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AbstrAct
In the past several decades, it has been well 

known that the Transmission Control Protocol 
(TCP), even with its modern variants such as 
CUBIC, may not perform optimally when avail-
able bottleneck bandwidth needs to be fully uti-
lized, yet without unnecessarily increasing the 
end-to-end latency. These observations have led 
to a recent resurgence of interest in the topic 
of redesigning congestion control protocols and 
replacing modern TCP variants using machine 
learning. In this article, we examine and compare 
some of the most prominent recent research 
results on the use of machine learning to redesign 
congestion control protocols, with an editorial 
commentary on potential research directions in 
the near-term future.

IntroductIon
Congestion control is one of the most funda-
mental and challenging  problems in computer 
networking research. The challenge involves the 
design of a protocol that is simple and practical to 
implement, yet is able to maximize the achieved 
throughput between a source and a destination, 
avoiding any potential congestion in the network 
in between. The first challenge in the design of 
congestion control protocols lies in the wide vari-
ety of network characteristics: the network can 
be a wireless connection between a smartphone 
and an airport WiFi access point, shared with 
hundreds of other smartphones; or it can be a 
datacenter network operating at 100 Gb/s with 
very low propagation delays. Both the available 
bottleneck bandwidth and the propagation delay 
can vary by a few orders of magnitude, leading 
to a wide range in terms of the bandwidth-delay 
product (BDP), defined as the product of the bot-
tleneck bandwidth and the round-trip propaga-
tion time, and the congestion control algorithm 
must be able to operate effectively over the entire 
range of the BDP.

Figure 1 shows an illustration of the band-
width-delay product, which represents the “vol-
ume” of the “pipe” between the source and the 
destination at a high level. The ultimate objective 
when designing a congestion control algorithm is 
to fill such a “pipe” just right: utilizing the bottle-
neck bandwidth as much as possible, and ensur-
ing that the total data in flight between the source 
and the destination is equal to the BDP. When 
both objectives are achieved, queuing delays, i.e. 
the time spent for packets to wait in queues along 
the path between the source and the destination, 

are kept to the minimum. To further exacerbate 
the problem, the bottleneck bandwidth may vary, 
as the flows sharing such bandwidth may arrive 
and terminate at any time. A well-designed con-
gestion control algorithm should allow these flows 
to share bottleneck bandwidth fairly.

In the past several decades, it has been well 
known that the Transmission Control Protocol 
(TCP), when used as a congestion control mech-
anism, has been simple, effective and highly scal-
able as the scale of the Internet evolves by a few 
orders of magnitude. Yet, it has also been wide-
ly acknowledged that TCP suffers from subpar 
— some call it notoriously poor — performance 
when the network links become lossy or when 
the BDP becomes high.

To address the problems of TCP, the com-
munity has resorted to two different directions 
of research. The first is to redesign congestion 
control algorithms from scratch, a “clean slate” 
approach, as a replacement for congestion con-
trol in TCP, without prioritizing backward compat-
ibility but still maintaining TCP-friendliness. As a 
prominent example, the eXplicit Control Protocol 
(XCP) [1] has been designed specifically for the 
high-BDP environments as alternatives to TCP.

The second is to “patch” the protocol while 
maintaining backward compatibility with respect 
to fairness to the traditional TCP variants such as 
TCP-Reno. This is exemplified by CUBIC [2], a 
TCP variant that is designed for high-BDP environ-
ments by growing the congestion window more 
aggressively beyond the saturation point. Since it 
was proposed, CUBIC has become a remarkable 
success, making its way into the Linux kernel since 
version 2.6.19 as the default TCP implementation, 
as well as the Windows 10 kernel. It has been 
widely accepted as the de facto TCP implemen-
tation, and appears to be a preferred choice as 
compared to other backward-compatible replace-
ments of TCP in the literature, such as XCP and 
FAST TCP.

From the perspective of the number of papers 
published each year on the topic of congestion 
control (Fig. 2), it appears that the popularity of 
this topic reached a “plateau” around 2007-2008, 
and trended downward since then. Starting in 
2017, however, we observed an uptick of interest 
in congestion control as a research topic. Such a 
“renaissance” may not be reflected in the number 
of papers in the literature yet; but as we will elabo-
rate in this article, it has certainly been reflected in 
the interest of recent papers to move away from 
the conventional wisdom of using heuristics to the 
use of machine learning techniques. They have 
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been proposed as alternatives to replace TCP, fol-
lowing the first category of a clean slate design.

In this article, we present a concise survey 
of some of the prominent and most influential 
recent research results on the resurgence of rede-
signing congestion control protocols by applying 
machine learning techniques. We will outline sev-
eral important challenges and their corresponding 
solutions, and share some of the lessons we have 
learned. Throughout the article, we will provide 
insights toward potential future directions as well.

congestIon control Protocols wIth  
offlIne And onlIne leArnIng

As replacements for TCP variants, it is challeng-
ing to design new congestion control protocols 
that work efficiently in a wide variety of network 
environments. Again, the ultimate design objec-
tives are to maximize the utilization of bottleneck 
bandwidth, and to ensure that the total data in 
flight between the source and the destination 
is equal to the BDP, or equivalently, to reduce 
queuing delays as much as possible.

BBR: To achieve both objectives, Cardwell 
et al. [3] designed a new congestion-based con-
gestion control protocol, called BBR (Bottleneck 
Bandwidth and Round-trip propagation time). 
BBR represents the network path between the 
source and the destination as a “pipe” with two 
parameters: the round-trip propagation time (as 
the “length” of the pipe) and the bottleneck band-
width (as the minimum diameter). When there 
is not enough data in flight to fill the pipe, the 
round-trip propagation time is a fixed value and 
the delivered rate is low; when the pipe is full, 
the bottleneck bandwidth dominates the deliv-
ery of packets and a queue starts to build at the 
bottleneck switch. There exists an optimal oper-
ating point that maximizes the delivered rate and 
minimizes queuing delays at the same time. Yet, 
before BBR was designed, it remains elusive to 
achieve such an optimal point with a distributed 
algorithm. In fact, Jaffe et al. [4] stated that it was 
not feasible to design a decentralized protocol to 
achieve such an optimal point.

BBR, on the other hand, was not as pessimis-
tic, and suggested that such a protocol can be 
designed by reacting to careful measurements 
over time. For the round-trip propagation time, 
BBR proposed to estimate it using the minimum 
of the round-trip times (RTTs) over a period of 
time (at the scale of tens of seconds or minutes). 
For the bottleneck bandwidth, it estimated it using 
the maximum of the delivery rate over a period 
of time (typically six to 10 RTTs), which can be 
accurately measured when acknowledgments are 
received. Once both parameters are estimated, 
the BDP can then be computed.

When a flow starts, BBR enters a startup state 
and uses a binary search for the bottleneck band-
width, roughly doubling the sending rate (with a 
gain of 2/ln2) when the delivery rate measured 
keeps increasing. Once the bottleneck bandwidth 
is reached, it will enter a drain state to drain the 
queue. At steady state, BBR pays little attention 
to packet losses, as opposed to TCP variants that 
it replaces, which react to such packet losses as 
congestion signals. Instead of continuing to ramp 
up until packet losses occur, BBR paces packets  

to be sent so that the data in flight is bounded by 
a small multiple of the computed BDP. Periodical-
ly, it enters a probeBW state to probe for a higher 
bottleneck bandwidth; and when the round-trip 
propagation time starts to increase, it enters the  
drain state again to properly drain the queue.

BBR, as well as its recent upgrade called BBRv2 
(BBRv2: Alpha/Preview Release — https://github.
com/google/bbr/blob/v2alpha/README.md), 
has been extensively tested in production systems 
(e.g., Dropbox Evaluating BBRv2 on the Dropbox 
Edge Network — https://dropbox.tech/infrastruc-
ture/evaluating-bbrv2-on-the-dropbox-edge-net-
work). It has also been made available as a part 
of the Linux kernel (since version 4.9), FreeBSD, 
and Chrome. BBR flows are able to converge to 
their fair shares when competing with other BBR 
flows, but may not be fair to TCP variants, such as 
CUBIC (as long as the buffer sizes at intermediate 
switches are not too large). While both BBR and 
CUBIC saturate the bottleneck bandwidth, BBR 
flows experience significantly shorter queuing 
delays, thanks to the drain state that BBR flows 
need to cycle through.

Though BBR uses a hand-tuned heuristic rather 
than machine learning, it nevertheless offers an 
excellent benchmark that all congestion control 
protocols designed with machine learning should 
be compared with.

Copa: Copa [5] represents another notewor-
thy heuristic that applies a similar design philos-
ophy as BBR. Rather than adjusting the sending 
rate, Copa adjusts the size of the congestion win-
dow (cwnd) instead, as it optimizes an objective 
function, logl  – d logd, that combines a flow’s 

AFIGURE 1. The bandwidth-delay product (BDP) is the product of the bottleneck 
bandwidth and the round-trip propagation time. An ideal congestion con-
trol algorithm will fully utilize the bottleneck bandwidth, yet keeping queu-
ing delays to the minimum by not overfilling the “pipe.”
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FIGURE 2. The “popularity” of congestion control as a topic, approximated by the 
number of papers each year with the term congestion control in their titles 
(data obtained from Google Scholar).
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average throughput l  and the packet queuing 
delay d, where d is a tunable parameter. The goal 
is to maximize the objective function by seeking 
to achieve a steady-state sending rate, called the 
target rate, to be inversely proportional to the 
measured queuing delay.

Since both Copa and BBR use queuing delays 
rather than packet losses as the congestion signal, 
they both strive to minimize the packet queuing 
delays. To minimize queuing delays, Copa and 
BBR drain the packet queue periodically. Yet, by 
using a default choice of d  = 0.5 intended for 
low-latency applications, Copa trades off a small 
amount of throughput to achieve significantly 
lower delays compared to BBR. Copa is slightly 
less aggressive than BBR, and uses two different 
modes with explicit switching in order to achieve 
fairness to competing TCP flows sharing the same 
bottleneck bandwidth. Over certain network envi-
ronments such as satellite links, Copa is able to 
outperform BBR significantly in both achievable 
throughput and average queuing delay.

Remy: For a new congestion control protocol 
to cope with link capacities that span (approxi-
mately) 12 orders of magnitude in the Internet, 
it is conceivable that optimization and machine 
learning techniques can be used to learn and opti-
mize for the dynamic behavior of the network 
path between a source and a destination, rather 
than using a hand-tuned heuristic such as BBR.

As one of the first attempts toward this direc-
tion, Winstein et al. [6] designed a new mecha-
nism, called Remy, to generate new congestion 
control protocols using a data-driven approach. 
Based on a pre-specified objective for congestion 
control, a set of assumptions for the desired pro-
tocol and models for both the network and the 
traffic, Remy generates and deploys an algorithm 
that is optimized offline beforehand as a part of 
an existing TCP source.

A Remy-generated algorithm involves three 
states as its memory (initialized to all zeros at the 
start of a flow): a moving average of the interarriv-
al time between new acknowledgments received; 
a moving average of the time between TCP 
source timestamps reflected in those acknowl-
edgments; and the ratio between the most recent 
RTT and the minimum RTT. The objective func-
tion of such an algorithm will avoid building up 
queues, reducing both packet losses and queuing 
delays as much as possible.

As each acknowledgment is received, a 
Remy-generated algorithm updates its memory 
and then performs a table lookup to find the cor-
responding action. An action can be an increase 
(or decrease) of the congestion window (either 
multiplicatively or additively), or pacing the suc-
cessive outgoing packets by setting a lower 
bound on the time between them.

In its offline optimization phase, Remy pre-com-
putes the lookup table by finding the mapping 
that maximizes the expected value of the objec-
tive function, using simulations of various network 
models with parameters drawn within the ranges 
of the supplied assumptions. These parameters 
include the link rates, delays, and the number of 
sources. It was shown that Remy-generated algo-
rithms outperformed TCP variants such as CUBIC, 
and protocols that require modifications to inter-
mediate switches, such as XCP [1].

PCC: To avoid hardwired mapping between 
congestion control actions and packet loss events 
in traditional TCP variants, Dong et al. [7] pro-
posed Performance-oriented Congestion Control 
(PCC), a new congestion control architecture that 
learns based on live experimental evidence. Dif-
ferent from Remy, PCC learns in an online fashion 
using multiple micro-experiments, each sending at 
two different rates, and subsequently moving in a 
direction that leads to better performance. Its key 
idea is to learn the relationship between rate con-
trol actions and the performance that it empirical-
ly observed. The performance is characterized by 
a utility function that describes an objective, such 
as to achieve a high utilization of the bottleneck 
bandwidth with low loss rates.

In each micro-experiment, a PCC source 
sends at two different rates: one is marginally 
higher than the current rate, and the other is 
marginally lower. If it finds that one of these 
directions leads to better performance (charac-
terized by a utility function), it will be selected as 
the sending rate for the next micro-experiment, 
and continues in this direction as long as the 
utility continues increasing. Equivalently, over 
multiple micro-experiments, we can claim that 
PCC runs an online learning algorithm in the spir-
it of gradient ascent. Online learning eliminates 
a major disadvantage of Remy’s offline optimiza-
tion: when the actual network environment devi-
ates from the input assumptions and network 
models made, performance may degrade due to 
such a mismatch.

PCC Vivace: Continuing their own work on 
performance-oriented congestion control, Dong 
et al. [8] proposed a Vivace variant of PCC. Simi-
lar to PCC, the source in PCC Vivace tests a pair 
of rates and computes the corresponding values 
of utility respectively. A significant difference in 
PCC Vivace, however, is its utility function, which 
incorporates not only throughput and loss rates 
as in PCC, but also RTT gradients. Unfortunate-
ly, decisions on how the sending rate should be 
changed in its online learning based on gradient 
ascent is still challenging, due to the trade-off 
between the speed of convergence to a steady 
state and the stability of sending rates. To address 
this challenge, PCC Vivace employs an elaborate 
heuristic that converts utility gradients (computed 
in its micro-experiments with a pair of sending 
rates) to a change in sending rates, with a conser-
vative initial conversion factor to start with, and 
increasing the conversion factor as it gains more 
confidence.

With these improvements in protocol design, 
it can be proved that a stable global rate alloca-
tion exists as a Nash equilibrium, especially when 
multiple flows from sources with different utilities 
compete for bottleneck bandwidth. As a result, 
PCC Vivace is more TCP-friendly, converges fast-
er, and reacts more swiftly to changes in network 
conditions.

Pantheon and Indigo: More recently, Yan 
et al. [9] presented Pantheon, an experimental 
testbed for evaluating and comparing new con-
gestion control protocols fairly. Pantheon is an 
open-source testbed with a growing collection of 
congestion control protocols built-in, each verified 
to compile and run using a continuous-integration 
system.
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One of the evaluated protocols in Pantheon, 
a hidden treasure, is called Indigo, which once 
again employs a congestion control protocol 
based on machine learning (ML). As shown in 
PCC and PCC Vivace, it is difficult to use online 
learning to train a congestion control algorithm, 
since ML algorithms require excessively long train-
ing times (ranging from hours to weeks), while 
the condition of network paths evolves in much 
shorter time scales (seconds). As a result, Indigo 
employs offline training using Pantheon’s abun-
dant supply of network emulators.

Instead of changing the sending rates in 
existing congestion control protocols (e.g., BBR, 
Remy, PCC, or PCC Vivace), Indigo observes the 
network states and adjusts the congestion win-
dow, which represents the amount of data in 
flight between the source and the destination. 
The network state, similar to Remy’s memory, is 
characterized by:
• A moving average of the queuing delay 

(which, in a similar vein as BBR, is measured 
as the difference between the current and 
the minimum RTT)

• A moving average of the sending rate
• A moving average of the delivered rate 

(again similar to BBR)
• The current congestion window size. 

Rather than using a heuristic for adjusting 
sending rates with gradient ascent in PCC Vivace, 
Indigo uses a Long Short-Term Memory (LSTM) 
recurrent neural network (RNN) to store the map-
ping from states to actions, and trains such a RNN 
using an offline training phase. Once trained and 
deployed, the mapping will be fixed.

However, as both Remy and Indigo employ 
offline training, they suffered from the same dis-
advantage that PCC and PCC Vivace avoided: the 
training environment should not deviate from the 
actual network significantly. If such an assump-
tion is valid, it has been shown in extensive exper-
iments that Indigo outperforms existing online 
algorithms, such as BBR, PCC, and PCC Vivace, 
in terms of achieved throughput and end-to-end 
delays. This comes as no surprise: if the training 
phase uses an emulator that characterizes the 
actual network precisely, the offline-trained RNN 
will bypass the time-consuming online learning 
process in BBR, PCC, and PCC Vivace, making 
more accurate decisions over time. Though Indi-
go’s speed of convergence to the steady state 
and fairness to existing congestion control proto-
cols, such as CUBIC, have not been evaluated, it 
remains enlightening to see how offline training 
and recurrent neural networks can significantly  
improve the performance of congestion control.

Table 1 summarizes some of the common 
features and key differences across BBR, Copa, 
Remy, PCC, PCC Vivace, and Indigo. In addition, 
Fig. 3 provides an illustrative comparison between 
BBR, Copa, Remy, PCC Vivace, and Indigo, with 
respect to the performance metrics they take into 
account, as well as the actions taken by these 
protocols. From a practical perspective, Google’s 
BBR is a simple yet effective heuristic, and since it 
has already been incorporated into recent Linux 
kernel releases since early 2017, it is poised to 
become a prominent replacement of TCP variants 
in practice. From a research perspective, we have 
observed a consistent trend toward using learning 

techniques to train specific models for different 
network conditions, and such learning can be per-
formed in an offline or online fashion.

congestIon control Protocols wIth  
deeP reInforcement leArnIng

While new congestion control protocols using 
machine learning techniques have shown promise 
adapting to dynamic environments, both offline 
and online learning algorithms exhibited their 
inherent disadvantages. Offline learning requires a 
dedicated offline training phase, and may not per-
form well if the actual network differs remarkably 
from the emulated one where offline training was 
carried out.

Online learning, such as PCC and PCC Viva-
ce, and to some extent even traditional heuris-
tics such as BBR and Copa, requires the design 
of elaborate hand-tuned heuristics to balance 
the trade-off between rapid convergence to a 
high BDP and potentially higher queuing delays 
and loss rates. For example, Copa adapts its rate 
exponentially so that it can scale up to high-BDP 
networks. This is in addition to meeting standard 
requirements of congestion control, such as utiliz-
ing the bottleneck bandwidth fully, and sharing it 
fairly with other competing flows.

With the recent popularity of deep reinforce-
ment learning (DRL), it is conceivable that it may 
provide a fully-automated mechanism to train a 
DRL agent by interacting with a real-world net-
work environment, and to avoid hand-tuned heu-
ristics as much as possible. A DRL agent uses both 
the states observed from the environment and 
a scalar reward to train its deep neural network 
model, which is the agent’s strategy that it uses to 
produce an action, called its policy. In the context 
of congestion control, the action to be taken by 
the DRL agent may be an increase in the sending 
rate or the size of the congestion window. The 
objective of the DRL agent is to train a policy that 
maximizes the expected cumulative reward. If 
DRL is used for congestion control, the hypothe-
sis would be that a well-designed reward function 
and a curated set of states can be used to train 
the DRL agent effectively by learning from the 
actual network environment, more so than hand-
tuned heuristics.

In the recent research literature, it was pro-
posed that DRL algorithms can be used to per-

TABLE 1. Recent congestion control protocols designed as replacements to TCP 
variants.

Algorithm Tuning knobs
Machine 
learning

Design principles
Algorithm 
design

BBR [3] Rate-based None Minimizing queuing delays
Hand-tuned 
heuristic 

Copa [5] Window-based None Minimizing queuing delays
Hand-tuned 
heuristic

Remy [6] Rate-based Offline Based on network models Lookup table 

PCC [7] Rate-based Online No network models needed Gradient ascent 

PCC Vivace [8] Rate-based Online No network models needed Gradient ascent 

Indigo [9] Window-based Offline
Based on emulated network 
models

LSTM RNN
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form offline training without relying heavily on the 
design of heuristics. This is, as we mentioned, due 
to the fact that a DRL agent is able to continuous-
ly evaluate value functions of the environment, 
and adjusts its actions taken based on well-de-
signed rewards in a feedback loop.

Aurora: Jay et al. proposed Aurora [10], a rate-
based congestion control protocol based on DRL. 
The agent in Aurora uses changes in the sending 
rate as its actions, and uses statistics about laten-
cies, as well as the ratio of packets sent to those 

acknowledged, as its states. The reward function 
Aurora uses is formulated as a simple linear func-
tion: 10 ∙ throughput — 1000 ∙ latency — 2000 ∙ 
loss. The DRL agent is trained using Proximal Poli-
cy Optimization (PPO).

Aurora has been evaluated experimentally 
over Pantheon, with its DRL agent trained in an 
offline training phase, on links with bandwidth 
between 1.2 and 6 Mb/s, and latencies vary-
ing between 50 and 500 milliseconds. Over a 
network link whose capacity varies every five 
seconds to a randomly chosen value in the 
range of 16 to 32 Mb/s, it has been shown that 
Aurora outperforms one of the most popular 
TCP variants, CUBIC, and on par with the best 
hand-tuned heuristics (BBR and Copa) and PCC 
Vivace, arguably the best protocol using online 
learning.

However, Aurora suffers from a number of 
drawbacks. There are no results presented on any 
other types of network links (such as LTE or high-
BDP networks), and it is debatable whether an 
artificially simulated link with arbitrary yet periodic 
capacity variations would be a good representa-
tive of real-world networking environments. Fur-
thermore, how Aurora reacts to competing flows, 
running either TCP CUBIC or Aurora, has not 
been experimentally evaluated, which is import-
ant to show how it performs with respect to fairly 
sharing the bottleneck bandwidth.

R3Net: R3Net [11] was also proposed by Mic-
rosoft to use DRL to design a congestion control 
protocol, again with a focus on minimizing pack-
et latencies as its design targets video streaming 
and real-time conferencing applications. It uses a 
simulator based on trace replays to train the DRL 
agent using simulated network links and cross traf-
fic. Different from Pantheon, its simulator is able 
to run 1000x faster than real-time, which helps 
speed up the training process.

The state in R3Net is a vector containing the 
delivered rate, the average packet interval, loss 
rate as a percentage, and the average RTT. The 
neural network model it uses consists of both ful-
ly-connected and Gated Recurrent Unit (GRU) 
layers, and the action R3Net generates is a send-
ing rate in the range of 0 to 8 Mb/s. The reward 
function takes into account the delivered rate, 
RTT, and the loss rate, and is defined as 0.6 ln4R 
+ 1 – D – 10L, where R is the delivery rate in 
Mb/s in a time step of 50 milliseconds, D is the 
average RTT in seconds, and L is the packet loss 
rate. The training algorithm R3Net uses is again 
PPO, with a learning rate of 3  10–5. Its designs 
of the reward function and the training algorithm 
are both very similar to Aurora.

However, different from Aurora, R3Net was 
designed specifically for low-latency real-time traf-
fic, and was not tuned for the general Internet. It 
was not evaluated against existing heuristics such 
as BBR or Copa, or state-of-the-art learning-based 
protocols such as PCC Vivace. As such, its perfor-
mance in the general case is not clear.

MVFST-RL: Another DRL-based congestion 
control protocol [12], proposed by Facebook AI 
Research, is worthy of some discussions as well. It 
proposes to use a non-blocking DRL agent, where 
a sender does not need to wait for the agent, 
even for a few millisecond, to produce an action. 
It has been experimentally shown that RL agents 

FIGURE 3. Performance metrics used and actions taken in (1) BBR [3]; (2) Copa 
[5]; (3) Remy [6]; (4) PCC Vivace [8]; and (5) Indigo [9].
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that block the sender would incur a penalty with 
respect to the number of bytes transmitted over 
the same duration of time.

In MVFST-RL, the state space includes typical 
performance metrics such as RTT, queuing delay, 
packets sent, acknowledged, and lost, as well as 
a history of recent actions. The actions include 
additive and multiplicative updates to the size 
of the congestion window, and for this reason 
MVFST-RL is essentially a window-based conges-
tion control protocol. The reward is a function of 
measured throughput and delay: t – bd, where t 
is the average throughput in MB/sec, and d is the 
maximum delay in milliseconds during a window 
of 100 milliseconds.

The neural network model that MVFST-RL uses 
is a standard two-layer full-connected network 
with ReLU no-linearity. The extracted features and 
the reward are first fed into a single-layer LSTM 
network, without which the performance would 
be substantially worse. MVFST-RL integrates Face-
book’s implementation of the QUIC transport 
protocol, and decouples the network thread from 
the RL agent thread, so that gradient updates can 
be performed in a non-blocking fashion.

Though MVFST-RL shows performance lev-
els competitive with traditional heuristics such as 
CUBIC and Copa, it is not clear how it compares 
with alternatives based on offline or online learn-
ing, such as Remy or PCC Vivace. It was reported 
that MVFST-RL faces challenges generalizing over 
networks with widely different ranges of through-
put and delay, as it struggles to achieve high 
throughput after being trained with low-capacity 
networks.

Orca: Orca was recently proposed as a hybrid 
congestion control protocol that depends on TCP 
for fine-grained control actions, and engages a 
DRL agent to adjust the size of the TCP conges-
tion control window with a coarser time granu-
larity.

Just like existing congestion control proto-
cols that use DRL, Orca also needs to design its 
state space, its action space, its reward function, 
as well as its neural network model and training 
algorithm. Its state space includes average val-
ues of delivered rates, packet loss rates, and aver-
age delays, among other metrics. Its action space 
reflects a multiplicative factor 2a, where –2 < a < 
2, to be applied to the current congestion win-
dow size in TCP.

Orca’s reward function is defined as a ratio of 
the current power over the maximum one, where 

power is defined as the ratio of the delivered rate 
over the delay. Packet losses are used as a dis-
count factor when calculating the delivered rate.

Finally, Orca chooses a recurrent network as 
its neural network model, because the agent does 
not have direct knowledge of the exact network 
statistics at the current time, and partial informa-
tion from the past must be considered. The train-
ing algorithm Orca uses is an actor-critic method, 
operating in a continuous action space using a 
twin delayed Deep Deterministic Policy Gradi-
ent (DDPG) algorithm, which is designed to work 
well with continuous action spaces.

Performance-wise, after only six hours of train-
ing using emulated network environments, Orca 
is able to achieve the best performance to date 
in a variety of typical network environments, com-
pared with both traditional hand-tuned heuristics 
(such as BBRv2) and recent DRL-based conges-
tion control protocols (such as Aurora). It also 
incurs very little computation overhead, on par 
with hand-tuned heuristics such as TCP CUBIC 
and BBR. With respect to fairness, it is friendly to 
competing TCP CUBIC flows, most likely because 
it uses TCP CUBIC itself as the underlying con-
gestion control protocol, and therefore does not 
show aggressive behavior when trying to saturate 
the available bottleneck bandwidth.

While there exist several alternative conges-
tion control protocols based on DRL in the lit-
erature (such as Eagle [13] and DRL-CC [14]), 
the protocols we have sampled in this article are 
able to represent the state-of-the-art fairly well. 
For a summary comparison between existing 
DRL-based congestion control protocols, refer 
to Table 2 for key differences between Aurora 
[10], R3Net [11], MVFSF-RL [12], Eagle [13], 
DRL-CC [14], and Orca [15]. In addition, Fig. 4 
provides an illustrative comparison with respect 
to the performance metrics that they included in 
their state spaces, as well as the actions they are 
designed to take.

chAllenges And future dIrectIons
It has been both surprising and inspiring to 
observe that work on congestion control, one of 
the most fundamental problems in computer net-
working research, has been continuing actively, 
more than four decades after Cerf and Kahn pub-
lished their seminal paper on TCP in 1974. Recent 
works on this topic have seemingly converged on 
the use of either offline or online learning algo-
rithms to replace heuristics designed for a wide 

TABLE 2.Congestion control protocols designed with deep reinforcement learning.

Algorithm Tuning knob Reward Neural network model Training algorithm 

Aurora [10] Rate-based
Linear function of throughput, latency, 
and loss

Fully-connected PPO 

R3Net [11] Rate-based
Function of the receive rate, the average 
RTT, and loss rate 

RNN with GRUs PPO 

MVFSF-RL 
[12]

Window-based
Linear function of the average 
throughputand the maximum delay

LSTM and fully- 
connected

IMPALA with V-trace 
(asynchronously) 

Eagle [13] Rate-based Function of goodness, latency, and loss LSTM Cross-entropy method 

DRL-CC [14] Window-based Unspecified utility function of MPTCP flows LSTM DDPG 

Orca [15] Window-based Function of throughput, latency, and loss RNN DDPG variant
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variety of network environments, from high-BDP 
links across continents to LTE networks. The spe-
cific emphasis in the recent literature is on the 
use of deep reinforcement learning techniques in 
designing congestion control protocols, in order 
to learn from the time-varying characteristics of 
network environments automatically.

Open Challenges: Although the new gener-
ation of congestion control protocols based on 
DRL are promising and quite exciting, there still 
exist several open questions that we do not yet 
know definitive answers for. DRL agents are 
intended to be trained, and as such they are more 
agile adapting to unseen and more challenging 
network environments compared to hand-tuned 
heuristics. Yet, it is not well and fully understood 

how DRL-based congestion control protocols can 
be explicitly designed to achieve such a goal.

While hand-tuned heuristics, such as BBR, can 
follow a disciplined approach in their designs fol-
lowing a particular design philosophy, it may not 
be feasible to do so when tuning DRL agents. 
We may have to resort to simple trial-and-error 
explorations, which are both time-consuming 
and unpredictable in the quality of our design. 
To further exacerbate the problem, there are 
many components in a DRL agent that need to be 
well-designed, including its training algorithm, its 
neural network model, its state and action spaces, 
as well as its reward function. To some extent, 
even more components need to be hand-tuned 
compared to traditional heuristics, without intu-
itive links between the designs and their corre-
sponding outcomes.

Finally, one of the most visible roadblocks to 
realistic deployments of DRL-based congestion 
control is the feasibility of implementing such 
protocols efficiently. Congestion control proto-
cols reside in the transport layer, and are tradi-
tionally part of the operating system kernel. As 
examples, TCP CUBIC and BBR are parts of the 
Linux kernel. There are many practical limitations 
on what can be implemented in the kernel; TCP 
CUBIC, for example, uses approximation algo-
rithms to avoid floating-point computation in the 
kernel due to these limitations. DRL algorithms, 
however, require computational power that may 
have to be carried out in user space. Orca, for 
example, implements its DRL agent in user space 
with TensorFlow, and communicates with TCP 
CUBIC in the kernel via socket options. These 
implementation challenges, together with the per-
formance overhead they may impose, may need 
to be solved satisfactorily before we see wide-
spread adoption of DRL-based congestion control 
protocols.

Future Directions: As one of the future 
research directions, the fact remains that train-
ing neural networks to make correct decisions 
may take a much longer time scale to complete 
(at least hours), while data flows complete at a 
much shorter time scale (typically seconds). 
How do we mix the best “ingredients” of both 
online and offline learning? Some of the recent 
machine learning techniques, transfer learning 
and meta-learning, may become quite promising 
to bridge such a gap. With these new techniques, 
a pre-trained model is reused as a starting point 
for each new network environment, allowing 
rapid progress adapting to new and unfamiliar 
network conditions. With some luck, this may 
just be the key to solve our dilemma of applying 
learning techniques in designing congestion con-
trol protocols that adapt well to a wide variety of 
network conditions.
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