
Since we assume that the malicious client does not have the
access to the other client data, D refers to the training dataset
owned by the malicious client in practice. We follow the
previous works on data poisoning to bound the infinity norm of
0, and 0, by e. By default, we set ¢ as 20% of the difference
between the maximum and minimum traffic volume in the
malicious client’s dataset. The above problem is basically a
bi-level optimization problem, which can be approximately
solved by the meta learning based method in [10].

b) Distributed Scenario: Since the raw traffic data might
contain private information, the cloud server might switch to
a distributed training scheme, i.e., federated learning [12],
for protecting the raw traffic data. Note that the wireless
traffic data from different clients usually distributes in a non-
ii.d. (independent and identically distributed) way. Thus, the
previous literature employs federated learning, a widely-used
distributed training technique for non-i.i.d. data, to train the
prediction model. In ¢-th round of federated learning, the cloud
server selects a subset of clients S; and broadcasts the current
global model weights 8; to the clients. The clients update the
model weights on their traffic data and then send the model up-
dates {A@! : k € S;} back to the cloud server. Then the cloud
server aggregates the model updates into a single update to
optimize the global model, e.g., O; 11 = 6; + ﬁ Y okes, AL
(in FedAvg with aggregation weights |S—1t|). As shown in

Fig. 1, the malicious clients (k € 5}) can attack the glqbal
model by uploading poisoned model updates {A! : k € S;}.
Then the malicious client’s objective can be formulated as

max Z | for+1 (%) — yll3 2)
,yGD
s.t. 9t+1_0t+— > A6+ Y A6
kESt/St kESt

(2) adopts the aggregation rule of federated averaging (Fe-
dAvg). [4] proposes a dual attention based aggregation scheme
(FedDA), and we refer the interested readers to [4] for details.
Note that under our threat model, a malicious client has
to maximize the MSE \%I > oyep 1for: (x) =yl without

access to A@% or Aé,‘; from the other clients.

B. Threat Model

a) Adversary’s goal: In terms of adversary’s goals, poi-
soning attacks can be divided into two categories, i.e., targeted
and untargeted attacks. Generally, untargeted attacks aim at
degrading the model’s overall performance, while targeted
attacks aim to change the predictions of certain targeted data.

® ®
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Fig. 1. Poisoning attacks against deep learning based wireless traffic
prediction—data poisoning against centralized model training (left) and model
poisoning against federated learning (right).

Specific to wireless traffic prediction, untargeted attacks
attempt to increase the mean square error (MSE) of the
model predictions on all the wireless traffic data. In this
paper, we mainly focus on untargeted attacks against deep
learning based wireless traffic prediction.

b) Adversary’s Knowledge: We assume that the mali-
cious client only has its own training wireless traffic data,
without any additional knowledge about the other clients’
data. In the centralized scenario, we assume that the malicious
clients do not have any control on the model optimization
process after uploading the poisoned data. Also, we assume
that the malicious clients might or might not know the neural
network architecture of the model used by the cloud server.
If the malicious clients know the neural network architecture,
they will initialize surrogate models with the same architecture
to craft poisoned data. Otherwise, they will initialize surrogate
models with other architectures to craft the poisoned data.

In the distributed scenario, we assume that the malicious
clients only knows the global model weights without any
additional knowledge about the other clients’ model updates.
We assume that the malicious clients can receive or evaesdrop
on the global model weights broadcast by the cloud server
in each training round. In practice, the server is very likely
to broadcast unencrypted global model weights or encrypt the
global weights with a common key since encrypting the global
model weights with different secret keys for different clients
will bring huge computational overhead to the server due to
the large number of clients. In such cases, the malicious clients
can easily obtain the global model weights in each round. Even
if the malicious clients cannot obtain the global model weights
in each round, they can initialize their local models with the
most recent historical global model weights in their hands.

c) Adversary’s Capabilities: In the centralized scenario,
the malicious clients are capable of perturbing all of their own
training data. We bound the infinity norm of the perturbations
by arelatively small value, compared to the difference between
the maximum and minimum traffic volume. In the distributed
scenario, the adversaries can directly manipulate the model
updates before sending them to the cloud server. We assume
that the malicious clients do not collide in the distributed
scenario. This is because collision leads to much additional



communication cost for the malicious clients. Also, collision
between the malicious clients delays their response to the
cloud server, which might raise suspicion from the server.

IV. PRACTICAL POISONING AGAINST WIRELESS TRAFFIC
PREDICTION (WTP)

A. Data Poisoning against Centralized WTP

The community has developed several advanced data poi-
soning methods on computer vision such as [10], [11]. How-
ever, an obstacle to the application of those methods to our
threat model is that a malicious client only has its own
(training) traffic data, which is a small subset of the whole
dataset. For a malicious client, directly executing the algo-
rithms in [10], [11] and crafting perturbations on its own small
subset might lead to sub-optimal attack generalizability in
some cases. In this regard, we propose a perturbation masking
strategy to mimic the centralized model optimization process
with limited data, to craft more generalizable perturbations.
The basic idea is to mask (conceal) the perturbations (d, k and
) yk) of some data and optimize the remaining perturbatlons
in each perturbation crafting step. More specifically, masking

Algorithm 1 Data Poisoning against Centralized WTP

Require: Training datasets for the K clients {Dy}5_; total
number of epochs T'; learning rate I7; {~,-norm bound of
the perturbations €; unmasking probability p € (0, 1).
1: Malicious Client £:
2: Initialize M surrogate models {fp, }*_, and pretrain
them for 0 ~ M — 1 epochs on the clean Dy.
3: Initialize the perturbations 6xk,6yk with zero to form an

enlarged training dataset Dy, = {x%, y} ,5xk s Oyn k)

4: fort=0toT —1 do

5. Sample a minibatch from Dy, i.e., {x¥, y¥, d yk}

6:  For each sample, generate a mask £F ~ Bern(p)

7. for m =1 to M models do

8: Copy 0 =6,

9: Optimize 0: 8 = 0 — lrvéﬂ S fa(xk 4k -
10: Compute the gradients of Oyr, 0,1 &7 k(O ) =

—Vs o ﬁ Yoxk yrep, 1fg(x ) - yZ k|12 (similar for
9; m( )) The minus sign is due to maximizing (1).
11:  end for
12: Aggregate the gradients of &, d,r. gF(dys) =
s 81 m (0x) (similar for gf(d,5)).
13:  Update d,,0,5 with Adam optimizer using g} ()
and gl (d,x) as the gradients.
14: Clip the elements of 6,0, into the range of [—¢, .
15: end for

kék

means that we multiply the perturbations by masks £ = 0 or 1.
We can sample the mask ¢ for each data sample from a
Bernoulli distribution Bern(p) (p is usually set as 0.2, ie.,
P({ =1) = 0.2). Then in each perturbation crafting step, the
surrogate model parameters € in Alg. 1 seem to be optimized

on 100(1 — p)% clean data (£ = 0) and 100p% poisoned data
(¢ = 1), which is similar to the centralized model optimization
process. To optimize the perturbations, we solve the bi-level
problem (1) by the meta-learning based method [10], [36]. Our
proposed attack algorithm is detailed in Alg. 1.

B. Model Poisoning against FL-based WTP

Since we restrict the malicious clients’ knowledge and
capabilities to a very low and practical level, the existing
advanced model poisoning attacks, such as those proposed in
[28], [29], are not applicable here. Thus, we propose a practical
model poisoning method. In our proposed method, a malicious
client first initializes the poisoned update as the negative of
the previous global model update, in that the malicious clients
can together push the model in a similar wrong direction to
increase the objective in (2) even without collision. Note that
as stated in Section III-B, the malicious clients can obtain the
global model weights in each round or instead use the most
recent historical global model weights in their hands. After

Algorithm 2 Model Poisoning against FL-based WTP

Require: Training datasets for the K clients {Dy }_;; global
model fg(-); local models fg, (-); total number of rounds
T'; learning rate lr.

1: Initialize the model weights for fg(-), denoted by 6°.

2: fort=0to 7T —1 do

3:  Cloud Server: Randomly select a subset of clients S;
and broadcast 6° to all the clients.

4 Malicious Client & € S;:
1. Initialize fo: (-) with 67, where 7 = maz(t — 1,0).
2. Fine tune fgr (+) on Dy = {xk gyl Nk
ing N ZN | for (x k) —yk||3 with learnlng rate [r/10.
3. Set a scaling factor v and send the update AGE =

v(0% — 6") to the cloud server.

5. Normal Client k € S;/ S,
1. Initialize fg: (-) with 6
2. Update fg, (-) on Dk = {x¥, y#} % by minimizing
N%c Z?Q‘i [ for (x xF) — y¥||3 with learnmg rate [r.
3. Send the update A@ = 0}, — 6" to the cloud server.

6:  Cloud Server: Update the global model by ot =
o' + |571t|(2kest/§t AB + D kel AB}).

7: end for

1 by maximiz-

initialization, the local model is initialized with the previous
global model weights. The malicious client then fine-tunes
its local model on its own training dataset by maximizing
the mean square error between the predictions and the true
traffic volumes with a small learning rate (large learning rate
can cause the model weights to explode in practice). This
tuning operation not only degrades the performance of the
local model, but also avoids the poisoned update to be easily
detected by the cloud server using the previous global model
update as a reference. Finally, the malicious client sets a

"The previous global update can be computed by subtracting the (most
recent) historical global model weights from the current global model weights.



scaling factor and multiplies the poisoned update by the factor.
We detail how to set this scaling factor in Section VI-A.

V. POTENTIAL DEFENSES AGAINST POISONING ATTACKS

In this section, we discuss several existing defense strategies
that might be used for defending against the poisoning attacks.
Also, we propose a data sanitization metric and an anomaly
detection method for wireless traffic prediction.

A. Data Sanitization

The attempt of data sanitization is to examine the full
training dataset and remove the outliers, which might be the
poisoned data samples. A commonly-used data sanitization
method is to first estimate the data centroid and then remove
the data points far from the data centroid. To estimate the
centroid, the sphere defense [17] simply computes the mean
of the data as the estimation. Since the problem we study is not
a classification problem, the slab defense [17], which projects
the data points onto the line between two class centroids, is not
applicable here. Note that in practice, the sphere defense is not
effective against our data poisoning attacks. Thus, we propose
a metric, i.e., adjacent distance, to examine and exclude the
outliers. We define adjacent distance as

J—1
lyF —xF[O]] + > IxF[5] — xF[j + 1], 3)
=0

where x¥[0] ~ x¥[J] refers to v;_1,v_5..., and yF is the vy
(see Section II-A). Our intuition is that the adjacent distance
should be relatively small for the natural traffic data since
the natural wireless traffic volume rarely changes too much
between two adjacent time points in practice. We compute the
adjacent distances for all the training samples and remove the
samples with top 100p% largest adjacent distances (p refers
to the proportion of the potential malicious clients).

B. Randomized Smoothing

Randomized smoothing is an intuitive approach to corrupt
the poisoned data. As mentioned in Section II-E, [19] provides
certified protection against label-flipping attacks by random-
izing the data labels. [27] shows differentially-private learners
(i.e., applying noise to SGD), can provide certified protection
against data poisoning. However, this protection suffers from
an exponential degrade with increasing number of poisoned
data samples. Thus, it is difficult for differentially-private
learners to provide a certified protection against the real-world
poisoning attacks. In this paper, we apply Gaussian noise to
the training data x¥ and y¥ in the centralized training scenario.

C. Byzantine-Robust Aggregation

To defend against the model poisoning attacks, we consider
and implement three state-of-the-art Byzantine robust aggre-
gation methods, i.e., Multi-Krum [20], Trimmed Mean [21],
and Median [21]. Suppose in each round, the cloud server
receive n model updates. For each model update, Multi-Krum
computes a score as the sum over the distances between the
model update and its n — g — 2 nearest model updates, where ¢

denotes the number of (potential) adversaries. The cloud server
then selects the m model updates with relatively small scores,
compared to the other n—m updates, and use the average over
the m model updates to update the global model. For each -
th dimension of the model weights, Trimmed Mean sorts the
values of the i-th dimension of all the n model updates and
removes the [ largest values and the 3 smallest values. Then
the average of the remaining n—20 values is used as the update
for i-th dimension of the model weights. 3 is usually set as
the number of (potential) adversaries. Median computes the
median of the values of the i-th dimension over all the » model
updates, as the update for i-th dimension of the global model
weights. In this paper, we implement the above three methods
and evaluate them against our model poisoning attacks. We
show that applying any one of the above robust aggregation
methods (without anomaly detection) cannot defend against
our poisoning attacks in the experiments (see Section VI-C).

D. Anomaly Detection

We observe that, to compromise the above robust aggre-
gation methods and increase the MSE to a large value, the
£o-norm of poisoned model updates has to be large. Thus, we
propose an anomaly detection method based on the /5-norm of
the model updates to detect or mitigate the effects of our model
poisoning attacks. In each training round, we first compute
the /5-norm of all the model updates. We then compute the
median of those ¢5-norm values, denoted by ;. For a robust
estimation on the deviation, we also take the median value of
the deviations between all the ¢5-norm values and p; instead
of the standard deviation as the estimation, denoted by oy.
Our detection method involves two criteria in each round: (1)
The maximum ¢5-norm of all the model updates should not be
larger than cjp; (2) The maximum ¢-norm of all the model
updates should not be larger than u; + coo:. Note that Sun
et al. [37] proposed a norm thresholding defense with a static
threshold M. However, it is difficult to set a common static
M in the whole training process for different types of traffic
data. In contrast, the thresholds in our criteria are dynamic
(i.e., c1p¢ and py + co0¢), which depend on the current model
updates. In our testbed, c; = 40, co = 400 is a suitable setting
for the constants to ensure that FedAvg without any malicious
clients can pass the anomaly detection for all the experiments.
To bypass the anomaly detection, the malicious clients have
to clip the ¢o-norm of their poisoned model updates, which
limits the effects of the poisoned model updates.

VI. EXPERIMENTS
A. Experimental Setup

a) Dataset and Network Architectures: The experiments
are conducted on the real-world data from Telecom Italia [22],
which includes the wireless traffic records from two areas in
Italy, i.e., Milan and Trentino. Since the data is collected from
various companies with different standards, to ease the data
management, the spatial distribution irregularity is aggregated
in a grid with square cells [22]. According to [22], the area
of Milan is divided into a grid of 1000 cells, and the area of



Trentino is divided into 6575 cells. Since the data in each cell
is logged by the corresponding base station, we could refer
to the cells as base stations or clients [4]. The data contains
three types of wireless traffic, including SMS, voice calls, and
internet services. We randomly select 100 cells (same as [4])
from each area and conduct experiments on these 100 cells’
wireless traffic data. The last 7 days of the data in each cell is
retained as the testing data, and the remaining data is used as
training data. Note that we execute the poisoning algorithms
on the training data, and report the MSE/MAE on the
testing data. We evaluate our attacks and defenses on two
neural network architectures for wireless traffic prediction: (1)
long short term memory network (LSTM) (same as [4]) (2)
1d-convolutional layer followed by LSTM (ConvLSTM).

b) Baseline Methods and Evaluation Metrics: We eval-
uate our poisoning attacks against four baselines for wireless
traffic prediction: (1) centralized training on LSTM (2) central-
ized training on ConvLSTM (3) Fedavg on LSTM (4) FedDA
on LSTM. In (1) and (2), the cloud server collects data from
the clients and then train the model on LSTM or ConvLSTM.
In this centralized scenario, a malicious client executes the
data poisoning algorithm (Alg. 1) to craft the poisoned training
data. In (3) and (4), the cloud server aggregates model updates
from the clients, and thus a malicious client executes the model
poisoning algorithm (Alg. 2) for crafting the poisoned model
updates. We measure the performance of all the models by
mean square error (MSE) and mean absolute error (MAE) on
the testing data from all the randomly-selected 100 cells.

c) Hyperparameter Settings: Following the existing
works on model poisoning attacks [28], [29], we assume that
there are 20 malicious clients out of the 100 clients (cells) by
default. We do not compare our attacks with [28], [29] since
these attacks assume stronger threat models than ours. In the
centralized scenario, we train all the models for 10 epochs
on the training data (including poisoned training data) from
those 100 cells, with batch size being set as 50. The malicious
clients execute Alg. 1, where we set M = 2 and Ir = 0.01.
By default, we set ¢ = 0.2, referring to 20% of the difference
between the maximum and minimum traffic volume in the
malicious client’s training dataset. We set the initial learning
rate of the Adam optimizer for crafting the perturbations as
10. The settings of the other hyperparameters of the Adam
optimizer follow the default settings of Pytorch.

In the distributed scenario, we follow [4] to randomly
sample 10 cells (S;) from the 100 cells and aggregate their
model updates in each training round. In each training round,
the local models are trained for one epoch by the momentum
SGD optimizer with {7 = 0.01 learning rate and a momentum
of 0.9 (or fine-tuned for one epoch for the malicious clients
with [r = 0.001). We update the global model for totally
100 training rounds following [4]. For FedDA, we set ¢ = 10
(10% augmented data); p = 0.0; C' = 16. We refer the readers
to [4] for the meanings of ¢, p, and C' under FedDA. If
the server does not apply anomaly detection (AD), we can
set a very large scaling factor v = 1000 or 2000, which
can compromise all the robust aggregation methods under the
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Fig. 2. Compare our poisoning method with two baselines. (1) Uniform
Noise: sample the perturbation from a Uniform distribution (2) No Masking:
our poisoning algorithm without perturbation masking.

above experimental settings. With the setting v ~ ©(10%), the
poisoned model updates might increase exponentially in some
cases. To avoid exploding model updates, we can bound v by
a random number sampled from /(10%,10%) or ¢/(10°,106)
divided by the ¢ norm of the unscaled poisoned model
update. For the robust aggregation methods, we set ¢ = 2,
m = 6, and § = 2 by default (given n = 10). If the server
applies anomaly detection, the malicious clients can set ~y as
min(ay || A0 [l2/[| AG[l2, (a2 + [ A6°12) /| AG]|2) to by-
pass the anomaly detection. Then the /5 norm of the poisoned
update is scaled into min(ay | AG* 1|2, as+||AO 7 L|2), where
6t~ refers to the previous global model update. In the exper-
iments, we sample a; and ay from ¢/(10,11) and 2/(1.0,1.1)
to bypass the anomaly detection for all the experiments. Since
other settings of a1 and as might also work, the server cannot
simply detect the poisoned model updates by setting certain
a1 and ay and comparing the /> norm of model updates with
min (a1 [|A0 2, az + | AGH|2).

B. Attack Performance

In the centralized scenario, we show the results of our data
poisoning method (Alg. 1) in Table I. Our data poisoning
method increases the MSE by over 50% in all the cases,
except for centralized training on ConvLSTM on the voice
calls and Internet data from Trentino. Besides, we compare
our data poisoning attack with two baselines, i.e., uniform
noise and no masking. Uniform noise means that the mali-
cious clients directly sample the perturbations from a uniform
distribution U(—e, €) and add the perturbations to the training
data. No masking means applying Alg. 1 without perturbation
masking to craft the perturbations. The comparison results
in Fig. 2 show that our poisoning method is superior to the
two baselines. Besides, we also consider the scenario that the
malicious clients do not know the model architecture used
by the cloud server. In such case, the malicious clients can
choose another neural network as the surrogate model for
crafting the perturbations. The results in Table II show that
our data poisoning attack still achieves good attack perfor-
mance, with another neural network as the surrogate model.
In the distributed scenario, we show the results of our model
poisoning method (Alg. 2). Without any defense, we show that
our model poisoning attack can increase MSE to an arbitrary
level (more than 10® times), if we set the scaling factor as
v = 1000 (One exception is that we set v = 2000 for FedAvg



Milan Trentino
No Attack SMS Call Internet SMS Call Internet
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
LSTM (Centralized) 0.3171 0.3223 0.0653  0.1633 0.1083 0.2290 2.0080 0.7138 0.6717 0.3703 3.8454 0.8666
ConvLSTM (Centralized) 0.3081 0.3278 0.0639  0.1659 0.1051 0.2279 2.0318 0.7077 0.7281 0.3733 2.7188 0.7795
FedAvg (Distributed) 0.3744 0.3386 0.0776  0.1838 0.1096 0.2319 2.2287 0.7416 1.6048 0.5319 4.7988 1.0668
FedDA (Distributed) 0.3411 0.3278 0.0742  0.1803 0.1061 0.2274 2.0112 0.7241 1.1704 0.4610 4.2386 0.9615
Milan Trentino
After Poisoning SMS Call Internet SMS Call Internet
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
LSTM (Centralized) 0.5802 0.4813 0.1624  0.2728 0.3681 0.4588 3.5960 1.0841 1.1395 0.5304 6.4016 1.5196
ConvLSTM (Centralized) 0.5256 0.4468 0.1302  0.2437 0.3133 0.4022 5.1135 1.2715 0.9347 0.5069 3.9219 1.0076
FedAvg (Distributed) 1.6x10° 39545 2.7x10° 51671 3.5x107 5941.0 3.0x10° 54845 5.4x10° 73640 3.0x10° 54414
FedDA (Distributed) 1.6x10't  3.4x10°  9.2x10° 95783  6.7x10'°  2.6x10° | 6.7x10'°  2.6x10°  1.6x10''!  4.0x10° 1.7x10'°0  1.3x10°
Milan Trentino
After Defense SMS Call Internet SMS Call Internet
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
LSTM + SDS 0.6428 0.5082 0.1681 0.2764 0.2391 0.3655 6.1865 1.2934 2.6180 0.7478 8.8121 1.6551
LSTM + RAND 0.5463 0.4373 0.1235  0.2338 0.3487 0.4536 3.9502 1.1164 1.1584 0.5224 6.3162 1.5049
LSTM + ADS 0.3392 0.3547 0.0902  0.2201 0.1373 0.2798 2.4320 0.8104 1.5373 0.5373 3.1065 0.9210
FedAvg + MKrum 8.9x10° 945.56 14247 11936 1.4x108 8508.8 4.5x108 9530.8 3.7x108 5818.2 5.5x108 1459.2
FedAvg + TMean 3.5x10° 444.04  2.7x10 16198  8.0x10% 28328 1.2x10° 275.51 2.8x10° 427.78 30694 161.28
FedAvg + Median 2.4x108 342.83  3.2x10%  861.09  3.8x10° 151.86 3.9x10° 111.89 86972 83.053 2.7x10° 84.426
FedAvg + AD 0.4933 0.4244 0.3408  0.5003 0.1562 0.2832 3.1436 0.8520 1.8120 0.5951 4.5572 1.0729
FedAvg + AD + MKrum 0.4342 0.3583 0.0816  0.1867 0.1158 0.2359 4.2458 0.9830 1.7817 0.5600 5.1978 1.1011
FedAvg + AD + TMean 0.4422 0.3606 0.0897  0.1964 0.1248 0.2502 3.8271 0.9216 1.6054 0.5344 5.2416 1.1125
FedAvg + AD + Median 0.4348 0.3574 0.0881 0.1966 0.1230 0.2460 4.2736 0.9853 1.6902 0.5475 5.4982 1.1234
TABLE I

EMPIRICAL RESULTS ON THE DATA FROM TELECOM ITALIA. CENTRALIZED SCENARIO: SDS REFERS TO SPHERE DEFENSE (DATA SANITIZATION);
RAND REFERS TO ADDING RANDOM NOISE; ADS REFERS TO ADJACENT DISTANCE BASED DATA SANITIZATION; DISTRIBUTED SCENARIO: AD REFERS
TO ANOMALY DETECTION; MKRUM, TMEAN, MEDIAN REFER TO THE THREE ROBUST AGGREGATION METHOD (SEE SECTION V-C).

Milan (SMS)

Milan (SMS)

Surrogate — Target Network SMS Call Internet
LSTM — LSTM 0.5802  0.1624 0.3681
LSTM — ConvLSTM 0.5220  0.1506 0.2879
ConvLSTM — ConvLSTM 0.5256  0.1302 0.3133
ConvLSTM — LSTM 0.6130  0.1454 0.2788
TABLE II

THE TESTING MSE ON A TARGET NEURAL NETWORK BY CRAFTING THE
POISONED DATA ON ANOTHER SURROGATE NETWORK (M = 2).

+ MKrum on the data from Trentino). In Section VI-C, we
show that with anomaly detection and robust aggregation, our
model poisoning attack can still increase MSE by about 20%.

C. Defense Performance

In the centralized scenario, we evaluate the defensive perfor-
mance of sphere defense, adding random noise, and our pro-
posed data sanitization method. The results shown in Table I
indicate that our proposed data sanitization method achieves
the overall best performance. In Fig. 3, we visualize the
distributions of the spherical distances and adjacent distances
of the natural and poisoned data. Fig. 3 shows that there is
a large overlap between the spherical distance distributions
of the natural and poisoned data. Thus, the outliers removed
by the sphere defense [17] will include quite a number of
natural data points. In this regard, sphere data sanitization
(SDS) might even end up in a poorer performance compared
with no defense in some cases, as shown in Table I. In
contrast, the adjacent distance distributions of the natural and
poisoned data are much more separable, i.e., most of the
poisoned data usually have larger adjacent distances. Thus,
after applying adjacent distance based data sanitization (ADS),
we can train a model with good performance. Interestingly, on
the Internet data from Trentino, LSTM + ADS even achieves
a smaller MSE compared to standard training on LSTM. We
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Fig. 3. Distance metrics: (1) spherical distance: the {5 distance between the
mean and the data point (for sphere defense) (2) adjacent distance: our metric
for data sanitization. We refer to unpoisoned data as natural data.

conjecture that this is because the original Internet data from
Trentino already includes some outliers (thus with larger MSE
compared to the other data), and removing those outliers with
ADS improves the model performance on the testing data.
In the distributed scenario, we evaluate the defensive
performance of Multi-Krum, Trimmed Mean, Median, and
the anomaly detection method against the model poisoning
attacks. As shown in Table I, without anomaly detection,
our model poisoning attack can compromise Multi-Krum,
Trimmed Mean, and Median with a large scaling factor
v ~ ©(10%) under the experimental settings in Section VI-A.
This is because if there are 20 malicious clients out of totally
100 clients, the probability that the 10 clients sampled by
the server include at least 5 malicious clients in at least
one round of the 100 training rounds is approximately over
0.9. If this high-probability event happens, with the common
setting m = n — q — 2 (i.e, m = 6), the server will select
6 model updates to compute the global model update, which
includes at least one poisoned update from the 5 malicious
clients. The selected poisoned update can mislead the model
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Fig. 4. The effects of ¢ on the performance of the data poisoning attack. Note
that it may be easier for ADS to remove some poisoned data with larger e.

Milan (Centralized) Milan (Centralized + ADS)

o T~

0.31
—*— sms

| —— call

——net,‘\’__'/'

0.1 :‘\/-\__‘
0 5 10 15 20 2 0 5 10 15 20 2
number of malicious clients number of malicious clients

Testing MSE
g
Testing MSE

\

Fig. 5. The effects of the number of malicious clients on the performance
of the data poisoning attack. For ADS, the proportion of removed outliers
is same as the proportion of the malicious clients. Note that removing more
outliers might improve the generalization performance in some cases.

due to its large ¢o-norm. Trimmed Mean and Median also
suffer from a similar vulnerability. For Median, even if the
server employs a different n, the probability that the n clients
includes at least [n/2] + 1 malicious clients in at least one
round of the 100 training rounds is always very high. Thus,
Median suffers from this vulnerability with high probability
for every n. For Multi-Krum, even if the server increases g to
3 (m = b), since the poisoned updates are relatively close to
each other due to their similar initialization, it is still possible
that the Multi-Krum method selects one poisoned model
update for aggregation. However, if the server applies the
anomaly detection method, the malicious clients have to set a
relatively small scaling factor to bypass the anomaly detection,
which limits the impacts of the poisoned updates. As shown
in Table I, combination of anomaly detection and the robust
aggregation methods can further improve the defensive per-
formance in some cases. On the SMS and Internet data from
Trentino, anomaly detection already achieves a good defensive
performance. In such cases, robust aggregation methods might
degrade the model performance since they might exclude some
useful information from the model updates.

D. Ablation Studies

In this subsection, we evaluate the effects of different
hyperparameters, including the attack perturbation size ¢, the
number of malicious clients, on the attack and defense perfor-
mance on Milan’s traffic data. In Fig. 4, we show the effects
of the perturbation size € in the centralized training scenario.
As shown in the left of Fig. 4, as € increases, the MSE of
the trained model also increases. But if the server applies
our adjacent distance based data sanitization method (ADS),
the trained model can achieve a small MSE regardless of the
perturbation size. In Fig. 5, we demonstrate the effects of the
number of malicious clients. If the server does not apply any
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Fig. 6. The effects of the number of malicious clients on the performance of
the model poisoning attack in the distributed scenario.

defense, the MSE shows a clear upward trend as the number of
malicious clients increases. If the server applies the adjacent
distance based data sanitization (ADS), the MSE maintains
at a low level as long as the number of malicious clients
keeps within a reasonable range. In the distributed scenario,
if the server does not apply anomaly detection (AD), even
one malicious client might compromise the model with a very
large scaling factor . Thus, we mainly consider the scenario
that the server applies anomaly detection (AD), and evaluate
the effects of the number of malicious clients. In Fig. 6, we
show that if the server only applies anomaly detection, as the
number of malicious clients increases, the model’s MSE will
still increase. This is because although anomaly detection can
limit the effects of the poisoned updates, it cannot eliminate
the effects of the poisoned updates in each training round.
Thus, a more robust defensive strategy on the data from Milan
is to combine anomaly detection with a robust aggregation
method, e.g., Multi-Krum. With Multi-Krum, the server can
remove the poisoned updates in most of the training rounds.
In the remaining few rounds, even if the poisoned updates
are included for updating the global model, their effects are
still limited by the anomaly detection method. Thus, as shown
in Fig. 6, this strategy demonstrates a more robust defensive
performance, compared to anomaly detection.

VII. CONCLUSION

In this paper, we conduct the first systematic study on
training-stage poisoning attacks against deep learning based
wireless traffic prediction in both centralized and distributed
training scenarios. Compared to the previous poisoning attacks
on computer vision, we consider a more practical threat model,
which assumes limited adversary knowledge and no collision
between malicious clients. We propose a perturbation masking
strategy and a tuning-and-scaling method to fit data and model
poisoning attacks into our threat model. To defend against the
poisoning attacks, we implement several potential defenses
and propose a data sanitization approach and an anomaly
detection method. Extensive evaluations on real-world data
from Telecom Italia verify the effectiveness of our poisoning
attacks, and also demonstrate that our data sanitization method
and anomaly detection method are respectively effective de-
fenses in centralized and distributed scenarios.
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