
Spotlight: Optimizing Device Placement for Training Deep Neural Networks
(Appendix)

A. Proof of Theorem 1
Overview. To prove the theorem 1, we introduce another
performance approximation as follows,

Iπ(π
′) = E{a0,...,an−1}∼π′ [

∑
an

q′(an|sn)Qπ(sn, an)],

(A.1)
which is an intermediate expression between η(π′) and
Fπ(π

′). We use it as a mediate to build connections between
the η(π′) and Fπ(π′). The proof of theorem 1 follows three
steps. First, we derive a lower bound for η(π′) − Iπ(π′).
Second, we derive a lower bound for Iπ(π′)− Fπ(π′). Fi-
nally, we sum the lower bound derived in the first step and
the lower bound derived in the second step to get the desired
lower bound in Theorem 1. Before proving Theorem 1, we
provide a review of some important notations that is defined
in Section 3.4.

Definition reviews. We use a[0:n−1] to denote a partial tra-
jectory {a0, ..., an−1}. We use Qπ

′,π′(n) as a shorthand
notation of

∑
an
q′(an|sn)Qπ′(sn, an), which means that

the actions are chosen following q′(an|sn) and the expecta-
tion is taken over Q-values of π′. Similarly, we useQπ,π

′
(n)

as the shorthand notation of
∑
an
q′(an|sn)Qπ(sn, an).

We use Q[π′−π](sn, an) to denote Qπ
′,π′(n) − Qπ,π

′
(n).

We define ε1 = maxsn,an |Q[π′−π](sn, an)|. We define
the maximal absolute value of Qπ,π

′
(n) over all states as

ε2 = maxsn |Qπ,π
′
(n)|.

Proof. With shorthand notations, the performance and the
intermediate approximation can be written as,

η(π′) = Ea[0:n−1]∼π′ [Q
π′,π′(n)]

Iπ(π
′) = Ea[0:n−1]∼π′ [Q

π,π′(n)].
(A.2)

We can derive a lower bound for η(π′)− Iπ(π′) as follows,

η(π′)− Iπ(π′) = Ea[0:n−1]∼π′ [Q[π′−π](sn, an)]

≥ −ε1.
(A.3)

The inequality in Eq. (A.3) holds due to the expectation
of the absolute value |Q[π′−π](sn, an)| is smaller than its
maximal value ε1. Without considering the absolute value,
the expectation of the value Q[π′−π](sn, an) is larger than

its minimal possible value −ε1. Then, the inequality in
Eq. (A.3) follows.

Second, we will establish the lower bound of Iπ(π′) −
Fπ(π

′). Before that, we introduce the definition of an α-
coupled policy pair (Shulman et al., 2015; Shulman, 2016).
(π, π′) is an α-coupled policy pair if, at any state sn, the
device assignment pairs given by π and π′ differ with prob-
ability at most α. Namely, P (an 6= a′n|sn) ≤ α for all sn.
In another word, at any state sn, we can generate a pair of
device assignments an and a′n by the policy π and the policy
π′, respectively. These two assignments are different with
probability smaller than α. Next, we use the definition to
derive the desired lower bound.

We generate two partial trajectories {a′0, a′1, ..., a′n−1} and
{a0, a1, ..., an−1} following policy π′ and π, respectively.
The sequence of device assignments in two trajectories can
be divided into two cases. Either all device assignments
from stage 0 to stage n − 1 are the same or there is at
least one device assignment disagrees at some stage i, i ≤
n− 1. Let mn denote the number of stages with different
device assignments in two partial trajectories. Accordingly,
two partial trajectories agree at all stages with probability
P (mn = 0) and two partial trajectories disagree in at least
one stage with probability P (mn > 0). We divide the
expectation computation of the intermediate approximation
Iπ(π

′) into expectations under two cases, either mn = 0 or
mn > 0,

Iπ(π
′) = P (mn = 0)Ea′

[0:n−1]
∼π′|mn=0[Q

π,π′(n)]

+P (mn > 0)Ea′
[0:n−1]

∼π′|mn>0[Q
π,π′(n)].

(A.4)
Eq. (A.4) holds due to the expectation of Iπ(π′) in Eq. (A.2)
is a mean of expectations under two cases.

The expectation computation of the full approximation
Fπ(π

′) can be similarly decomposed into expectations un-
der two cases as follows,

Fπ(π
′) = P (mn = 0)Ea[0:n−1]∼π|mn=0[Q

π,π′(n)]

+P (mn > 0)Ea[0:n−1]∼π|mn>0[Q
π,π′(n)].

(A.5)
Note that in the case mn = 0, the two partial trajectories
generated by π and π′ are the same. Therefore, any expec-
tation value of a same quantity (Qπ,π

′
(n) here) under the
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two same trajectories should be the same. Following this
reasoning, we derive following most important equation in
the whole proof,

Ea′
[0:n−1]

∼π′|mn=0[Q
π,π′(n)] = Ea[0:n−1]∼π|mn=0[Q

π,π′(n)].

(A.6)
The above important equation implies that in cases when
the device assignments generated by π and π′ agree at all
stages, taking expectation over trajectories generated by π
or taking expectation over trajectories generated by π′ has
no any difference. With this equation, we subtract Eq. (A.4)
and Eq. (A.5) to get following equation,

Iπ(π
′)− Fπ(π′) =

P (mn > 0){Ea′
[0:n−1]

∼π′|mn>0[Q
π,π′(n)]−

Ea[0:n−1]∼π|mn>0[Q
π,π′(n)]}.

(A.7)

Above equation holds due to the expectations undermn = 0
case in Eq. (A.4) and Eq. (A.5) are the same hence they are
canceled out by subtraction. With above equation, we are
close to our goal to bound the left hand side in Eq. (A.7).
As the device assignments generated by π and π′ disagree
at each stage with probability at most α, their device assign-
ments at each stage are the same with probability at least
1− α. Therefore, π and π′ agree at every stage with proba-
bility at least (1− α)n, a joint multiplication of agreement
probability at each stage. Since the case when two policies
agree at every stage are complementary to the case when
two policies disagree in at least one stage, their probabil-
ity of occurrence should sum to 1. Following this reason-
ing, it’s direct to show that π and π′ disagree in at least
one stage with probability at most 1− (1− α)n. Namely,
P (mn > 0) ≤ 1 − (1 − α)n holds. As we’ve defined be-
fore, the absolute value of Qπ,π

′
(n) is bounded by ε2 over

all sn, i.e., ε2 = maxsn |Qπ,π
′
(n)|. Therefore, Qπ,π

′
(n)

is restricted within the range [−ε2, ε2] for any sn. Due to
any expectation of Qπ,π

′
(n) is its weighted sum over all

states with their occurrence probabilities as weights that less
than 1 and sum to 1, any its expectation is also restricted
in the range [−ε2, ε2]. The terms within the {} bracket in
Eq. (A.7) involve a difference between two expectations
of Qπ,π

′
(n), which should be restricted within the range

[−2ε2, 2ε2]. Given above reasons, we let the terms within
the {} notation in Eq. (A.7) take their minimal possible
negative value −2ε2 and let the term P (mn > 0) take its
maximal possible positive value 1− (1−α)n, which results
in following lower bound,

Iπ(π
′)− Fπ(π′) ≥ −2ε2(1− (1− α)n). (A.8)

In practice, the old policy π only incrementally updates to
a new policy π′ with small step size hence α is typically
small. So we can further reduce above lower bound by its
first-order approximation (Shifrin, 2005) with respect to the

variable α around 0. Let f(α) = −2ε2(1 − (1 − α)n). It
can be shown that,

f(0) = 0,
df

dα
|α=0 = −2ε2n,

f(α) ≈ 0− 2ε2nα,
(A.9)

which provides a first order approximation of f(α) when
α is small. According to (Shulman et al., 2015), when the
divergence Dmax

KL (π||π′) between policy π and π′ equals α,
these two policies can be seen as a α-coupled policy pair.
Then, we can replace α in above equation by Dmax

KL (π||π′).
As a result, following lower bound holds,

Iπ(π
′)− Fπ(π′) ≥ −2ε2nDmax

KL (π||π′), (A.10)

when Dmax
KL (π||π′) is small. Finally, we sum both sides in

Eq. (A.3) and Eq. (A.10) to get the desired performance
lower bound in Theorem 1.

B. Proof of Theorem 2
Proof. Theorem 1 has established a relation η(πj+1) ≥
Gπj

(πj+1). Next we will prove another important re-
lation η(πj+1)|πj+1=πj

= Gπj
(πj+1)|πj+1=πj

. Namely,
the expected performance η(πj+1) and its lower bound
Gπj (πj+1) are equal when πj+1 = πj . When πj+1 = πj ,
η(πj+1) is the expected performance of the old policy. Next
we showGπj

(πj+1) is also the expected performance of the
old policy when πj+1 = πj . The expression of Gπj

(πj+1)
in Eq. (12) consists in total three terms, Fπj

(πj+1), ε1 and
2ε2nD

max
KL (πj ||πj+1). For the first term, when πj+1 = πj ,

the definition of Fπj (πj+1) in (9) requires us to average over
Q-values at state sn according to assignment probabilities
q(an|sn) of the old policy πj , which is the expected per-
formance of the old policy. So we have Fπj

(πj) = η(πj).
For the second term ε1, its definition in Section 3.4 makes
it zero when πj+1 = πj . Hence we have ε1 = 0 when
πj+1 = πj . For the third term 2ε2nD

max
KL (πj ||πj+1), when

πj+1 = πj , the definition of KL divergence makes it
zero because KL divergence between two same distribu-
tions is zero. So we have 2ε2nD

max
KL (πj ||πj) = 0. Due

to above reasons, we have Gπj
(πj+1) = η(πj) when

πj+1 = πj . Following the fact that η(πj+1) = η(πj)
when πj+1 = πj , it’s direct to show following equation
η(πj+1)|πj+1=πj

= Gπj
(πj+1)|πj+1=πj

. With another
proved expression η(πj+1) ≥ Gπj

(πj+1), Gπj
(πj+1) can

be seen as a minorization function of η(πj+1). Accord-
ing to maximization-minimization (MM) theory (Hunter
& Lange, 2004), if πj+1 = argmaxπj+1 Gπj (πj+1), then
η(πj+1) ≥ η(πj) holds.
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