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Abstract—Recent work in ICML’22 established a connection
between dataset condensation (DC) and differential privacy (DP),
which is unfortunately problematic. To correctly connect DC
and DP, we propose two differentially private dataset conden-
sation (DPDC) algorithms—LDPDC and NDPDC. LDPDC is
a linear DC algorithm that can be executed on a low-end
Central Processing Unit (CPU), while NDPDC is a nonlinear
DC algorithm that leverages neural networks to extract and
match the latent representations between real and synthetic data.
Through extensive evaluations, we demonstrate that LDPDC has
comparable performance to recent DP generative methods despite
its simplicity. NDPDC provides acceptable DP guarantees with
a mild utility loss, compared to distribution matching (DM).
Additionally, NDPDC allows a flexible trade-off between the
synthetic data utility and DP budget.

I. INTRODUCTION

Although deep learning has pushed forward the frontiers of
many applications, it still needs to overcome some challenges
for broader academic and commercial use [1]. One challenge
is the costly process of algorithm design and practical imple-
mentation in deep learning, which typically requires inspection
and evaluation by training models on massive data for many
times. The growing privacy concern is another challenge. Due
to the privacy concern, an increasing number of customers are
reluctant to provide their data for the academia or industry to
train deep learning models, and some regulations are further
created to restrict access to sensitive data.

Recently, dataset condensation (DC) has emerged as a
potential technique to address the two challenges with one
shot [2], [3]. The main objective of dataset condensation is
to condense the original dataset into a small synthetic dataset
while maintaining the synthetic data utility to the greatest ex-
tent for training deep learning models. For the first challenge,
both academia and industry can save computation and storage
costs if using DC-generated small synthetic datasets to develop
their algorithms and debug their implementations. In terms of
the second challenge, since the DC-generated synthetic data
may not exist in the real world, sharing DC-generated data
seems less risky than sharing the original data.

Nevertheless, DC-generated data may memorize a fair
amount of sensitive information during the optimization pro-
cess on the original data. In other words, sharing DC-generated
data still exposes the data owners to privacy risk. Moreover,

this privacy risk is unknown since the prior literature on DC
has not proved any rigorous connection between DC and
privacy. Although a recent paper [4] claims that DC can
provide certain differential privacy (DP) guarantee for free,
recent work [5] demonstrates that [4] is problematic.

To correctly connect DC and DP for bounding the privacy
risk of DC, we propose two differentially private dataset
condensation (DPDC) algorithms—LDPDC and NDPDC. LD-
PDC (Algorithm 1) is a linear DC algorithm, which adds
random noise to the sum of randomly sampled original data
and then divides the randomized sum by the fixed expected
sample size to construct the synthetic data. Based on the
framework of Rényi Differential Privacy (RDP) [6], [7], we
prove Theorem III.1 to bound the privacy risk of LDPDC.
NDPDC (Algorithm 2) is a non-linear DC algorithm, which
optimizes randomly initialized synthetic data by matching the
norm-clipped representations of the synthetic data and the
randomized norm-clipped representations of the original data.
For NDPDC, we prove Theorem III.2 bound to its privacy risk.
The potential benefits brought by DPDC algorithms include
(i) reducing the cost of data storage and model training;
(ii) mitigating the privacy concerns from data owners; (iii)
providing a fixed DP guarantee for training multiple models
on a synthetic dataset, due to the post-processing property.
Besides, LDPDC is also very simple and efficient, which can
be executed on a low-end CPU, allowing mobile devices to
generate synthetic data.

A commonly-used method for privacy-preserving deep
learning is differentially private stochastic gradient descent
(DP-SGD). Although DPDC may not achieve better model
accuracy than DP-SGD, there are some use cases that can
be addressed by DPDC but may not be effectively handled
by DP-SGD. One case is that the model trainers want to
train and evaluate their algorithms or models on user data.
If the data owners only provide DP-SGD trained models, the
model trainers could not train and test their (probably private)
algorithms and models on their side. If the data owners provide
DPDC-generated datasets, then the model trainers can finish
their tasks under a fixed DP budget. Another case is that the
model trainers want to train a model on data from multiple
data owners. In this case, each data owner could send a DPDC-
generated dataset to the model trainer, and the model trainer
could train a model on all the synthetic datasets with DP
protection on each data owner’s data.

We conduct extensive experiments to evaluate our DPDC
algorithms on multiple datasets, including MNIST, FMNIST,
CIFAR10, and CelebA. We mainly compare our DPDC algo-
rithms with a non-private dataset condensation method, i.e.,
distribution matching [8], and two recent differentially private
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generative methods, i.e., DP-MERF and DP-Sinkhorn [9], [10].
We demonstrate that (i) LDPDC shows comparable perfor-
mance to DP-MERF and DP-Sinkhorn despite its simplicity;
(ii) NDPDC can provide DP protection with a mild utility
loss, compared to distribution matching; (iii) NDPDC allows
a flexible trade-off between privacy and utility and can use low
DP budgets to achieve the overall best accuracy.

II. BACKGROUND AND RELATED WORK

A. Dataset Condensation

We denote a data sample by x and its label by y. In
this paper, we mainly study classification problems, where
fθ(·) refers to the model with parameters θ. ℓ(fθ(x), y) refers
to the cross-entropy between the model output fθ(x) and
the label y. Let T and S denote the original dataset and
the synthetic dataset, respectively, then we can formulate the
dataset condensation problem as

argmin
S

E(x,y)∼T ℓ(fθ(S)(x), y), (1)

where θ(S) = argmin
θ

E(x,y)∼Sℓ(fθ(x), y), |S| ≪ |T |

An intuitive method to solve the above objective is meta-
learning [11], with an inner optimization step to update θ
and a outer optimization step to update S. However, this
intuitive method needs a lot of cost for implicitly using second-
order terms in the outer optimization step. [12] considered the
classification task as a ridge regression problem and derived
an algorithm called kernel inducing points (KIP) to simplify
the meta-learning process. Gradient matching is an alterna-
tive method [2] for dataset condensation, which minimizes a
matching loss between the model gradients on the original and
synthetic data, i.e.,

min
S

Eθ0∼Pθ0
[

I−1∑
i=1

ΠM (∇θLS(θi),∇θLT (θi))]. (2)

ΠM refers to the matching loss in [2]; ∇θLS(θi) and
∇θLT (θi) refer to the model gradients on the synthetic and
original data, respectively; θi is updated on the synthetic data
to obtain θi+1. To boost the performance, [3] further applied
differentiable Siamese augmentation Aw(·) with parameters
w to the original data samples and the synthetic data samples.
Recently, [8] proposed to match the feature distributions of the
original and synthetic data for dataset condensation. [8] used
an empirical estimate of maximum mean discrepancy (MMD)
as the matching loss, i.e.,

Eθ∼Pθ
∥ 1

|T |

|T |∑
i=1

Φθ(Aw(xi))−
1

|S|

|S|∑
i=1

Φθ(Aw(xi))∥22,

(3)

where Φθ(·) is the feature extractor, and Pθ is a parameter
distribution. With the help of differentiable data augmentation
[3], the distribution matching method (DM) [8] achieves the
state-of-the-art performance on dataset condensation.

B. Differential Privacy

Differential Privacy (DP) [13] is the most widely-used
mathematical definition of privacy, so we first introduce the
definition of DP in the following.

Definition II.1 (Differential Privacy (DP)). For two adjacent
datasets D and D′, and every possible output set O, if
a randomized mechanism M satisfies P[M(D) ∈ O] ≤
eϵP[M(D′) ∈ O] + δ, then M obeys (ϵ, δ)-DP.

Based on DP, [14] developed DP-SGD with a moments
accountant for learning differentially private models.

We also introduce the concept of Rényi Differential Privacy
(RDP), as RDP gives us a unified view of pure DP and
(ϵ, δ)-DP, graceful composition bounds, and tighter bounds for
the (sub)sampled Gaussian mechanism [7], [15]. Due to the
benefits of RDP, Meta’s Opacus library [16] also relies on [7]
for DP analysis. We begin the brief introduction of RDP with
two basic definitions:

Definition II.2 (Rényi Divergence [17]). Let P and Q be two
distributions on Z over the same probability space, the Rènyi
divergence between P and Q is

Dα(P∥Q) ≜
1

α− 1
ln

∫
Z
q(z)(

p(z)

q(z)
)αdz, (4)

where p(z) and q(z) are the respective probability density
functions of P and Q. Without ambiguity, Dα(P∥Q) can also
be written as Dα(p(z)∥q(z)).
Definition II.3 (Rényi Differential Privacy (RDP) [6]). For
two adjacent datasets D and D′, if a randomized mechanism
M satisfies Dα(M(D)∥M(D′)) ≤ ϵ (α > 1), then M obeys
(α, ϵ)-RDP, where Dα refers to Rényi divergence.

We can easily connect RDP and DP by Lemma II.4 and
Corollary II.6.

Lemma II.4 (RDP to DP Conversion [18]). If a randomized
mechanism M guarantees (α, ϵ)-RDP (α > 1), then it obeys
(ϵ+ log((α− 1)/α)− (log δ + logα)/(α− 1), δ)-DP.

Here we prove that Lemma II.4 is tighter than [6]’s con-
version law. Therefore, we employ Lemma II.4 for conversion.

Proof: [6]’s conversion law is:

Lemma II.5 (RDP to DP Conversion [6]). If a randomized
mechanism M guarantees (α, ϵ)-RDP (α > 1), then it also
obeys (ϵ+ log(1/δ)/(α− 1), δ)-DP.

Since (α − 1)/α < 1, log((α − 1)/α) < 0. Since α >
1, logα > 0, and thus −(logα)/(α − 1) < 0. Combining
log((α− 1)/α) < 0 and −(logα)/(α− 1) < 0, we have

log((α− 1)/α)− (logα)/(α− 1) < 0 when α > 1. (5)

We add ϵ + log(1/δ)/(α − 1) to both sides of the above
inequality and obtain

ϵ+ log((α− 1)/α)− (log δ + logα)/(α− 1) <

ϵ+ log(1/δ)/(α− 1) when α > 1. (6)

Therefore, Lemma II.4 is a tighter conversion law compared
to Lemma II.5.

Corollary II.6. According to Lemma II.4, if a mecha-
nism M obeys (α, ϵ(α))-RDP for α > 1, then M obeys
(minα>1(ϵ(α)+log((α−1)/α)−(log δ+logα)/(α−1)), δ)-
DP.
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One main advantage of RDP is that RDP allows a graceful
composition of the privacy budgets spent by multiple random-
ized mechanisms, as illustrated in Lemma II.7.

Lemma II.7 (RDP Composition [6]). If M1 is (α, ϵ1)-RDP,
M2 is (α, ϵ2)-RDP, their composition obeys (α, ϵ1+ ϵ2)-RDP.

Furthermore, RDP allows a graceful parallel composition,
as shown in Lemma II.8.

Lemma II.8 (Parallel Composition [19]). If two datasets D1

and D2 are disjoint (D1∩D2 = ∅), M1 is (α, ϵ1)-RDP, M2 is
(α, ϵ2)-RDP, then the combined release (M1(D1),M2(D2))
obeys (α,max(ϵ1, ϵ2))-RDP for D1 ∪D2.

We discuss more related work about differentially
private generative methods in the appendix.

Algorithm 1 Linear Differentially Private Dataset Condensa-
tion (LDPDC)
Require: Original Dataset T = T1 ∪ T2... ∪ TC ; the number

of classes C; number of data samples per class Nc; number
of synthetic samples per class M ; group size L.
for each class c do

for j = 1 to M do
Take a randomly sampled subset Dc = {xc

k, c}
Lc

j

k=1
from Tc with sampling probability L/Nc (by Poisson
Sampling, similar to [14], [16]) .
scj =

1
L (N (0, σ2Id) +

∑Lc
j

k=1 x
c
k)

end for
end for
Output the synthetic dataset S = {{scj}Mj=1}Cc=1

III. DIFFERENTALLY PRIVATE DATASET CONDENSATION
(DPDC)

Dong et al. [4] tried to connect differential privacy (DP) and
dataset condensation (DC), but the connection is unfortunately
problematic [5]. To correctly connect DC and DP, we pro-
pose two differentially private dataset condensation (DPDC)
algorithms—a linear algorithm (LDPDC) and a nonlinear
algorithm (NDPDC).

A. DPDC Algorithms

a) Linear DPDC (LDPDC): We illustrate LDPDC in
Algorithm 1. For each class c, we construct M synthetic data
samples {scj}Mj=1. For each synthetic sample scj , we randomly

sample a subset {xc
k}

Lc
j

k=1 from Tc, which is the set of all
the samples with label c in T , by Poisson Sampling with
probability L/Nc. L is the group size [14], and Nc = |Tc|.
Lc
j follows a Poisson distribution with expectation L. Similar

to the q = L/N in [14] and the Opacus library, the sampling
probability qc = L/Nc is fixed for each class in the execu-
tion of the algorithms—For the adjacent datasets of Tc, we
still consider qc as the sampling probability, then we could
exploit the prior theoretical results on subsampling for DP
analysis (similar to Opacus). With {xc

k}
Lc

j

k=1, we compute scj

by scj =
1
L (N (0, σ2Id)+

∑Lc
j

k=1 x
c
k) where N (0, σ2Id) refers

to Gaussian random noise with standard deviation σ.

Here we assume that the real data sample xc
k is bounded,

i.e., xc
k ∈ [−b, b]d. For image data, after normalization, we

have b = 1. Given this assumption, we have ∥xc
k∥ ≤ b

√
d,

which bounds the sensitivity of
∑Lc

j

k=1 x
c
k.

As previously noted, the strength of Algorithm 1 is not
in its utility, but in its efficiency. LDPDC can be set up and
executed on a low-end CPU, requiring a little computational
cost to produce private synthetic data. Therefore, LDPDC is
highly compatible and user-friendly for mobile devices.

Algorithm 2 Nonlinear Differentially Private Dataset Conden-
sation (NDPDC)
Require: Original Dataset T = T1 ∪ T2... ∪ TC ; the number

of classes C; the number of data samples per class Nc; the
number of synthetic samples per class M ; feature extractors
Φθ (not pretrained); parameter distribution Pθ; group size
L; number of iterations I .
Initialize S = {{scj}Mj=1}Cc=1 with random noise from
N (0, Id)
for each iteration (total number of iterations is I) do

Randomly sample θ from Pθ and initialize the loss as
ℓ = 0
for each class c do

Sample the augmentation parameters wc.
Take a randomly sampled subset Dc from Tc with sam-
pling probability L/Nc (by Poisson Sampling, similar
to [14], [16]).
Compute Representations: r(xc

i ) = Φθ(Awc
(xc

i )) for
the subset Dc = {xc

i , c}
|Dc|
i=1 ; r(scj) = Φθ(Awc

(scj))
for Sc = {scj}Mj=1.
Norm Clipping: r̃(scj) = min(1, G

∥r(sc
j)∥2

)r(scj);

r̃(xc
i ) = min(1, G

∥r(xc
i )∥2

)r(xc
i ).

Compute Loss: ℓ = ℓ+∥ L
M

∑M
j=1 r̃(s

c
j)−(N (0, σ2I)+∑|Dc|

i=1 r̃(xc
i ))∥22.

end for
S = S − η∇Sℓ (scj = scj − η∇sc

j
ℓ ∀scj ∈ S).

end for
Output the synthetic dataset S = {{scj}Mj=1}Cc=1

b) Nonlinear DPDC (NDPDC): We illustrate NDPDC
in Algorithm 2, which is designed upon the idea of matching
the representations of original and synthetic data. We follow
[8] to use differentiable augmentation function Awc

(·)* to
boost the performance (Φθ(Awc

(·)) is similar to a composite
function). In each iteration of Algorithm 2, we first sample
random parameters θ for the feature extractor Φθ and initialize
the loss as 0. After that, for each class c, we sample the
augmentation parameters wc and randomly sample a subset
from Tc by Poisson sampling with sampling probability L/Nc.
We then compute the representations of the original data and
synthetic data and clip the representations with a pre-defined
threshold G.

We remark that it is essential to clip both the representa-
tions of original and synthetic data. We clip the representations

*The transformations for augmentation include color jittering, cropping,
cutout, flipping, scaling, rotation. We refer the interested readers to [3] for
more details.
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of the original data for the purpose of bounding the ℓ2 sensi-
tivity. We also clip the representations of the synthetic data in
order to match the representations on a similar scale. Since G
is pre-defined as the constant 1 (not computed from original
data), the operation of clipping the synthetic data represen-
tations (i.e., r̃(scj) = min(1, G

∥r(sc
j)∥2

)r(scj) in Algorithm 2)
does not leak private information regarding the original data.
After clipping the representations, we add Gaussian noise to
the sum of the clipped original data representations.

We use the squared ℓ2 distance between the random-
ized sum of the clipped original data representations (i.e.,
N (0, σ2I) +

∑|Dc|
i=1 r̃(xc

i )) and the sum of the clipped syn-
thetic data representations multiplied by a factor L/M (i.e.,
L
M

∑M
j=1 r̃(s

c
j)) as the loss. We use the factor L/M because∑|Dc|

i=1 r̃(xc
i ) sums up |Dc| (E(|Dc|) = L) representations,

while
∑M

j=1 r̃(s
c
j) sums up M representations. At the end of

each iteration, we update the synthetic data S with the gradient
of the loss ℓ with respect to S, similar to Algorithm 1 in
[8]. In practical implementation, following [2], [3], [8], we
implement S as a tensor variable with size [N, data shape]
(e.g., [N, 3, 32, 32] on CIFAR10), where N is the size of the
synthetic dataset. The sample diversity is ensured through the
random initialization of the synthetic data samples, leading to
distinct gradients for updating those samples.

Here a natural question to ask is—Why not combine
distribution matching and DP-SGD for differentially private
data condensation? For common deep learning tasks, we
could compute sample-wise loss so that DP-SGD can clip the
sample-wise loss gradients to bound the sensitivity. However,
distribution matching uses the squared ℓ2 distance between
the averaged original data representations and the averaged
synthetic data representations as loss, so we could not directly
compute sample-wise loss.

B. Theoretical Results

Theorem III.1 and Theorem III.2 bound the privacy risk of
Algorithm 1 and Algorithm 2, respectively.

Theorem III.1. Suppose the original data x satisfies x ∈
[−b, b]d, and let Ωq,σ̃1(α) ≜ Dα((1 − q)N (0, σ̃2

1) +
qN (1, σ̃2

1)∥N (0, σ̃2
1)) with σ̃1 = σ/(b

√
d) and q =

maxc(L/Nc), then LDPDC obeys (α,MΩq,σ̃1
(α))-RDP and

(minα>1(MΩq,σ̃1
(α)+log((α−1)/α)− (log δ+logα)/(α−

1)), δ)-DP.

Theorem III.2. Let Ωq,σ̃2(α) ≜ Dα((1 − q)N (0, σ̃2
2) +

qN (1, σ̃2
2)∥N (0, σ̃2

2)) with σ̃2 = σ/G and q =
maxc(L/Nc), then NDPDC obeys (α, IΩq,σ̃2(α))-RDP and
(minα>1(IΩq,σ̃2(α) + log((α− 1)/α)− (log δ+ logα)/(α−
1)), δ)-DP, where I is the number of iterations.

In the following, we provide the proof sketch of the above
two theorems.

a) Proof Sketch: To analyze the RDP bounds of LD-
PDC and NDPDC, we formulate the steps that use original
data samples in Algorithm 1 and 2 as Sampled Gaussian
Mechanism (SGM), which is defined as

SGMq,σ(D) = f(D̃) +N (0, σ2In).

D̃ is a subset sampled from the original dataset by Poisson
sampling with sampling probability q. We then could use the
following lemma to provide RDP bounds.

Lemma III.3 (RDP of SGM [7]). If for any two adjacent
subsets D1 and D2 sampled from D, ∥f(D1) − f(D2)∥ ≤
1, then SGMq,σ(D) obeys (α, ϵ)-RDP, where ϵ = Dα((1 −
q)N (0, σ2) + qN (1, σ2)∥N (0, σ2)).

For simplicity, in the following, we denote Dα((1 −
q)N (0, σ2) + qN (1, σ2)∥N (0, σ2)) by Ωq,σ(α). The step of
using the real data samples in Algorithm 1 is

scj =
1

L
(N (0, σ2Id) +

Lc
j∑

k=1

xc
k) (7)

If we define g(D) =
∑|D|

i=1 xi, Eq. 7 can be formulated as an
SGM, i.e.,

sci =
b
√
d

L
(

1

b
√
d
g(Dc) +N (0, σ̃2

1I)), where σ̃1 = σ/(b
√
d)

Since the sensitivity of 1
b
√
d
g(Dc) is 1, Eq. 7 guarantees

(α,Ωqc,σ̃1(α))-RDP for Tc. For Tc, we execute Eq. 7 for M
times to obtain M synthetic samples. Therefore, Algorithm 1
guarantees (α,MΩqc,σ̃1(α))-RDP for Tc.
Remark III.4. In practice, we release the label of sci , which
does not affect the RDP bound for Tc. This is because the
label of all the samples in Tc is c, thus the additional label
information does not help the adversary distinguish between
Tc and its adjacent dataset Tc ∪ {(x, c)} for any x.

The part of the optimization step that uses the real data
samples in Algorithm 2 is

N (0, σ2I) +

|Dc|∑
i=1

r̃(xc
i ), (8)

where r̃(xc
i ) = min(1, G

∥r(xc
i )∥2

)r(xc
i ). If we define g(D) =∑|D|

i=1 r̃(xi) =
∑|D|

i=1 min(1, G
∥r(xi)∥2

)r(xi), then Eq. 8 can
be formulated as a standard SGM, i.e.,

G(N (0, σ̃2
2I) +

1

G
g(Dc)), where σ̃2 = σ/G. (9)

Since g(D) =
∑|D|

i=1 min(1, G
∥r(xi)∥2

)r(xi), the sensitivity of
1
Gg(Dc) is also 1. Therefore, Eq. 8 guarantees (α,Ωqc,σ̃2(α))-
RDP for Tc. Since Algorithm 2 executes Eq. 8 for I iterations,
it guarantees (α, IΩqc,σ̃2

(α))-RDP for Tc.

Since MΩqc,σ̃1(α) ≤ M maxc(Ωqc,σ̃1(α)) and
IΩqc,σ̃2(α) ≤ Imaxc(Ωqc,σ̃2(α)), Algorithm 1 also
guarantees (α,maxc(MΩqc,σ̃1(α)))-RDP, and Algorithm 2
also guarantees (α,maxc(IΩqc,σ̃2(α)))-RDP.

Eventually, we need to use the following corollary to
conclude the proof.

Corollary III.5. Let Ωqc,σ(α) ≜ Dα((1 − qc)N (0, σ2) +
qcN (1, σ2)∥N (0, σ2)), where c = 1, 2, ..., C. We have
maxc Ωqc,σ(α) = Ωmaxc(qc),σ(α).

Based on Corollary III.5, which is proved in the
appendix, we further have for Tc, Algorithm 1 guar-
antees (α,MΩq,σ̃1

(α))-RDP, and Algorithm 2 guarantees
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(α, IΩq,σ̃2
(α))-RDP, where q = maxc(qc) = maxc(L/Nc).

Since T1, T2, ... TC are disjoint, according to Lemma II.8, Al-
gorithm 1 guarantees (α,MΩq,σ̃1(α))-RDP, and Algorithm 2
also guarantees (α, IΩq,σ̃2(α))-RDP, for T = T1∪T2... ∪TC .

b) Additional Explanation About Releasing Labels:
Remark III.4 indicates that we could release labels. Beyond
Remark III.4, here we provide more explanation about the
correctness of our theorems when considering labels, from
the perspective of the add/remove neighboring differential
privacy definition. Specifically, supposing that the adversary
wants to distinguish between two adjacent datasets T and
T ∪ {(x, c)}, distinguishing between them is equivalent to
distinguishing between Tc and Tc ∪{(x, c)}. In another word,
the question of whether (x, c) is in the original dataset for
dataset condensation is equivalent to the question of whether
(x, c) is in the subset (with label c) of the original dataset.
This is because (x, c) cannot be in the remaining part (with
other labels) of the original dataset.

To distinguish between Tc and Tc ∪ {(x, c)}, the in-
formation leakage source that the adversary can rely on is
{sjc, c}Mj=1 since the other synthetic data is not related to Tc.
For Tc, releasing {sjc, c}Mj=1 guarantees the same DP bound as
releasing {sjc}Mj=1 since c is a constant for the samples in Tc.
To be more specific, for any dataset, we can assign a constant
for all the samples, and the DP bound on the dataset should
be unchanged. Therefore, for LDPDC and NDPDC, releas-
ing {sjc, c}Mj=1 respectively guarantees (α,MΩqc,σ̃1

(α))-RDP
and (α, IΩqc,σ̃2

(α))-RDP when the adversary distinguishes
between T and T ∪ {(x , c)}, which also respectively guar-
antees (α,MΩq,σ̃1

(α))-RDP and (α, IΩq,σ̃2
(α))-RDP since

qc = L/Nc ≤ q = maxc(L/Nc).

c) Additional Technical Details: In the experiments,
we use {{sjc, c}Mj=1}Cc=1 for training the classification models.
According to Remark III.4 and the above explanation, releasing
the labels does not affect the RDP bound. Additionally, we
follow Opacus to exploit [7]’s method for computing Ωq,σ(α)
in practice.

IV. COMPARISON WITH DPMIX AND DP-MERF

a) LDPDC and DPMix: Similar to LDPDC, DPMix
[20] is a linear algorithm for differentially private data genera-
tion. However, LDPDC does not need to randomize the labels
with the help of Lemma II.8 and Remark III.4, but DPMix
needs to randomize the labels. We note that noisy labels
may mislead model training and thus hurt the performance.
Moreover, LDPDC takes advantage of privacy amplification
by Poisson sampling, where the sampling probability is fixed,
whereas the number of samples in the randomly sampled
subset, i.e., Lc

j , is not fixed. In contrast, DPMix claims to
take use of privacy amplification by subsampling without
replacement, which computes the mean over the subset with
a fixed number of samples and then adds noise. According
to [21], DP definition works more naturally with Poisson
sampling, and Poisson sampling usually provides a better
bound. Thus, DPMix needs a little bit more noise on the
samples than LDPDC to achieve the same DP budget. We also
note that, Poisson sampling is the standard sampling method
used in the state-of-the-art Pytorch library for differentially
private deep learning [16].

In addition, we have reproduced DPMix and observed that
LDPDC has better performance than DPMix with the settings
for dataset condensation. Specifically, for DPMix, we set σX =
σY = 1, L = 50, and M = 50, the result that we reproduce for
DPMix is only 10.22% ± 1.23% on CIFAR10. We conjecture
that this may be because (i) The operations of adding noise
to the labels in DPMix cause more negative effects on model
performance, compared to LDPDC. (ii) DPMix may be only
able to use a large number of synthetic samples to achieve the
results reported in [20]. (iii) There are some missing details in
the published version of [20] that may affect the effectiveness
of DPMix. If we instead refer to the results reported in [20], we
also observe that LDPDC can use lower DP budgets to achieve
comparable performance to DPMix. Since DPMix does not
have comparable performance to recent DP generation methods
and LDPDC, it is not included in the baselines in Section V.

b) NDPDC and DP-MERF: Similar to NDPDC, DP-
MERF [10] proposes to match the features of the real and syn-
thetic data. However, DP-MERF uses random Fourier features,
while NDPDC uses non-linear convolutional neural networks
(CNN) to extract the features. The features extracted by CNN
are better representations than random Fourier features in
computer vision tasks, so it is not surprising that NDPDC
outperforms DP-MERF. Beyond that, DP-MERF involves label
information such as one-hot label representations and ran-
domized label counts into the embeddings before applying
noise, so it seems unclear if any label information is cor-
rupted in the process of training the generator for DP-MERF.
In contrast, it is clear that NDPDC does not corrupt label
information, according to Algorithm 2. Moreover, DP-MERF
trains a generator to generate synthetic data, while NDPDC
directly optimizes the small synthetic dataset and thus can
obtain synthetic data with higher quality.

V. EXPERIMENTS

A. Experimental Setup

We follow [3], [4], [8] to conduct experiments on four
widely-used datasets: MNIST [22], Fashion-MNIST [23], CI-
FAR10 [24], and CelebA (gender classification) [25]. In the
following, we introduce the baselines, DPDC settings, and the
method for evaluating the synthetic data utility.

a) Baselines: We compare DPDC with the state-of-the-
art dataset condensation method, i.e., distribution matching
(DM) [8], and two recent DP generative methods, i.e., DP-
Sinkhorn [9] and DP-MERF [10]. For DP-Sinkhorn, we use
[9]’s code† to run the experiments. We set m to 1 and the
target ϵ to 10. For DP-MERF, we use [10]’s code ‡ and follow
[10] to set σ to 5.

b) DPDC Settings: For LDPDC, we set σ =
√
d,

M = 50, L = 50 by default. Given that b = 1, σ̃1 =
σ/(b

√
d) = 1. For NDPDC, the default settings are σ = 1,

G = 1, M = 50, L = 50, I = 10000, and η = 1. We set
G = 1, so σ̃2 = σ/G = 1. We follow [8] to use three-layer
convolutional neural networks as the feature extractors (also
called ConvNet-based feature extractors) for NDPDC. Batch
normalization (BN) [26] is not DP friendly since a sample’s

†https://github.com/nv-tlabs/DP-Sinkhorn code
‡https://github.com/ParkLabML/DP-MERF/tree/master/code balanced
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Dataset → MNIST FMNIST

Method ↓ Test Acc DP Budget Test Acc DP Budget
DM with Rand Init 98.38% ± 0.05% No 86.90% ± 0.44% No

DP Sinkhorn 86.92% ± 0.93% (10, 10−5)-DP 65.60% ± 1.06% (10, 10−5)-DP
DP-MERF 84.81% ± 2.04% (1, 10−5)-DP 63.05% ± 2.05% (1, 10−5)-DP

Linear DPDC (LDPDC) 85.79% ± 0.81% (1.10, 10−5)-DP 63.95% ± 0.42% (1.06, 10−5)-DP
Nonlinear DPDC (NDPDC) 97.35% ± 0.13% (6.12, 10−5)-DP 82.72% ± 0.35% (5.45, 10−5)-DP

Dataset → CIFAR10 CelebA

Method ↓ Test Acc DP Budget Test Acc DP Budget
DM with Rand Init 59.69% ± 0.44% No 84.13% ± 0.42% No

DP Sinkhorn 15.09% ± 0.33% (10, 10−5)-DP 71.72% ± 1.13% (10, 10−5)-DP
DP-MERF 17.10% ± 0.78% (1, 10−5)-DP 69.26% ± 0.90% (1, 10−5)-DP

Linear DPDC (LDPDC) 25.81% ± 0.52% (1.14, 10−5)-DP 68.72% ± 2.26% (0.61, 10−5)-DP
Nonlinear DPDC (NDPDC) 52.68% ± 0.40% (6.72, 10−5)-DP 80.66% ± 0.63% (0.71, 10−5)-DP

TABLE I: Here we use the default settings for all the methods. We employ 50 synthetic samples per class to train ConvNet
models and report the testing accuracy here. We follow [8] to apply the augmentations in [3] when training ConvNet models.
Similar to DP-Sinkhorn, we can also fix a target DP budget and compute the corresponding σ (or I) to run LDPDC and NDPDC.
In Table II, we compare all the methods under the ϵ = 1 DP budget.

MNIST FMNIST CIFAR10 CelebA
Linear DPDC (LDPDC) 85.80% ± 0.39% 63.64% ± 0.76% 25.46% ± 0.83% 69.64% ± 1.01%

Nonlinear DPDC (NDPDC) 95.32% ± 0.29% 78.79% ± 0.37% 42.40% ± 0.86% 81.47% ± 0.80%

DP Sinkhorn 55.43% ± 1.54% 43.22% ± 1.40% 12.62% ± 0.27% 64.02% ± 0.48%

DP-MERF 84.81% ± 2.04% 63.05% ± 2.05% 17.10% ± 0.78% 69.26% ± 0.90%

TABLE II: We set ϵ = 1, δ = 10−5 and compare LDPDC, NDPDC, DP Sinkhorn, DP-MERF.

normalized value depends on other samples [16]. Therefore,
we do not use BN in the extractors. Since the data statistics
like channel-wise means and channel-wise standard deviation
may leak private information, we follow [9] to use a fixed value
0.5 for normalizing the images, which does not make obvious
difference in the performance of DPDC and the baselines.
After normalization, the pixel values range from −1 to 1.

c) Performance Evaluation: We employ the evaluation
method in [3], [4], [8] to compare the performance of DM,
DP-Sinkhorn, DP-MERF, and our DPDC algorithms. The
evaluation method is to train deep learning models on the
synthetic data from scratch and compare their accuracy on
the real testing data. Higher testing accuracy indicates better
synthetic data utility for training deep learning models (better
performance). We also follow [3], [8] to train a variety of
model architectures, including MLP [27], LeNet [28], AlexNet
[29], VGG11 [30], and ResNet18 [31], on DPDC-generated
synthetic data to evaluate the data utility.

B. Main Results

We report the main experimental results in Table I & II. Our
LDPDC algorithm achieves comparable performance to DP-
MERF and DP-Sinkhorn with low DP budgets. Our NDPDC
algorithm provides acceptable DP guarantees (ϵ < 10) with
a mild utility loss, compared to the random-initialized non-
private DM method [8]. Furthermore, NDPDC allows a flexible
trade-off between synthetic data utility and DP budget—If
we are not satisfied with NDPDC’s DP budgets in Table I,
we could increase σ to reduce the budgets. As shown in
Table II, even with low DP budgets like ϵ = 1, NDPDC
still outperforms LDPDC, DP-Sinkhorn, and DP-MERF.
For DP-MERF, even if we decrease σ to 0.5 (ϵ > 10),
the accuracy increment is only about 7% on FMNIST and
less than 5% on the other datasets, as shown in Table IV.
We conjecture that NDPDC-condensed synthetic data is more

useful than DP-generator generated synthetic data because DP
generative methods optimize the generative model parameters,
while NDPDC directly optimizes the small amount of synthetic
data. Moreover, NDPDC have other advantages over DP-
MERF as discussed in Section IV.

We further train a variety of model architectures on the
synthetic data generated by LDPDC and NDPDC and report
the testing accuracy in Table III. Since LDPDC does not rely
on deep networks to learn the synthetic data, it is hard to
predict which network architecture can make the best use of the
LDPDC-generated synthetic data. According to the results in
Table III, on FMNIST, CIFAR10, and CelebA, MLP makes the
best use of the simple LDPDC-generated synthetic data, while
on MNIST, ResNet18 makes the best use of the synthetic data.
For NDPDC, since the synthetic data is learned on ConvNet-
based extractors, ConvNet makes better use of the synthetic
data than the other architectures. We also evaluate DP-HP [32]
using [32]’s code§ on MNIST and FMNIST and report the
results in Table V. Different from DP-Sinkhorn and DP-MERF,
we do not obtain comparable results for DP-HP, so DP-HP is
not included in Table I.

C. Visualization

We visualize synthetic images generated by DM, DP-
Sinkhorn, DP-MERF, LDPDC, and NDPDC in Fig. 1. For
DPMix, interested readers can refer to Fig. 1 in [20] for the
synthetic images generated by DPMix.

Compared to DM-generated images, NDPDC-generated
images are more noisy due to the DP guarantees. A surprising
result is that LDPDC-generated images look like noise, but
the models still can learn some information from LDPDC-
generated images. We conjecture that this is because LDPDC-
generated images still have certain patterns. However, the

§https://github.com/ParkLabML/DP-HP
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LDPDC MLP LeNet AlexNet VGG11 ResNet18

MNIST 80.40% ± 0.33% 83.32% ± 3.03% 83.22% ± 0.67% 85.81% ± 0.74% 88.14% ± 0.73%

FMNIST 68.84% ± 0.58% 68.49% ± 1.36% 66.45% ± 0.94% 67.31% ± 1.01% 67.58% ± 0.92%

CIFAR10 30.60% ± 0.18% 29.82% ± 0.81% 29.65% ± 0.82% 24.86% ± 0.29% 23.79% ± 0.59%

CelebA 69.48% ± 1.51% 66.95% ± 0.53% 67.61% ± 0.87% 66.87% ± 2.23% 65.88% ± 1.42%

NDPDC MLP LeNet AlexNet VGG11 ResNet18

MNIST 93.15% ± 0.83% 96.82% ± 0.13% 97.00% ± 0.32% 97.37 ± 0.13% 97.67% ± 0.14%

FMNIST 79.98% ± 0.33% 80.89% ± 0.40% 81.94% ± 0.54% 82.63% ± 0.54% 81.50% ± 0.33%

CIFAR10 36.99% ± 0.62% 36.94% ± 1.24% 42.60% ± 1.06% 48.80% ± 0.24% 44.79% ± 0.64%

CelebA 75.95% ± 1.30% 78.02% ± 1.01% 79.69% ± 0.91% 81.25% ± 1.31% 82.32% ± 0.68%

TABLE III: Performance on varied model architectures with default settings: For NDPDC, the synthetic data is learned on
ConvNet-based feature extractors and evaluated on those model architectures. The privacy budgets and the results on ConvNet
are given in Table I.

(a) Original images. (b) DM generated synthetic images (with random initialization).

(c) DP-Sinkhorn generated synthetic images (d) DP-MERF generated synthetic images.

(e) LDPDC generated synthetic images. (f) NDPDC generated synthetic images.

Fig. 1: Visualizing the synthetic CelebA images. Female synthetic images are listed in the first row, and male synthetic images
are listed in the second row.

Dataset Test Acc DP budget

MNIST 86.70% ± 2.07% (11.60, 10−5)-DP
FMNIST 70.38% ± 0.79% (11.60, 10−5)-DP
CIFAR10 20.61% ± 0.87% (11.60, 10−5)-DP
CelebA 69.51% ± 1.69% (11.60, 10−5)-DP

TABLE IV: The performance of DP-MERF with σ = 0.5. We
employ 50 synthetic samples per class to train the ConvNet
models for evaluation.

Dataset Test Acc DP budget

MNIST 74.20% ± 1.66% (1, 10−5)-DP
FMNIST 28.05% ± 1.12% (1, 10−5)-DP

TABLE V: The performance of DP-HP. We run the experi-
ments using [32]’s code to generate synthetic data. We employ
50 synthetic samples per class to train the ConvNet models for
evaluation.

patterns are hardly perceptible by human beings because of
the high noise (σ =

√
d).

We remark that, although the synthetic images generated
by DP-Sinkhorn on CelebA look like faces, they are not very
colorful and not diverse. Therefore, when being tested on the
colorful and diverse original CelebA images, the model trained
on NDPDC-generated images has better accuracy than the
model trained on DP-Sinkhorn generated images.

D. Case Study on Tabular Data

Previous research on dataset condensation [2], [4], [8]
mainly focuses on image data. We conjecture that the reason
is that most tabular datasets are already small and may not
need condensation. Nevertheless, in this paper, we conduct
a case study on a widely used tabular dataset, i.e., adult
income dataset [33], to evaluate our DPDC methods on diverse
data formats. In this case study, we use a single layer linear
network (14 × 64) as the feature extractor for NDPDC. We
still set M = 50, so the total number of synthetic samples is
100. We set ϵ = 1, which results in σ = 2.09. The testing
accuracy achieved by NDPDC on the adult income dataset is
79.16% ± 0.09%. We also run DP-MERF with the setting of
100 synthetic training samples, and the best accuracy we can
obtain for DP-MERF is 70.60%.
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Fig. 2: The privacy budgets of NDPDC with different σ, L, and I .

Noise MNIST FMNIST CIFAR10

σ = 0.75 97.51% 83.28% 54.33%

σ = 1.25 97.06% 82.23% 51.36%

σ = 1.5 96.86% 81.66% 50.12%

σ = 2.0 96.46% 80.96% 47.93%

TABLE VI: The averaged testing accuracy of ConvNets trained
on the synthetic data generated by NDPDC with different σ.

Group Size MNIST FMNIST CIFAR10

L = 25 96.41% 80.88% 48.07%

L = 75 97.61% 83.97% 54.81%

L = 100 97.90% 84.40% 56.42%

TABLE VII: The averaged testing accuracy of ConvNets
trained on the synthetic data generated by NDPDC with
different group size L.

E. Ablation Study on NDPDC

Although LDPDC is simple and comparable to recent DP
generative methods here, we still recommend the readers with
sufficient computational resources to use NDPDC because of
its outstanding performance. In this subsection, we conduct
ablation study for NDPDC on MNIST, FMNIST, and CIFAR10
with recommendations on how to select hyperparameters for
executing NDPDC. When we study the effects of one hy-
perparameter, we fix the other hyperparameters as the default
settings.

a) Effects of Noise Multiplier σ on Privacy and Utility:
We plot the DP budgets of NDPDC with different σ in Fig. 2
and report the corresponding testing accuracy in Table VI.
Fig. 2 and Table VI indicate that, as σ increases, ϵ will
decrease, and the testing accuracy will also decrease. But the
testing accuracy does not decrease much as σ increases. Thus,
if we are unsatisfied with the DP budget, we could simply
increase σ to obtain a low DP budget with a little loss of
synthetic data utility. Additionally, we do not recommend to
set σ/G ≤ 0.75, otherwise ϵ will be larger than 10, then the
DP guarantee is not very useful.

b) Effects of Group Size L on Privacy and Utility: We
plot the DP budgets with different L in Fig. 2 and show the
testing accuracy in Table VII. If we increase L, more original
data will be sampled in each step for learning the synthetic
data, and thus, both ϵ and the testing accuracy will increase.
According to Fig. 2 and Table VII, if we are unsatisfied with
the DP budgets, we could also decrease L to 25 to obtain better
DP budgets with a minor utility loss.

c) Effects of Number of Iterations I on Privacy and
Utility: We plot the DP budgets in Fig. 2 and show the testing

Iterations MNIST FMNIST CIFAR10

I = 2000 96.32% 80.45% 47.42%

I = 4000 96.84% 81.64% 50.07%

I = 6000 97.14% 82.18% 51.20%

I = 8000 97.28% 82.50% 52.19%

TABLE VIII: The averaged testing accuracy of ConvNets
trained on NDPDC-generated synthetic data with different I .

Data Size MNIST FMNIST CIFAR10

M = 10 96.47% 80.00% 45.88%

M = 100 97.54% 82.88% 54.24%

M = 200 97.50% 83.16% 54.26%

TABLE IX: The averaged testing accuracy of ConvNets
achieved by NDPDC with different number of synthetic sam-
ples per class M .

accuracy in Table VIII. If we increase I , since NDPDC will
learn on the original data for more iterations, both the DP
budget and testing accuracy will increase. Since the testing
accuracy does not increase much when I is large, reducing I
is another good choice beyond increasing σ and reducing L to
save DP budget with acceptable utility loss.

d) Effects of Synthetic Data Size M on Privacy and
Utility: We show the testing accuracy with different M in
Table IX: As M increases from 10 to 200, the testing accuracy
also increases but will almost stop the uptrend around a certain
M . This is probably because more synthetic data has the
potential to capture more information, but the DP guarantee
also limits the information leaked from the original data. Since
the DP budget is unchanged, after the amount of synthetic
data is enough for capturing all the limited information, more
synthetic data could not capture more useful information.
Given the experimental results, M = 50 is a good setting here.
We do not recommend setting a larger M (M > 50), which
will result in marginal performance gain but much more cost
in the downstream applications.

VI. CONCLUSION

In this paper, we connect data condensation and differential
privacy by proposing two differentially private dataset conden-
sation (DPDC) algorithms—LDPDC and NDPDC. We demon-
strate that LDPDC can use low DP budgets to achieve compa-
rable performance to DP-Sinkhorn and DP-MERF. Moreover,
we show that NDPDC can provide DP guarantees with a mild
utility loss compared to the distribution matching method. We
hope our work can inspire further research in this potential
direction to alleviate the cost burden and privacy concern in
deep learning.
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APPENDIX

OMITTED PROOF

We first prove Lemma A.1. Based on Lemma A.1, we can
easily prove Corollary A.2 (Corollary III.5), which is used in
the proof of Theorem III.1 & III.2.

Lemma A.1. Let u(z) and ν(z) be two differentiable prob-
ability density functions on a domain Z (u, ν : Z 7→ R). If
u(z) ̸= ν(z) and u(z), ν(z) > 0 on Z , then Dα((1−q)u(z)+
qν(z)∥u(z)) is an increasing function w.r.t. q when α > 1 and
q ∈ [0, 1].

Lemma A.1 is easy to understand: As q increases, the
weight of u(z) in the mixture (1− q)u(z)+ qν(z) decreases,
thus the divergence between (1 − q)u(z) + qν(z) and u(z)
should increase. To our best knowledge, we are the first to
present Lemma A.1, so we detail the proof in the following.

proof of Lemma A.1: The Rényi divergence Dα((1 −
q)u(z) + qν(z)∥u(z)) is defined as

1

α− 1
ln

∫
Z
u(z)(

(1− q)u(z) + qν(z)

u(z)
)αdz = (10)

1

α− 1
ln

∫
Z
u(z)(1− q + q

ν(z)

u(z)
)αdz

The derivative of Eq. 10 w.r.t q is∫
Z α(ν(z)− u(z))(1− q + q ν(z)

u(z) )
α−1dz

(α− 1)
∫
Z u(z)(1− q + q ν(z)

u(z) )
αdz

. (11)

To prove Lemma A.1, we need to show Eq. 11 is positive
when q ∈ [0, 1]. Since α > 1 and u(z)(1 − q + q ν(z)

u(z) )
α > 0

(If q ̸= 0, 1− q + q ν(z)
u(z) > 1− q ≥ 0), we only need to prove∫

Z(ν(z)− u(z))(1− q + q ν(z)
u(z) )

α−1dz > 0.

We divide Z into Z1 and Z2, where Z1 = {z ∈ Z|ν(z) <
u(z)} and Z2 = {z ∈ Z|ν(z) ≥ u(z)}. Apparently, Z1 and
Z2 are disjoint, and Z = Z1 ∪ Z2. Thus, we can rewrite∫
Z(ν(z)− u(z))(1− q + q ν(z)

u(z) )
α−1dz as∫

Z1

(ν(z)− u(z))(1− q + q
ν(z)

u(z)
)α−1dz+ (12)∫

Z2

(ν(z)− u(z))(1− q + q
ν(z)

u(z)
)α−1dz

When z ∈ Z1, we have (i) ν(z) − u(z) < 0; (ii) ν(z)
u(z) < 1

(0 < ν(z) < u(z)); (iii) 0 < (1 − q + q ν(z)
u(z) )

α−1 < 1 (1 =

1− q + q > 1− q + q ν(z)
u(z) > 1− q ≥ 0). Therefore,∫

Z1

(ν(z)− u(z))(1− q + q
ν(z)

u(z)
)α−1dz (13)

>

∫
Z1

(ν(z)− u(z))dz

When z ∈ Z2, we have (i) ν(z) − u(z) ≥ 0; (ii) ν(z)
u(z) ≥ 1

(0 < u(z) ≤ ν(z)); (iii) (1− q + q ν(z)
u(z) )

α−1 ≥ 1. Therefore,∫
Z2

(ν(z)− u(z))(1− q + q
ν(z)

u(z)
)α−1dz (14)

≥
∫
Z2

(ν(z)− u(z))dz

As a result,∫
Z
(ν(z)− u(z))(1− q + q

ν(z)

u(z)
)α−1dz > (15)∫

Z1

(ν(z)− u(z))dz +

∫
Z2

(ν(z)− u(z))dz =∫
Z
(ν(z)− u(z))dz =

∫
Z
ν(z)dz −

∫
Z
u(z)dz = 0

Thus, the derivative of Eq. 10 w.r.t q is positive. This concludes
the proof of Lemma A.1.

Corollary A.2. Let Ωqc,σ(α) ≜ Dα((1 − qc)N (0, σ2) +
qcN (1, σ2)∥N (0, σ2)), where c = 1, 2, ..., C. We have
maxc Ωqc,σ(α) = Ωmaxc(qc),σ(α).

Proof of Corollary A.2: Let u(z) ≜ N (0, σ2) and ν(z) ≜
N (1, σ2) (Z ≜ R), then based on Lemma A.1, we know that
Ωq,σ(α) is an increasing function w.r.t. q. Thus, the maximum
of Ωqc,σ(α) is achieved at maxc(qc). This concludes the proof
of Corollary A.2.

ADDITIONAL RELATED WORK

The previous literature has proposed an array of generative
methods for synthetic data generation [34]–[39]. Due to the
growing privacy concern, recent research also focuses on
developing differentially private generative methods [40]–[43].
[40] first combined DP-SGD and GAN to generate private syn-
thetic data. [42] combined conditional GAN and DP-SGD to
generate class-conditional private data. [41] applied PATE [44]
to GAN and developed a differentially private GAN framework
called PATE-GAN. PATE-GAN trains a student discriminator
on the labels output by the PATE mechanism and trains the
generator on the generative loss computed over the student
discriminator. [43] proposed a framework called G-PATE with
a private gradient aggregation mechanism to enable a better
combination of PATE and GAN. GS-WGAN [45] proposed
to selectively apply the randomized mechanism in DP-SGD
to maximally preserve the true gradient direction and use the
Wasserstein objective to improve the amount of gradient infor-
mation flow during training the generative models. DP-MERF
[10] proposed to train the generator by matching the mean
embeddings of the real data and the generator-output synthetic
data. DP-Shinkhorn [9] framed the generative learning problem
as minimizing the optimal transport distance and trained the
generative models using a semi-debiased Sinkhorn loss. [9]
demonstrated that, using (10, 10−5)-DP budget, DP-Shinkhorn
can generate synthetic data with better utility and quality than
G-PATE and GS-WGAN on MNIST and FashionMNIST.
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