
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 35, NO. 11, NOVEMBER 2017 2563

Stemflow: Software-Defined Inter-Datacenter
Overlay as a Service

Shuhao Liu, Student Member, IEEE, and Baochun Li, Fellow, IEEE

Abstract— Modern Internet applications are typically hosted in
the public cloud, with multiple server instances running within
geographically distributed datacenters. Thanks to the abundantly
available bandwidth on wide-area links that interconnect these
datacenters, it is conceivable that bandwidth-intensive applica-
tions may improve their performance by relaying their traffic
through such an inter-datacenter network. However, there does
not yet exist a cloud service that provides a turn-key solution
to tap into such available bandwidth resources conveniently.
In this paper, we design and implement Stemflow, a new system
framework that provides Inter-Datacenter Overlay as a Service
based on the software-defined networking principle. It offers
an attractive foundation that helps an Internet application to
transparently improve its scalability and performance by using
inter-datacenter networks for its traffic. With Stemflow, all
deployed server instances will construct an overlay atop an inter-
datacenter network, and the routing decisions to relay application
traffic are made by a centralized controller. The algorithms
needed to make these decisions are customized to meet the needs
of individual applications, and are cached within the data plane.
We motivate and describe the design decisions, and present an
extensive experimental evaluation in public cloud infrastructures,
using two example applications as our case studies.

Index Terms— Software defined networking, wide area
networks, overlay networks, web services.

I. INTRODUCTION

REFERRED to as Infrastructure-as-a-Service, cloud ser-
vice providers, such as Amazon AWS and Microsoft

Azure, have routinely provided convenient access to both com-
putation and network resources in their geographically distrib-
uted datacenters at affordable costs. As a result, most modern
Internet applications are hosted in virtual machines or light-
weight containers in these datacenters. To serve users from
different locations with acceptable accessibility, scalability,
and availability, it is a common practice to deploy multiple
instances of servers in geographically distributed datacenters,
especially for network-intensive applications. For example,
Twitch, a live video broadcaster, takes advantage of geo-
distributed deployment in Amazon datacenters.1

Maintained by large cloud service providers, these dat-
acenters are often inter-connected with high-capacity links.
Some inter-datacenter links can provide 100s of Gbps to Tbps

Manuscript received April 1, 2017; revised September 12, 2017; accepted
September 25, 2017. Date of publication October 5, 2017; date of current
version December 1, 2017. (Corresponding author: Baochun Li.)

The authors are with the Department of Electrical and Computer Engi-
neering, University of Toronto, Toronto, ON M5S 3G4, Canada (e-mail:
shuhao@ece.toronto.edu; bli@ece.toronto.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2017.2760159
1https://twitchstatus.com/.

of capacity, due to the use of dedicated fiber-optic links [13].
For this reason, such inter-datacenter networks have recently
emerged as an attractive option to serve as the “backbone” of
the public Internet over the wide area.

Unfortunately, until recently such high inter-datacenter
capacities over the wide area have not been efficiently utilized;
the average utilization of even the busier links is 40-60% [13].
For its traffic, Google has deployed a new software-defined
infrastructure for more efficient traffic engineering across
its inter-datacenter links, substantially improving its link
utilization [15].

But how about user-generated traffic from a wide variety
of Internet and mobile applications? It is intuitively con-
ceivable that such applications — especially those that are
bandwidth-demanding such as video broadcast and multi-party
conferencing — would also benefit tremendously from high
inter-datacenter capacities in the cloud. Thanks to Software-
as-a-Service (SaaS), modern cloud applications have con-
venient turn-key access to features such as databases and
load balancing; but unfortunately, there does not yet exist a
cloud service, in the spirit of SaaS, which provides a turn-
key solution to conveniently and transparently tap into the
abundantly available capacities in inter-datacenter networks.

In this paper, we present our design and implementation
of Stemflow, a new system framework that provides Software-
Defined Inter-Datacenter Overlay as a Service. Much in the
spirit of SaaS, Stemflow offers a simple turn-key solution
for a globally deployed application to improve its scalability
and performance by using the inter-datacenter network for its
traffic, yet with very minimal modifications to its source code.
With a focus on simplicity, Stemflow’s application interface is
identical to that of a standard server: it interacts with applica-
tions using standard protocols, such as HTTP, HTTPS, or in
the context of video streaming, the Real Time Messaging
Protocol (RTMP).

Internally, however, Stemflow is implemented as a software-
defined overlay atop an inter-datacenter network. The over-
lay consists of a number of virtual machines (or Docker
containers) located at geographically distributed datacenters,
used as traffic relays. With a complete separation of the
control and data planes, the routing decisions to be used for
relaying application traffic are fully controlled by a centralized
controller. For the sake of convenience, all of these design
choices and their implementation details are completely hidden
from the perspective of application developers.

Although Stemflow is simple from the perspective of appli-
cations, it is designed to perform well, offering an attrac-
tive alternative to applications in need for performance.

0733-8716 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2564 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 35, NO. 11, NOVEMBER 2017

Applications based on Stemflow can enjoy a number of salient
features:

First, flexible control over cross-datacenter traffic. Unlike
traditional OpenFlow-based software-defined networks [19],
Stemflow implements a novel approach for data plane-
controller interactions. It allows developers to easily customize
the routing and scheduling algorithms, and to immediately
apply to their inter-datacenter traffic with little overhead.
In particular, developers can define their algorithms using a
concise set of Javascript APIs, which will later be interpreted
by a light-weight interpreter at each relay node within the
data plane, minimizing the volume of interactions with the
controller. It greatly improves efficiency in the inter-datacenter
overlay scenario, where network latency makes a significant
difference. In addition, Stemflow provides real-time measure-
ments of the overlay network, including network latencies
and estimates of available bandwidth. These measurements are
accessible via APIs on the controller, which allows additional
room for further optimization.

Second, higher throughput in terms of wide-area data trans-
fers. The traffic relays in Stemflow are designed to make full
utilization of the inter-datacenter available bandwidth. Relay
nodes communicate with each other via persistent, parallel
TCP connections.

Last but not the least, the simplicity of building applications
with Inter-Datacenter Overlay as a Service. For example,
Stemflow is designed to support multicast and conferencing
sessions with multiple paths and trees across datacenters.
Flows can be replicated at relay nodes in a given datacenter,
with a few lines of Javascript. In fact, we have developed two
example bandwidth-intensive applications based on Stemflow
— video broadcast and file sharing — in the form of both
mobile applications and web clients.

We have conducted an extensive study to evaluate appli-
cation performance based on Stemflow, using a large-scale
inter-datacenter network testbed with high capacities. Our
evaluation results have demonstrated the high performance of
Stemflow as a software-defined overlay. As compared to tradi-
tional OpenFlow-based software-defined networking designs,
Stemflow performs well even if the relay nodes are geographi-
cally distributed. Our novel scheme that facilitates interactions
between control and data planes makes it feasible to avoid
a significant amount of communication overhead with the
controller. Consequently, flows can initiate about 90% faster
at tail distribution, with the controller offloaded. At the same
time, users can still enjoy the benefit of centralized routing
intelligence. Furthermore, Stemflow is fault-tolerant, and flows
can recover from link failures in several milliseconds.

II. OVERVIEW

A. Motivations and Design Objectives

There exist Internet applications — most prominently live
video broadcast (such as Twitch and Periscope) or multi-party
video conferencing (such as Skype) — that are bandwidth-
intensive. They typically depend on application-specific solu-
tions that are based on centralized servers, and video streams
are relayed by one of a group of servers from the video source

TABLE I

A MOTIVATING EXAMPLE FOR USING INTER-DATACENTER LINKS TO
TRANSFER BULK DATA. TAIWAN AND IOWA LOCATE IN THE GOOGLE

CLOUD DATACENTERS. THE THROUGHPUT FOR DATA

TRANSFERS IS MEASURED WITH Iperf3

to the participants of the session. Referred to as server-based
solutions, existing solutions heavily depended on the accuracy
of selecting the best possible server to assist a live video
broadcast or conferencing session. Unfortunately, for sessions
involving a large number of participants around the world,
it may happen that a single server may not offer satisfactory
performance due to the lack of available bandwidth to some
of the participants.

Stemflow is designed as a framework to assist these
bandwidth-intensive applications, offering them better perfor-
mances by using inter-datacenter networks, yet with minimal
modifications to their source code. Intuitively, as compared
to traditional server-based solutions, there are two reasons
why inter-datacenter networks may offer better performances.
First, inter-datacenter links often offer much higher bandwidth
capacities, up to hundreds of Mbps. Second, rather than
selecting a server for all the participants to connect to, each
participant can connect to a datacenter that is considered its
best choice regarding bandwidth or latency. From a workload
perspective, this is naturally a more scalable solution.

To prove these two claims, we measure the throughput for
data transfers from a server located in Taiwan to a downloader
in Toronto. The measurement shows that relaying the traffic via
a server in Iowa (Tab. I #2) can provide >3x of the throughput
as compared to direct download (Tab. I #1). The reason is that
Iowa can serve the downloader better (Tab. I #4), while the
inter-datacenter network link between Taiwan and Iowa has
much more bandwidth available (Tab. I #3).

One may question that relaying traffic through intermediate
datacenters can increase the cost of data transfers. As cloud
providers usually charge bandwidth usage by the volume of
data sent out of datacenters, adding one relay datacenter
could double the cost. However, it is a trade-off between
the performance and the cost. Data transfers are typically
charged at an affordable cost (e.g., 1 cent per GB).2 For many
applications, especially those requiring high throughput or low
jitters, it is worthwhile to pay more for the performance
improvement.

Though both of these reasons are important, achieving better
performance requires a level of understanding that is more
than skin deep. For bandwidth-intensive applications, it may
be necessary to support multiple paths from a source to its
destination, and even multiple trees in the multicast case. Such
support, though feasible at the transport (with MPTCP) or the

2Amazon Web Services pricing. https://aws.amazon.com/ec2/pricing/
on-demand/

LIU AND LI: STEMFLOW: SOFTWARE-DEFINED INTER-DATACENTER OVERLAY AS A SERVICE 2565

network layer (IP multicast), may be difficult to provide in
practice, since off-the-shelf OS platforms or hardware may
not support them. It is, therefore, a necessity to conceive
and design Stemflow to take advantage of an application-layer
overlay, offering the ability for any application to enjoy the
benefits of multiple paths and trees in such an overlay. Also,
for such an overlay to provide sufficient flexibility at runtime,
it would be best to adopt the software-defined networking
principle to separate the control plane and the data plane
completely. In Stemflow, all runtime routing decisions are
made in the centralized controller.

The good news is that our software-defined application
overlay can be designed to be even more flexible than tra-
ditional OpenFlow-based software-defined networks. Without
the limitation of switch NICs, the relay nodes are far more
configurable. As a result, a more general way for controller-
data plane interactions is designed and implemented, with the
objectives of better communication efficiency, better flexibility,
and easier development.

As an example, consider a live streaming course where the
instructor needs to share a file with students around the globe.
Students from different regions are typically served by nearby
servers. While file downloading can tolerate some delays,
the video streaming is sensitive to latency and throughput
jitters. With Stemflow, operators can deploy optimal scheduling
and routing algorithms to maximize user experience (i.e., bet-
ter video quality with best-effort downloading speed), as com-
pared to the simple bandwidth sharing between streaming and
downloading via direct TCP connections.

Better performance and flexibility can only become attrac-
tive if application developers find Stemflow simple to use as a
framework. After all, Stemflow is designed to eliminate the
need for developers to maintain multiple virtual machines
across datacenters themselves. From the perspective of the
developers, it would be ideal if Stemflow can be viewed
as a single server, following the same protocol — such as
HTTP — as traditional server-based solutions. We believe
that, in practice, developers will be on board only when both
simplicity and better performance can be offered.

With the objectives in mind, our design may be more
aptly called Inter-Datacenter Overlay as a Service, since
it leverages a software-defined application overlay, tapping
into the excessive bandwidth capacities across geo-distributed
datacenters.

B. Architectural Design

In this section, we briefly introduce the architecture of
Stemflow by examining the deployment and the delivery of
a sample user-generated flow.

As a start, Stemflow is deployed within VMs that are
initiated across geo-distributed centers, as a number of server
instances located at each datacenter. The VMs that Stemflow
uses are typically leased from an IaaS public cloud provider,
such as Amazon EC2. The number of VMs used depends
on the workload at runtime and can be adjusted dynamically
over time. Within each VM, the Stemflow runtime executable
is simply referred to as a relay server, for lack of a better

Fig. 1. Stemflow is internally designed as a software-defined application
overlay across geo-distributed datacenters. One of the applications using the
service may be live video broadcast, using RTMP as the protocol to connect
to a relay server and to forward traffic using Stemflow.

term. As is shown in Fig. 1, each application client, e.g., a
mobile device using an LTE network, connects to and sends its
application traffic to one of the relay servers, which will relay
the received data stream to all of its destinations. Following
software-defined principles, the data plane in Stemflow consists
of all the relay servers that are currently forwarding traffic,
and it is completely separated from the control plane, which
is the logic to decide how such traffic should be forwarded.
Similar to software-defined networks, a central controller is
responsible for making optimal fine-grained forwarding deci-
sions, by using data plane statistics as they are collected by
the relay servers in the data plane.

How does a client connect to one of the Stemflow relay
servers? From the perspective of application developers, and
for the sake of simplicity when using Stemflow as a cloud
service, we opt to support standard protocols — such as HTTP,
HTTPS, and RTMP (designed for live video streaming and
conferencing) — at each of the relay servers. As a result,
applications can directly connect to a relay server without
additional work modifying their source code.

For example, live video broadcast is one of the example
applications we have built to evaluate Stemflow. As shown
in Fig. 1, it uses RTMP to connect to one of the relay
servers as standard RTMP clients. From the perspective of
applications, the service provided by Stemflow is semantically
and functionally no different from a single RTMP server, used
by traditional server-based approaches. This implies that it is
possible to publish to or playback from the same URL, without
any knowledge of Stemflow’s internal design as a scalable
inter-datacenter application overlay.

One of the important advantages of using standard protocols
is that the type of clients using Stemflow as a cloud service
does not need to be limited to specific platforms. For example,
in addition to mobile applications, it is equally feasible to
use a standard QuickTime player, for example, as a client to
playback video, as it supports RTMP natively. Alternatively,
we have even designed web pages that use Adobe Flash
plugins in standard web browsers to send or receive live video
via Stemflow. Such flexibility is afforded by the simplicity of
using standard protocols as APIs, one of Stemflow’s important
design choices.

2566 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 35, NO. 11, NOVEMBER 2017

Fig. 2. The architecture of a relay server in Stemflow.

To improve performance, we have further optimized the
mechanism used for the controller to interact with a large
number of relay nodes in the data plane, as the overlay scales
up. Each relay node is designed to maintain a local cache that
stores the forwarding decisions that the controller has made.
Rather than the traditional way of storing these decisions as
lookup table entries on a network switch, we have chosen to
store the control logic directly and explicitly, expressed in a
scripting language, such as Javascript used in Stemflow. The
relay server is then capable of executing such control logic
locally at runtime with a Javascript interpreter, with a signifi-
cantly reduced volume of interactions with the controller.

III. APPLICATION INTERFACES AND THE DATA PLANE

The relay servers in Stemflow are launched in the VMs
across geo-distributed datacenters, and they are responsible
for two important tasks: interacting with application clients
with standard protocols as the interface, as well as forwarding
traffic in the data plane. In this section, we will present our
design choices and implementation highlights in both aspects.

The overall design of each relay server is illustrated
in Fig. 2. The application interface for interacting with appli-
cation clients is designed and implemented as a standard
RTMP/HTTP server. It receives traffic from the clients
and pushes all received traffic to the relay component via
internal I/O buffers. The relay component maintains network
connections to a subset (or all) of the other relay servers — its
neighbors — in the inter-datacenter application-layer overlay.
Stemflow supports both TCP connections and UDP flows to
relay application traffic, but maintains only one connection (or
flow) to each of the neighboring relay servers. Traffic from
all the applications will be multiplexed and share the same
connection to each relay server. At the same time, a network
monitor periodically measures network conditions to each
neighboring relay server.

A. Interactions With Application Clients

As a cloud service, the relay servers are responsible for
interacting with applications clients directly, using standard
protocols. In our current implementation, RTMP (for real-
time video streaming and conferencing) and HTTP/HTTPS
have been supported. Any relay server can parse queries from
clients (such as HTTP requests and RTMP stream publish

Fig. 3. The structure of a message in Stemflow.

messages), as well as receive and send application data,
precisely as if it is a simple RTMP or HTTP server.

The RTMP/HTTP server we have so far implemented inter-
acts with the relay component using an internal buffer. In the
case of HTTP servers, all the traffic from applications will
be written to the inbound buffer of the relay, and via an
internal interface, specify the desired destinations to the relay
component. In the case of RTMP servers, since RTMP involves
exchanges of a number of control messages between the client
and the server, we have implemented an adaptor — in about
500 lines of C++ code — to extract the raw video streams
and to forward them to the relay component. Note that such
a design is sufficiently flexible to easily accommodate future
support of other protocols (e.g., RTP/RTSP) or cryptographic
mechanisms, if such a need arises.

B. The Data Plane

As its name suggests, the relay component in a relay server
is responsible for forwarding application traffic, from/to either
the RTMP/HTTP server within the same relay server or other
neighboring relay servers via the inter-datacenter network.

Fig. 3 shows the structure of a message in Stemflow. As soon
as application data arrives at the relay component using the
inbound buffer shared with the RTMP/HTTP server, a special
header is attached to specify its corresponding destination and
forwarding policies. Then, the relay component will forward
it to its desired destinations, or a set of next-hop relay servers
towards the destinations.

1) Performance: Whenever the relay component receives a
message from one of its neighboring relay servers, it serves
as a message forwarding switch if the message needs to be
forwarded to the other relay servers. Naturally, it is up to the
controller to make forwarding decisions in the control plan,
but the relay component will be responsible for implementing
all these forwarding decisions, i.e., forwarding incoming mes-
sages to either the internal RTMP/HTTP server for the final
delivery, or to the next-hop relay servers as needed.

For the sake of high-performance, the entire message
forwarding mechanism at the data plane is implemented in
C++ in Stemflow. As system optimizations, the need for
copying data among different buffers is minimized with the
use of smart pointers and reference counting. Furthermore,
with asynchronous network I/O backed by the Boost.asio
library, Stemflow performs rate control automatically, avoiding
overflow on any individual relay server.

Moreover, persistent, parallel TCP connections are estab-
lished among all relay servers and are multiplexed among data
deliveries. This technique significantly improves the through-
put achieved for inter-datacenter transfers, maximizing the
utilization of the available bandwidth.

LIU AND LI: STEMFLOW: SOFTWARE-DEFINED INTER-DATACENTER OVERLAY AS A SERVICE 2567

2) Monitoring the Inter-Datacenter Network: To provide
sufficient statistical information for the controller to make
the best possible forwarding decisions, each relay server is
able to measure a number of performance metrics across the
inter-datacenter network in real time, with respect to both
latencies and available bandwidth, and report them to the
controller periodically. With respect to latencies, a relay server
is able to measure both the Round-Trip Time (RTT) and
one-way delays on an inter-datacenter link, with the latter
measured by implementing a clock synchronization protocol
that conforms to the Network Time Protocol (NTP) [1]. With
respect to available bandwidth, we have implemented Initial
Gap Increasing (IGI) [14], which uses packet trains to estimate
end-to-end available bandwidth.

3) Fault Tolerance: The relay component is also designed to
be fault-tolerant, in the sense that Stemflow can recover from
the failures of any online relay server gracefully. In particular,
each relay server is connected to its neighbors and consistently
monitoring their status. Once a relay server becomes offline,
the failure will be discovered immediately and broadcast to all
peer relay servers in the network.

IV. CONTROL PLANE

With software-defined networking as its underlying prin-
ciple, the control and data planes in Stemflow are completely
separated. The control plane is implemented with a centralized
controller in Python, and it communicates — either proac-
tively or reactively — with all the relay servers, collecting
real-time measurement statistics and deploying its control
decisions.

Traditional ways of scaling the control plane cannot work
smoothly in Stemflow, whose relay servers are distributed in
wide-area networks, being far from each other geographically.
Stemflow implements a novel controller-data plane interaction
scheme. By caching dynamic forwarding logic instead of static
flow tables on the relay servers, our scheme greatly improves
the scalability of the software-defined networking architecture.

A. Motivation

The OpenFlow-based software-defined networking archi-
tecture is problematic while being deployed at large-scale.
Since the control plane has to handle all data plane events
and ensuring decision integrity at the same time, the single
centralized controller approach suffers from high workload
and reliability issues. In this case, OpenFlow switches will
query the controller about the forwarding decisions for each
new flow. This approach is quite brute-force but fine-grained
because the controller can make flow-specific or even packet-
specific decisions in a straight-forward manner.

However, four major issues limit the scalability of this
design: i) There will be a significant flow initiation delay,
since its head packets will be forwarded to the controller,
during which the communication latency adds to the delay;
ii) The controller workload is high, and it might be congested
by bursty network messages because of the all-to-one traffic
pattern; iii) Flow rerouting is necessary but expensive, which
may encounter severe consistency issues across the network;

Fig. 4. An example to show the benefits of programmable data plane in
software-defined networks. There exist two available shortest paths with the
same capacity between ingress Switch A and egress Switch B. The network
application tries to balance the load between the two paths. The rate of Flow
1 is 3 units, while the rate of Flow 2, 3 and 4 is 2 units, respectively.

iv) Flow table will bloat as the network scales, requiring more
expensive TCAM spaces.

Existing approaches to scale an OpenFlow control plane,
such as hierarchical or partitioning solutions, either sacrifice
the granularity of control or limit the generality of possible
network applications (see Sec. VI). Recent progress made on
the programmable data plane, as is introduced in OpenFlow
2.0 [2], seems a promising cure for the scalability problem.

In this paper, we implement a novel scalable and readily-
deployable scheme for controller-data plane interactions in
Stemflow. Inspired by the idea of a reconfigurable data plane,
the central Stemflow controller caches control logic closer
to the data plane by injecting script code to the interpreter
runtime on data plane nodes. Whenever the Stemflow data
plane node is processing a new message, it directly dispatches
the message header information to the provided handler in the
script code, to perform the desired computation and actions
based on locally cached controller intelligence.

An example of a load-balancing network application is
shown in Fig. 4. For a traditional OpenFlow network (Fig. 4a),
a rule has to be installed on Switch A reactively for each
new flow. In the depicted example, four messages are required
to achieve globally optimal load-balancing. Note that the
response time for rule installation will add to the overhead
of flow initiation.

In Stemflow (Fig. 4b), on the contrary, the loadBalancer
logic is cached on Switch A beforehand by the central
controller. When a new flow comes in, the path selection is
completely handled by the cached loadBalancer function,

2568 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 35, NO. 11, NOVEMBER 2017

without querying the controller. At the same time, the con-
troller will proactively update Switch A with measurement
statistics of path load, ensuring the global optimality of for-
warding decisions. Only two updating messages are necessary
in this case. Moreover, loadBalancer takes local mea-
surement statistics into consideration. Notably, a delay()
function returns the monitoring delays of a given path. Its call
on a path with failure will return an Inf. Therefore, failed
paths will be avoided automatically, without the slow reaction
of the controller.

As a conclusion, the benefits of dynamic logic caching
are three-fold: i) Time overhead of flow initiation is reduced
because the inevitable communication latency is avoided;
ii) Both computation and network load on the controller
are very likely to be reduced, since statistics are updated
on-demand; and iii) All route selection can react to network
failures quickly, so as to enable fast recovery.

B. Caching Dynamic Forwarding Logic
Generally speaking, message processing in software-defined

networks involves three stages: header matching, computing
and action applying. Messages from different flows are iden-
tified through header matching. Then, computation is required
to get the desired list of actions (e.g., header modification,
forwarding to a given next-hop node). Finally, the actions will
be applied to the message.

In software-defined networking, the computing stage is
completely migrated to the control plane. The core concept of
our approach is to allow most of the messages to be processed
without consulting the central controller.

To this end, the Stemflow controller preemptively caches the
control logic (instead of static forwarding rules) on the data
plane. As follow-up actions, it frequently compiles and updates
the required global statistics. In Stemflow, the communication
messages between the controller and relay servers are encoded
in JavaScript Object Notation (JSON) strings, which natu-
rally enables the logic caching via Javascript code injection.
The Stemflow relay servers are embedded with a lightweight
Javascript interpreter to execute the code.

Specifically, the Stemflow controller programs the message
processing logic in a serial of Javascript objects. Each of the
objects has a key processMessage() method, defining the
logic to process messages of a given forwarding preference
label in the header. Each object is then serialized into a JSON
message, thus to be sent to relay servers. The message is then
parsed and rebuilt into the origin Javascript objects. These
objects that contain the message processing logic, namely
the Message Processing Objects, are thus registered to the
Javascript interpreter on the data plane node. Note that all
above tasks can be completed even before the first flow in the
network initiates.

The processing of a single message is illustrated in Fig. 5.
Whenever there is a new incoming message, the header
matcher will unpack the message headers, reading the specified
destination information and forwarding preference labels. Such
information will be used by the message dispatcher, to select
an appropriate Message Processing Object stored to process
the corresponding message.

Fig. 5. The message processing diagram in Stemflow.

The member function processMessage() of the
selected Message Processing Object will then be called, with
an argument indicating the list of destinations. The return
value of this function is a list of pre-defined actions, e.g.,
rewriting the Stemflow message header, relaying to a given next
hop node or further consulting the central controller. Finally,
the action executor deploys the actions, which concludes a
message process cycle.

The above process seems simple; however, it cannot be
completed without a particular slice of global network knowl-
edge. At the time a new Message Processing Object being
installed on a relay server, it can also subscribe the updates of
some customized variables (i.e. global knowledge) from the
controller. This global knowledge can be some intermediate
variables used by the algorithm inside processMessage(),
which cannot be locally obtained.

Moreover, the measurement results of local network
delays and bandwidth statistics can be used directly by
processMessage(). As a result, the forwarding decision
making can react directly from the data plane events, such as
link failure, without involving the controller.

C. Customizing the Message Processing Logic

A software-defined networking architecture allows network
operators to implement a variety of novel network applications
in pure software, customizing the control logic over different
network flows. In Stemflow, programming a network applica-
tion is as simple as in OpenFlow. To implement a customized
Stemflow network application, there are two steps in general:
defining a Message Processing Object and subscribing a
variable to be cached as global knowledge.

Message Processing Objects are the core objects that define
the control logic. Different Message Processing Objects can be
used to process messages with different labels. On data plane
nodes, new Message Processing Objects are registered to the
controller proxy, and inherit the database and monitor access.

Thanks to the prototype inheritance mechanism in
Javascript, customized Message Processing Objects can

LIU AND LI: STEMFLOW: SOFTWARE-DEFINED INTER-DATACENTER OVERLAY AS A SERVICE 2569

TABLE II

SUMMARY OF PROTOTYPE NETWORK APPLICATIONS IMPLEMENTED IN Stemflow

Fig. 6. Prototype inheritance of Message Processing Objects, illustrating the
programming interfaces.

program with simple interfaces shown in Fig. 6. The
prefType property defines the type of messages to be
handle, whose value matches the preference label in mes-
sage headers. processMessage() function programs the
message processing logic, as is addressed previously. At the
meantime, variables which are shared among the flows of
the same prefType can be defined or modified as property
sharedVar. For example, a counter can be added as a shared
variable to get the number of processed messages. Access
to the global knowledge database and monitor statistics is
made via this.knowledgeDB and this.monitorStat
interfaces directly.

The second step is to define the subscribed data from
the controller. Together with the Message Processing Object
installation, the result of some user-defined functions can be
subscribed to update the knowledge database.

We implemented several prototype network applications,
in the form of two Message Processing Objects. Tab. II
summarizes their implementation. Typically, these three appli-
cations are enough to satisfy the general traffic engineering
needs to operate Stemflow in inter-datacenter networks. Note
that multicast is automatically supported by these applications.
Also, per-message multipath routing can be enabled by the
options specified in the preference label field of a message
header.

D. Discussion

One may think caching control logic on the relays is a
violation of the software-define network principle. Indeed,
in some cases, the relay servers in Stemflow seem to work in
the same way as a traditional routing. However, it is not true
because the control logic is cached by the central controller.
In other words, the controller is free the delete or update the
cached logic at any time. Eventually, the forwarding decisions
are still under full provisioning of the central controller.

Caching forwarding logic is compatible with the OpenFlow-
style of control, that is, caching static forwarding rules.
Directly consulting the controller is the default action to be
applied to a Stemflow message. In particular, the message will
be forwarded to the controller under the following conditions:
i) there is no matching Message Processing Object installed;
ii) processMessage() raises an exception due to a lack
of global knowledge.

Another concern about this design is that because the for-
warding decisions can be made locally, it might be unfeasible
to ensure the correctness of message forwarding. For example,
the forwarding decisions might result in a loop. Stemflow
solves this problem by consistently updating the knowledge
cached on relay servers. Since the cached knowledge on
different relays is drawn from the same database, a loop can
be avoided easily even with greedy path selection. Moreover,
the locality of forwarding decision making guarantees the
consistency during a network update. There will not be any
inconsistent rules installed on the relay servers.

V. EXPERIMENTAL EVALUATION

In this section, we conduct several sets of real-world exper-
iments to evaluate the performance and flexibility of Stemflow
from a variety of different perspectives. Our experimental
results have shown that:

1) The overlay network in Stemflow can achieve up to 8.8x
throughput as compared to direct TCP connections.

2) Customized routing, flow scheduling, and bandwidth
allocation algorithms can be correctly implemented.

3) The data plane-controller interaction scheme that we
have implemented can reduce the tail flow initiation
delays by almost 10 seconds, and significantly reduces
the controller inbound/outbound traffic.

A. Flexibility for Controller Algorithms

1) Multicast Routing and Inter-Datacenter Throughput:
First, we test the throughput of a sample multicast session

2570 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 35, NO. 11, NOVEMBER 2017

TABLE III

THE MULTICAST SESSION THROUGHPUT AND WORST MESSAGE
DELIVERY LATENCY COMPARISON

TABLE IV

FLOW WEIGHT SETTINGS DURING THE TEST

in Google Cloud. In this experiment, three relay servers are
deployed in Taiwan, Iowa, and Belgium, respectively. The
server located in Taiwan is the data source, while the other
servers work as receivers in the multicast session.

With different network applications deployed, i.e., “min-
delay” and “max-bandwidth,” we compare the achieved ses-
sion throughput and the worst message delivery delay with
TCP (i.e., “direct”). The results are shown in Table III.
“min-delay” choose the direct path between the source and
receiver datacenters, while “max-bandwidth” further relays
the traffic destined to Belgium via Iowa, which provides
>200 Mbps of throughput at the cost of ∼320 ms of latency
in message delivery. As compared to the baseline, Stem-
flow significantly improves the multicast session throughput,
because of the high-bandwidth inter-datacenter links and par-
allel TCP connections.

2) Bandwidth Allocation: Here we verify the effectiveness
of the implemented bandwidth allocation algorithm. We launch
three flows between Taiwan and Belgium, while they share the
overlay link. The weights of these flows have been changed
four times during the test, and the relative weights have been
listed in Table IV. As a result, the fluctuations of the flow
sending rate are illustrated in Fig. 7, which correctly reflect
the desired bandwidth allocation rate.

B. The Efficiency of Log Caching

We deploy Stemflow in the wide-area network, with relay
servers disseminated in datacenters and testbed regions around
the globe. Running with two sample mobile applications,
we evaluate the performance of Stemflow upon real inter-
datacenter networks. Particular attention has been paid to the
dynamic rule caching mechanism for data plane-controller
interactions. The experimental results show that Stemflow
benefits significantly from this design regarding performance,
scalability, and reliability.

1) Experimental Setup: In our experiments, 24 relay servers
in total are deployed in the form of virtual machines. The
geographical locations of these deployed relay servers are
illustrated in Fig. 8, and they are acquired from three different
domains.

Specifically, 10 relay servers are deployed in the Amazon
EC2 cloud, distributed in 8 different regions (Singapore and

Fig. 7. Bandwidth allocation test results.

Fig. 8. Global deployment topology.

Sau Paulo hold 2 for each). More relay nodes are launched in
North America, with 8 in GENI testbed [7] and 6 in a Canadian
testbed. Note that both GENI and the Canadian testbed have
tunneled or dedicated links different interconnecting regions,
which can be utilized by Stemflow as high-performance inter-
datacenter links. The controller locates on a dedicated virtual
machine near Toronto.

Two types of flows with distinct forwarding preferences are
generated to test the performance of Stemflow inter-datacenter
overlay. One kind of flows is delay-sensitive streams to
simulate workload from mobile applications that require data
transfer. Live video broadcast, for example, requires traffic to
be delivered at the lowest possible latency but sends out traffic
at a limited rate that can be pre-specified. In our experiment,
the desired streaming rate is randomly selected between 96 to
2400 Kbps, which covers the rate of standard network video
streams. Flows of this kind last for a fixed period, even if
the desired sending rate can be achieved. The other kind is
bandwidth-demanding flows, which is the typical behavior of
applications such as large file transfers. These flows are fixed
in size but have no requirement on per-message latency or the
message arrival order. In this case, multipath routing might be
applied to achieve best possible throughput.

The prior two prototype applications listed in Table II are
used to handle different types of flows, respectively. With
the same trace of traffic on the overlay network, which
generates 7200 flows in about 1 hour, we evaluate the Stemflow
performances under different controller-relay server interaction
schemes. We compare Stemflow to the OpenFlow-style of

LIU AND LI: STEMFLOW: SOFTWARE-DEFINED INTER-DATACENTER OVERLAY AS A SERVICE 2571

Fig. 9. CDF of flow initiation delays.

Fig. 10. Inbound traffic throughput log.

interaction, which is the reactive control scheme based on
query and responses. Stemflow is feasible to mimic the reactive
control scheme by caching no pre-defined message processor
objects on relay servers, because the default action to deal
with an unknown Stemflow message is to query the controller.

Note that we compare Stemflow to the reactive control
scheme only. Other scalable control plane solutions, especially
the distributed controller designs in the software-defined net-
work literature, are not feasible to be implemented since the
forwarding decisions of both types of flows should be made
with global knowledge.

2) Flow Initiation Delays: The flow initiation delay is
one of the most significant overheads in OpenFlow-based
networks. In Stemflow, the delay of a flow is calculated at
the sender by measuring the time difference between sending
of the first message and receiving of its acknowledgment from
all desired destinations.

Fig. 9 illustrates the Cumulative Distribution Func-
tion (CDF) of the initiation delays of all generated flows.
Note that the x-axis is in log scale. It shows that Stemflow
significantly reduces the communication overhead at the time
of flow initiation. In particular, nearly 80% flows in Stemflow
are initiated within 100 ms, as compared to 40% without
logic caching. The tail distribution of flow initiation delays is
even more impressive. The 99th-percentile delay is less than
1 second in Stemflow. However, with reactive control, 1% of
the flows will take nearly 10 seconds to initiate.

3) Controller Traffic Load: Throughout the experiment,
we record the network traffic load on the controller to see
how well the logic caching strategy can offload the control
plane. Fig. 10 and 11 depict the inbound and outbound traffic
throughput fluctuation during the experiment.

In both figures, Stemflow controller works at a relatively
lower network traffic load except for the first 2 minutes after
the system launches. It is reasonable because the controller
has to transfer additional messages to cache control logic

Fig. 11. Outbound traffic throughput log.

Fig. 12. CDF of flow throughput achieved by bandwidth-demanding flows.

Fig. 13. CDF of flow throughput achieved by delay-sensitive flows.

onto all relay servers. Once the logic caching is completed,
the controller can work persistently at a lower workload.

It is interesting to see that the outbound traffic load on
the Stemflow controller shows less benefit as compared to the
inbound traffic. The reason for this phenomenon is that the
Stemflow controller is proactively updating the relay servers
with the latest global network knowledge.

4) Quality of Selected Routes: One may doubt that, in Stem-
flow, the relay servers might make less optimal forwarding
decisions than the central controller would do. In Fig.12
and 13, we evaluate the achieved throughput for bandwidth-
demanding flows and average message latency for delay-
sensitive ones.

Without a doubt, Stemflow and the traditional control
plane design achieve similar performances in terms of traffic
engineering. The two CDFs of message latency is almost
identical, while Stemflow can even achieve slightly higher
throughput. It is because Stemflow can react to the local
network events quickly: whenever a competing flow termi-
nates, the relay server can reroute the traffic for multipath
transmission quickly.

5) Fault Tolerance: We further experiment to test the fault
tolerance of the system. In this test, we start five flows from
a sender server and select the same route for data relay. At a
particular time, we intentionally terminate one of the relay

2572 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 35, NO. 11, NOVEMBER 2017

Fig. 14. Flow recovery time comparison.

servers on the path, and calculate the flow recovery time at
the receiver. The RTT between the sender and the controller
is about 10 ms.

The corresponding results are depicted in Fig. 14. It shows
a similar trend for a different number of hops between the
sender and the failed relay. In Stemflow, since each relay server
is capable of rerouting immediately after the next-hop relay
fails, it takes nearly no time for the flow to recover. Though
the fallback path selection might not be optimal, it will be
eventually rerouted to an optimal path after the controller takes
over. However, without cached logic, all relay servers have to
wait until the controller reacts. Also, some of them will have
to hold the buffered messages at the mean time. Consequently,
the flow cannot recover quickly from the failure.

VI. RELATED WORK

Inter-datacenter Networks are critical network resources
in the WAN. Preliminary experimental measurements
in [10], [18] suggest inter-datacenter be an approachable
new “backbone” in wide-area networks. Most of these
networks are built upon dedicated links [15]. As traditional
traffic engineering technologies result in sub-optimal routing
patterns [22], Google [15] and Microsoft [13] resort to the
software-defined networking technology.

Software-Defined Networking is a hot research topic in
recent years. Starting from a campus network [19], it has
already developed as a promising technology in next-
generation networks [17]. The principle of software-defined
networking is to decouple the packet forwarding intelligence
from the hardware. OpenFlow [3] is the first standardized
protocol designed for communications between the controller
and the data plane. Static rules are installed and cached on
the data plane switches, to perform longest prefix matches at
runtime.

Despite the fine granularity of control, OpenFlow-based
control plane suffers from scalability problems. Some
workaround solutions attempt to offload the controller by
applying the label-switching [4]–[6], [9] technology or a
distributed control plane [12], [20]. However, they are till far
from effective in dealing with traffic in production [8].

Reconfigurable Dataplanes have emerged as the future of
OpenFlow 2.0 [8]. With new advancements in the hardware,
switches today are able to process packets using reconfigurable
logic, instead of static rules, at the line rate [25]. Following this
direction, network programming primitives (e.g., FAST [21],

P4 [8], Probabilistic NetKAT [11], Domino [24]) and compil-
ers (e.g., SNAP [16]) are proposed.

Our design of Stemflow is greatly inspired by this line
of work. However, due to hardware constraint, sophisticated
algorithms are difficult to be implemented with the limited
number of operations [23]. In Stemflow, taking advantage of
the overlay data plane which is more easily programmable and
reconfigurable, the controller-data plane interaction scheme is
designed to be more flexible. It adapts better to the inter-
datacenter overlay environment, getting rid of the unneces-
sary complexity incurred by processing multiple-layer packet
headers.

VII. CONCLUDING REMARKS

We present the concept, design, implementation, and
evaluation of Stemflow, a new system framework that pro-
vides easy access to the inter-datacenter overlay resources,
designed specifically for bandwidth-intensive applications.
Easily accessible via standard protocols, Stemflow features a
software-defined overlay network architecture, and is designed
to significantly improve application performance over inter-
datacenter networks, while ensuring the flexibility of cen-
tralized control. For a real-world experimental evaluation,
we deployed Stemflow across geographically distributed data-
centers, and showed that Stemflow helps achieve up to 8.8x
throughput improvements as compared to direct TCP connec-
tions, and allows for customized routing, flow scheduling, and
bandwidth allocation algorithms to be deployed. We believe
that the controller-data plane interaction scheme in Stemflow
represents a further step towards a flexibly programmable data
plane in software switches, complementing current standards
for hardware switches such as OpenFlow 2.0.

REFERENCES

[1] Network Time Protocol (Version 3) Specification, Implementation and
Analysis. Accessed: Mar. 27, 2017. [Online]. Available: https://tools.
ietf.org/html/rfc1305

[2] Open Network Foundation Official Website. Accessed: May 6, 2015.
[Online]. Available: https://www.opennetworking.org/

[3] OpenFlow White Paper. Accessed: Mar. 27, 2017. [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/white-papers/wp-sdn-newnorm.pdf

[4] K. Agarwal, C. Dixon, E. Rozner, and J. Carter, “Shadow MACs:
Scalable label-switching for commodity ethernet,” in Proc. ACM
SIGCOMM Workshop Hot Topics Softw.-Defined Netw. (HotSDN), 2014,
pp. 157–162.

[5] D. O. Awduche, “MPLS and traffic engineering in IP networks,” IEEE
Commun. Mag., vol. 37, no. 12, pp. 42–47, Dec. 1999.

[6] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus,
Requirements for Traffic Engineering Over MPLS, document IETF
RFC 2702, Sep. 1999. Accessed: Oct. 10, 2017. [Online]. Available:
http://www.ietf.org/rfc/rfc2702.txt

[7] M. Berman et al., “GENI: A federated testbed for innovative network
experiments,” Comput. Netw., vol. 61, pp. 5–23, Mar. 2014.

[8] P. Bosshart et al., “P4: Programming protocol-independent packet
processors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87–95, 2014.

[9] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian, “Fabric:
A retrospective on evolving SDN,” in Proc. ACM SIGCOMM Workshop
Hot Topics Softw.-Defined Netw. (HotSDN), 2012, pp. 85–90.

[10] Y. Feng, B. Li, and B. Li, “Airlift: Video conferencing as a cloud service
using inter-datacenter networks,” in Proc. IEEE 20th Int. Conf. Netw.
Protocols (ICNP), Oct. 2012, pp. 1–11.

[11] N. Foster, D. Kozen, K. Mamouras, M. Reitblatt, and A. Silva,
“Probabilistic NetKAT,” in Proc. Eur. Symp. Programm. Lang. Syst.,
2016, pp. 282–309.

LIU AND LI: STEMFLOW: SOFTWARE-DEFINED INTER-DATACENTER OVERLAY AS A SERVICE 2573

[12] S. H. Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient and
scalable offloading of control applications,” in Proc. ACM SIGCOMM
Workshop Hot Topics Softw.-Defined Netw. (HotSDN), 2012, pp. 19–24.

[13] C.-Y. Hong et al., “Achieving high utilization with software-driven
WAN,” in Proc. ACM SIGCOMM, 2013, pp. 15–26.

[14] N. Hu and P. Steenkiste, “Evaluation and characterization of available
bandwidth probing techniques,” IEEE J. Sel. Areas Commun., vol. 21,
no. 6, pp. 879–894, Aug. 2003.

[15] S. Jain et al., “B4: Experience with a globally-deployed software defined
WAN,” in Proc. ACM SIGCOMM, 2013, pp. 3–14.

[16] L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compiling packet
programs to reconfigurable switches,” in Proc. 12th USENIX Symp.
Netw. Syst. Design Implement. (NSDI), 2015, pp. 103–115.

[17] D. Kreutz, F. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, “Software-defined networking: A comprehensive survey,”
Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[18] Z. Liu, Y. Feng, and B. Li, “Bellini: Ferrying application traffic
flows through geo-distributed datacenters in the cloud,” in Proc. IEEE
GLOBECOM, Dec. 2013, pp. 1753–1759.

[19] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Apr. 2008.

[20] H. Mekky, F. Hao, S. Mukherjee, Z.-L. Zhang, and T. Lakshman,
“Application-Aware Data Plane Processing in SDN,” in Proc. ACM
SIGCOMM Workshop Hot Topics Softw.-Defined Netw. (HotSDN), 2014,
pp. 13–18.

[21] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and R. Govindan,
“Flow-level state transition as a new switch primitive for SDN,”
in Proc. ACM SIGCOMM Workshop Hot Topics Softw.-Defined
Netw. (HotSDN), 2014, pp. 61–66.

[22] A. Pathak, M. Zhang, Y. C. Hu, R. Mahajan, and D. Maltz, “Latency
inflation with MPLS-based traffic engineering,” in Proc. ACM Internet
Meas. Conf. (IMC), 2011, pp. 463–472.

[23] N. K. Sharma, A. Kaufmann, T. E. Anderson, A. Krishnamurthy,
J. Nelson, and S. Peter, “Evaluating the power of flexible packet
processing for network resource allocation,” in Proc. USENIX NSDI,
2017, pp. 67–82.

[24] A. Sivaraman et al., “Packet transactions: High-level programming for
line-rate switches,” in Proc. ACM SIGCOMM, 2016, pp. 15–28.

[25] A. Sivaraman, C. Kim, R. Krishnamoorthy, A. Dixit, and M. Budiu,
“DC.p4: Programming the forwarding plane of a data-center switch,” in
Proc. ACM Symp. Softw. Defined Netw. Res. (SOSR), 2015, Art. no. 2.

Shuhao Liu (S’17) received the B.Eng. degree
from Tsinghua University in 2012. He is currently
pursuing the Ph.D. degree with the Department
of Electrical and Computer Engineering, University
of Toronto. His current research interests include
software-defined networking and big data analytics.

Baochun Li (F’15) received B.E. degree from
the Department of Computer Science and Tech-
nology, Tsinghua University, China, in 1995,
the M.S. and Ph.D. degrees from the Depart-
ment of Computer Science, University of Illinois
at Urbana–Champaign, Urbana, in 1997 and 2000.
Since 2000, he has been with the Department of
Electrical and Computer Engineering, University of
Toronto, where he is currently a Professor. His
research interests include cloud computing, large-
scale data processing, computer networking, and

distributed systems. He is a member of ACM. In 2000, he was the recipient of
the IEEE Communications Society Leonard G. Abraham Award in the Field
of Communications Systems. In 2009, he was a recipient of the Multimedia
Communications Best Paper Award from the IEEE Communications Society,
and a recipient of the University of Toronto McLean Award. He holds the
Nortel Networks Junior Chair in Network Architecture and Services from
2003 to 2005, and the Bell Canada Endowed Chair in Computer Engineering
since 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

