
Demo Abstract: Stemflow:
Inter-Datacenter Overlay as a Service

Shuhao Liu, Baochun Li
Department of Electrical and Computer Engineering, University of Toronto

{shuhao, bli}@ece.toronto.edu

Abstract—Thanks to the abundant available bandwidth and
multiple paths on wide-area links that interconnect datacenters
on major cloud platforms, it is conceivable that bandwidth-
intensive applications may improve their performance by re-
laying their traffic through such an inter-datacenter network.
We propose Stemflow, a new systems framework that provides
Inter-Datacenter Overlay as a Service. It is provided as a turn-
key solution for applications to conveniently and transparently
tap into the available bandwidth resources across datacenters
in the cloud, with internal optimizations on the performance
of data delivery. Internally, we have implemented Stemflow as
a software-defined overlay. We present two interactive cloud
applications built upon Stemflow — live video broadcast and
instant messaging — to demonstrate the ease of development
and the performance gains by using Stemflow.

I. INTRODUCTION

Cloud service providers, such as Amazon and Google, have
routinely provided convenient access to both computation and
network resources in their datacenters with affordable costs.
These datacenters are geographically distributed across the
world, and are often inter-connected with high-capacity links.
Some inter-datacenter links have the ability to provide 100s
of Gbps to Tbps of capacity, due to the use of dedicated
fiber-optic links [1], [2]. For this reason, such inter-datacenter
networks have recently emerged as an attractive option to serve
as the “backbone” of the public Internet over the wide area.

In this paper, we present our design of Stemflow, a new
systems framework that provides an Inter-Datacenter Overlay
as a Service. Much in the spirit of Software-as-a-Service,
it provides a cloud service that offers a simple turn-key
solution for an end application to improve its scalability and
performance by using the inter-datacenter network for its
traffic, yet with very simple and concise interfaces.

Internally, Stemflow is implemented as a software-defined
[3] overlay atop an inter-datacenter network. The overlay con-
sists of a number of virtual machines located at geographically
distributed datacenters, as traffic relays. Among these relays,
persistent, parallel TCP connections are established for maxi-
mized throughput, which are multiplexed among applications.
Moreover, with a complete separation of the control and data
planes, the routing decisions to be used for relaying application
traffic are fully controlled by a centralized controller. For
the sake of convenience, all of these design choices and
their implementation details are completely hidden from the
perspective of application developers.

DC DC

DCDC

DC

Relay server Mobile device

live video 
broadcast

Fig. 1: An example deployment of a video broadcast application across five datacenters.
Video streams are multicast through high-capacity inter-datacenter links to achieve better
performance.

Although Stemflow is simple from the perspective of appli-
cations, it is designed to achieve high performance and to scale
well, offering an attractive alternative to applications in need
for performance. Enjoying the flexibility of an application-
layer software-defined overlay, Stemflow is designed to provide
native support for multicast sessions with multiple paths and
trees.

To demonstrate the simplicity and performance gains of
using Stemflow as an Inter-Datacenter Overlay as a Service,
we have developed two example bandwidth-intensive and in-
teractive applications, video broadcast and instant messaging,
as simple web-based clients. As shown in Fig. 1, generated
network traffic, including image and video file transfers and
live video streams, is completely handled by Stemflow across
multiple datacenters. Both applications demonstrate a high
level of Quality-of-Experience, with minimal perceived laten-
cies and high throughput in multicast data delivery across users
that are geographically distributed.

II. MOTIVATION

There exist mobile applications — most prominently live
video broadcast and high-quality video conferencing — that
are bandwidth-intensive. They typically depend on application-
specific solutions that are based on centralized servers, and
video streams are relayed by one of the servers from the
video source to the participants of the session. Referred to
as server-based solutions, existing solutions heavily depend
on the accuracy of selecting the best possible server to assist
a live video broadcast or conferencing session. Unfortunately,
for sessions involving a large number of participants that are
geographically distributed across the world, it may happen that



Solution Throughput (Mbps) Latency (ms)
Direct TCP 181 395.9
Stemflow 516 468.5

+285.1% +72.6 ms
TABLE I: A comparison of the average throughput and latencies, between US-East and
Asia-East regions on the Google Cloud platform, between using a direct TCP connection
and Stemflow. The average throughput is evaluated by sending 1 GB of data, while the
latency is measured by sending 1 KB of data between end hosts.

a single server may not offer satisfactory performance due to
the lack of available bandwidth to some of the participants.

Stemflow is designed as an application framework to assist
these bandwidth-intensive applications, offering them better
performance by using the inter-datacenter network. Intuitively,
as compared to traditional server-based solutions, there are
two reasons why an inter-datacenter network may be able to
offer better performance. First, at a per-GB cost of around ten
cents, inter-datacenter links often offer much higher bandwidth
capacities (with multiple inter-datacenter paths available), up
to hundreds of Mbps. Second, rather than selecting a server
for all the participants to connect to, each participant is able
to connect to a datacenter that is considered its best choice in
terms of bandwidth or latency. From a workload perspective,
this is naturally a more scalable solution.

III. FEATURES

High end-to-end throughput. Stemflow focuses on exploit-
ing the full potential of the inter-datacenter network. Persis-
tent, parallel TCP connections are used to provide the best
possible throughput in such a high bandwidth-delay product
(BDP) environment. Moreover, our software-defined architec-
ture supports a high degree of flexibility when making routing
decisions, such as the use of multiple paths across datacen-
ters. Table I shows that Stemflow significantly improves the
throughput of data transfers across continents.

Minimal latency overhead. When implementing Stemflow,
we have designed its architecture and optimized its implemen-
tation with a focus on its performance and overhead. We used
code-level optimization techniques such as zero-copying and
asynchronous network I/O, and the entire implementation is
completed in C++.

Simple programming interfaces that are easy to use. Opti-
mized performance and scalability can only become attractive
if application developers find Stemflow simple to use as a
framework. From the perspective of the developers, it would
be ideal if Stemflow can be viewed as a single server, with
Publish/Subscribe-style APIs.

IV. INTERNAL ARCHITECTURAL DESIGN

Stemflow is designed internally as a software-defined
application-layer overlay: it employs relay servers in the data
plane to interact with applications and to forward traffic, and
includes a central controller in the control plane to make
routing and scheduling decisions.

Relay servers. Stemflow is deployed within Virtual Ma-
chines (VMs) or Docker containers, which are initiated across
geo-distributed centers. There may be multiple VMs or con-
tainers located at each datacenter. These VMs or containers are
typically leased from a public cloud provider, such as Google

RPC Stream
Subscribe

RPC Stream
 Publish

Stemflow Relay Server

RPC Server

Stemflow
Controller

Controller Proxy

Network 
Monitor

Relay

I/O Buffer

RPC Unary
Publish/Subscribe

Encapsulate

Reasemble

Monitor
Connection

Multiplexed
Connections

to Peers

Fig. 2: The architecture of Stemflow.

Cloud or Amazon EC2. The number of VMs or containers
used depends on the workload at runtime, and can be adjusted
dynamically over time. Within each VM or container, the
Stemflow runtime executable is simply called a relay server. As
shown in Fig. 2, the relay servers work as application-layer
switches, with close interactions with the Controller. It has
a RPC-based Pub/Sub interface that supports both streaming
and unary data transfers, while maintaining multiple persistent,
parallel TCP connections to other peer relay servers.

Central controller. With software-defined networking as
its underlying principle, the control and data planes in Stem-
flow are fully decoupled. The control plane is implemented
with a centralized controller in Javascript and Python, and it
communicates proactively with all the relay servers, collecting
real-time measurement statistics and deploying its control
decisions.

Based on the collected measurements such as real-time
available bandwidth and latencies, the controller is able to
make dynamic routing and scheduling decisions, with the
objective of optimizing the Quality-of-Experience of the ap-
plications. It is easy to enable multi-path routing among
datacenters to offer maximized throughput, or to prioritize the
traffic for delay-sensitive applications.

V. HIGHLIGHTS OF STEMFLOW APPLICATIONS

We present two web-based applications using the Stemflow
framework, video conferencing and instant messaging. Both
applications require multicast and are bandwidth-intensive,
while video conferencing is more delay-sensitive. We show
that both applications perform well with the help of Stemflow,
with minimal perceived delay and no visual disruptions. Also,
to build these applications based on an existing code base, it
requires minimal changes to the source code, demonstrating
the convenience of using Stemflow as a development frame-
work.

REFERENCES

[1] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer. Achieving high utilization with software-driven wan. In
Proc. of ACM SIGCOMM, 2013.

[2] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu, et al. B4: Experience with a globally-
deployed software defined wan. In Proc. of ACM SIGCOMM, 2013.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: enabling innovation in
campus networks. ACM SIGCOMM CCR, 38(2):69–74, 2008.


