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Abstract—As increasingly large volumes of raw data are
generated at geographically distributed datacenters, they need
to be efficiently processed by data analytic jobs spanning
multiple datacenters across wide-area networks. Designed for a
single datacenter, existing data processing frameworks, such as
Apache Spark, are not able to deliver satisfactory performance
when these wide-area analytic jobs are executed. As wide-area
networks interconnecting datacenters may not be congestion
free, there is a compelling need for a new system framework
that is optimized for wide-area data analytics.

In this paper, we design and implement a new proactive
data aggregation framework based on Apache Spark, with
a focus on optimizing the network traffic incurred in shuffle
stages of data analytic jobs. The objective of this framework
is to strategically and proactively aggregate the output data
of mapper tasks to a subset of worker datacenters, as a
replacement to Spark’s original passive fetch mechanism across
datacenters. It improves the performance of wide-area analytic
jobs by avoiding repetitive data transfers, which improves the
utilization of inter-datacenter links. Our extensive experimental
results using standard benchmarks across six Amazon EC2
regions have shown that our proposed framework is able to
reduce job completion times by up to 73%, as compared to
the existing baseline implementation in Spark.
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I. INTRODUCTION

Modern data processing frameworks, such as Apache
Hadoop [1] and Spark [2], are routinely used as the founda-
tion for running large-scale data analytic applications. These
frameworks are designed to work effectively within a single
datacenter; yet as the volume of raw data to be analyzed
increases exponentially, it is increasingly necessary to run
large jobs across multiple datacenters that are geographically
distributed around the world.

Intuitively, due to the time and bandwidth cost for moving
data across datacenters, it would be more efficient to process
data locally as much as possible. However, most existing
data processing frameworks are designed to operate within a
single cluster, and oblivious to data locality at the datacenter
level. As a result, excessive inter-datacenter data transfers
are likely to occur. The challenge, known as wide-area data
analytics [3], is how to maximize the performance of a data
analytic job when its tasks are distributed across multiple
geo-distributed datacenters.

Existing approaches to address this challenge attempted
to make better resource scheduling decisions for the sake
of improving performance. They optimize the execution
of a wide-area data analytic job by intelligently assigning
individual tasks to datacenters, such that the overhead of
moving data across datacenters can be minimized. For
example, Geode [4], WANAnalytics [5] and Pixida [3]
have proposed various task placement strategies, reducing
the volume of inter-datacenter traffic. Iridium [6] achieves
shorter job completion times by leveraging a redistributed
input dataset, along with mechanisms for making optimal
task assignment decisions.

Despite their promising outlook, even the best scheduling
strategies may not achieve optimality due to the level of
abstraction needed to solve the problem. As an example,
in Spark, resource schedulers can only operate at the gran-
ularity of computation tasks. The induced inter-datacenter
data transfers under the hood, which impact performance
directly, are hidden from these schedulers. Consequently, all
existing proposals have to make certain assumptions, which
make them less practical. For example, existing work [3]–[5]
assumed that intermediate data sizes are known beforehand,
even though this is rarely the case in practice.

In this paper, we propose to take a systems-oriented
approach to reduce the volume of data transfers across
datacenters. Our new system framework is first and foremost
designed to be practical: it has been implemented in Apache
Spark to optimize the runtime performance of wide-area
analytic jobs in a variety of real-world benchmarks. To
achieve this objective, our framework focuses on the shuffle
phase, and strategically aggregate the output data of mapper
tasks in each shuffle phase to a subset of datacenters. In our
proposed solution, the output of mapper tasks is proactively
and automatically pushed to be stored in the destination dat-
acenters, without requiring any intervention from a resource
scheduler. Our solution is orthogonal and complementary
to existing task assignment mechanisms proposed in the
literature, and it remains effective even with the simplest
task assignment strategy.

Compared to existing task assignment mechanisms, the
design philosophy in our proposed solution is remarkably
different. The essence of traditional task assignment is to
move a computation task to be closer to its input data to ex-



ploit data locality; in contrast, by proactively moving data in
the shuffle phase from mapper to reducer tasks, our solution
improves data locality even further. As the core of our sys-
tem framework, we have implemented a new method, called
transferTo(), on Resilient Distributed Datasets (RDDs),
which is a basic data abstraction in Spark. This new method
proactively sends data in the shuffle phase to a specific
datacenter that minimizes inter-datacenter traffic. It can be
either used explicitly by application developers or embedded
implicitly by the job scheduler. With the implementation of
this method, the semantics of aggregating the output data
of mapper tasks can be captured in a simple and intuitive
fashion, making it straightforward for our system framework
to be used by existing Spark jobs.

With the new transferTo() method at its core, our new
system framework enjoys a number of salient performance
advantages. First, it pipelines inter-datacenter transfers with
the preceding mappers. Starting data transfers early can
help improve the utilization of inter-datacenter links. Second,
when task execution fails at the reducers, repetitive transfers
of the same datasets across datacenters can be avoided,
since they are already stored at the destination datacenter by
our new framework. Finally, the application programming
interface (API) in our system framework is intentionally
exposed to the application developers, who are free to use
this mechanism explicitly to optimize their job performance.

We have deployed our new system framework in a
Spark cluster across six Amazon EC2 regions. By running
workloads from the HiBench [7] benchmark suite, we have
conducted a comprehensive set of experimental evaluations.
Our experimental results have shown that our framework
speeds up the completion time of general analytic jobs by
14% to 73%. Also, with our implementation, the impact
of bandwidth and delay jitters in wide-area networks is
minimized, resulting in a lower degree of performance
variations over time.

II. BACKGROUND AND MOTIVATION

In a typical MapReduce job, the input datasets are split
into partitions that can be processed in parallel. Logical
computation is organized in several consecutive map() and
reduce() operations: map() operates on each individual par-
tition to filter or sort, while reduce() collects the summary
of results. An all-to-all communication pattern will usually
be triggered between mappers and reducers, which is called
a shuffle phase. These intermediate data shuffles are well
known as costly operations in data analytic jobs, since they
incur intensive traffic across worker nodes.

A. Fetch-based Shuffle

Both Apache Hadoop and Spark are designed to be
deployed in a single datacenter. Since datacenter networks
typically have abundant bandwidth, network transfers are
considered even less expensive than local disk I/O in Spark

[2]. With this assumption in mind, the shuffle phase is
implemented with a fetch-based mechanism by default. To
understand the basic idea in our proposed solution, we need
to provide a brief explanation of the fetch-based shuffle in
Spark.

In Spark, a data analytic job is divided into several stages,
and launched in a stage-by-stage manner. A typical stage
starts with a shuffle, when all the output data from the
previous stages is already available. The workers of the new
stage, i.e., reducers in this shuffle, will fetch the output data
from the previous stages, which constitutes the shuffle input,
stored as a collection of local files on the mappers. Because
the reducers are launched at the same time, shuffle input
is fetched concurrently, resulting in a concurrent all-to-all
communication pattern. For better fault tolerance, the shuffle
input will not be deleted until the next stage finishes. When
failures occur on the reducer side, the related files will be
fetched from the mappers again, without the need to re-run
them.

B. Problems with Fetch in Wide-Area Data Analytics

Though effective within a single datacenter, it is quite
a different story when it comes to wide-area data ana-
lytics across geographically distributed datacenters, due to
limited bandwidth availability on wide-area links between
datacenters [8]. Given the potential bottlenecks on inter-
datacenter links, there are two major problems with fetch-
based shuffles.

First, as a shuffle will only begin when all mappers are
finished — a barrier-like synchronization — inter-datacenter
links are usually well under-utilized most of the time, but
likely to be congested with bursty traffic when the shuffle
begins. The links are under-utilized, because when some
mappers finish their tasks earlier, their output cannot be
transmitted immediately to the reducers. Yet, when the shuf-
fle is started by all the reducers at the same time, they initiate
concurrent network flows to fetch their corresponding shuffle
input, leading to bursty traffic that may contend for the
limited inter-datacenter bandwidth, resulting in potential
congestion.

Second, when failures occur on reducers with the tradi-
tional fetch-based shuffle mechanism, data must be fetched
again from the mappers over slower inter-datacenter net-
work links. Since a stage will not be considered complete
until all its tasks are executed successfully, The slowest
tasks, called the stragglers, will directly affect the overall
stage completion time. Re-fetching shuffle input over inter-
datacenter links will slow down these stragglers even further,
and negatively affects the overall job completion times.

III. TRANSFERRING SHUFFLE INPUT
ACROSS DATACENTERS

To improve the performance of shuffle in wide-area data
analytics, we will need to answer two important questions:
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Figure 1: Mappers typically cannot finish their work at the same time. In
this case, if we proactively push the shuffle input to the datacenter where
the reducer is located (Fig. 1(b)), the inter-datacenter link will be better
utilized as compared to leaving it on the mappers (Fig. 1(a)).

when and where should we transfer the shuffle input from
mappers to reducers? The approach we have taken in our
system framework is simple and quite intuitive: we should
proactively push shuffle input as soon as any data partition
is ready, and aggregate it to a subset of worker datacenters.

A. Transferring Shuffle Input: Timing

Both problems of fetch-based shuffle stem from the fact
that the shuffle input is co-located with mappers in different
datacenters. Therefore, they can be solved if, rather than
asking reducers to fetch the shuffle input from the mappers,
we can proactively push the shuffle input to those datacenters
where the reducers are located, as soon as such input data
has been produced by each mapper.

As an example, consider a job illustrated in Fig. 1.
Reducers in stage N + 1 need to fetch the shuffle input
from mappers A and B, located in another datacenter. We
assume that the available bandwidth across datacenters is 1
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of a single datacenter network link, which is an optimistic
estimate. Fig. 1(a) shows what happens with the fetch-based
shuffle mechanism, where shuffle input is stored on A and B,
respectively, and transferred as soon as stage N +1 starts at
t = 10. Two flows share the inter-datacenter link, allowing
both reducers start at t = 18. In contrast, in Fig. 1(b),
shuffle input is pushed to the datacenter hosting the reducer
immediately after it is computed by each mapper. Inter-
datacenter transfers are allowed to start at t = 4 and t = 8,
respectively, without the need for sharing link bandwidth.
As a result, reducers will be able to start at t = 14.

Fig. 2 shows an example of the case of reducer failures.
With the traditional fetch-based shuffle mechanism, the
failed reducer will need to fetch its input data again from
another datacenter, if such data is stored with the mappers,
shown in Fig. 2(a). In contrast, if the shuffle input is stored
with the reducer instead when it fails, the reducer can read
from the local datacenter, which is much more efficient.
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Figure 2: In the case of reducer failures, if we proactively push the shuffle
input to the datacenter where the reducer is located (Fig. 2(b)), data re-
fetching across datacenters can be eliminated, reducing the time needed for
failure recovery as compared to the case where shuffle input is located on
the mappers (Fig. 2(a)).
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Figure 3: A snippet of a sample execution graph of a data analytic job.

B. Transferring Shuffle Input: Choosing Destinations

Apparently, proactively pushing shuffle input to be co-
located with reducers is beneficial, but a new problem arises
with this new mechanism: since the reduce tasks will not be
placed until the map stage finishes, how can we decide the
destination hosts of the proactive pushes?

It is indeed a tough question, because the placement of
reducers is actually decided by the shuffle input distribution
at the start of each stage. In other words, our choice of
push destinations will in turn impact the reducer placement.
Although it seems a cycle of unpredictability, but we think
there already exist enough hints to give a valid answer
in wide-area data analytics. Specifically, for the sake of
minimizing cross-datacenter traffic, there is a tendency for
both task and shuffle input placement at the datacenter level.
We can exploit this tendency as a vital clue.

Our analysis starts by gaining a detailed understanding
of shuffle behaviors in MapReduce. Fig. 3 shows a snippet
of abstracted job execution graph and data transfers. The
depicted shuffle involves 3 partitions of shuffle input, which
will then be dispatched to 3 reducers. In this case, each



partition of the shuffle input is saved as 3 shards based on
specific user-defined rules, e.g., the keys in the key-value
pairs. During data shuffle, each shard will be fetched by the
corresponding reducer, forming an all-to-all traffic pattern.
In other words, every reducer will access all partitions of
the shuffle input, fetching the assigned shards from each.

We assume that shuffle input is placed in M datacenters.
The sizes of the partitions stored in these datacenters are
s1, s2, . . . , sM , respectively. Without loss of generality, let
the sizes be sorted in the non-ascending order, i.e., s1 ≥
s2 ≥ . . . ≥ sM . Also, each partition is divided into N
shards, with respect to N reducers, R1, R2, . . . , RN . Though
being different in sizes in practice, all shards of a particular
partition tend to be about the same size for the sake of load
balancing [9]. Thus, we assume the shards in a partition are
equal in size.

If a reducer Rk is placed in Datacenter ik, the total volume
of its data fetched from non-local datacenters will be

d
(k)
ik

=
∑

1≤j≤M
j 6=ik

d
(k)
ik,j

=
∑

1≤j≤M
j 6=ik

1

N
sj .

Each term in the summation, d(k)ik,j
, denotes the size of data

to be fetched from Datacenter j.
Let S be the total size of the shuffle input, i.e., S =∑M
j=1 sj , we have

d
(k)
ik

=

M∑
j=1

1

N
sj−

1

N
sik =

1

N
(S−sik) ≥

1

N
(S−s1). (1)

The equality holds if and only if ik = 1. In other words,
the minimum cross-datacenter traffic can be achieved when
the reducer is placed in the datacenter which stores the most
shuffle input.

The inequality Eq. (1) holds for every reducer Rk (k ∈
{1, 2, . . . , N}). Then, the total volume of cross-datacenter
traffic incurred by this shuffle satisfies

D =

N∑
k=1

d
(k)
ik
≥ N · 1

N
(S − s1) = S − s1. (2)

Again, the equality holds iff. i1 = i2 = . . . = iN = 1.
Without any prior knowledge on application workflow, we

reach two conclusions to optimize a general wide-area data
analytic job.

First, given a shuffle input distribution, the datacenter with
the largest fraction of shuffle input will be favored by the
reducer placement. This is a direct corollary of Eq. (2).

Second, shuffle input should be aggregated to a subset of
datacenters as much as possible. The minimum volume of
data to be fetched across datacenters is S − s1. Therefore,
in order to further reduce cross-datacenter traffic in shuffle,
we should improve s1

S which is the fraction of shuffle input
placed in Datacenter 1. As an extreme case, if all shuffle

input is aggregated in Datacenter 1, there is no need for
cross-datacenter traffic in future stages.

In all, compared to scattered placement, a better placement
decision would be aggregating all shuffle input into a subset
of datacenters which store the largest fractions. Without loss
of generality, in the subsequent sections of this paper, we
will aggregate to a single datacenter as an example.

C. Summary and Discussion

According to the analysis throughout this section, we learn
that the strategy of Push/Aggregate, i.e., proactively pushing
the shuffle input to be aggregated in a subset of worker
datacenters, can be beneficial in wide-area data analytics.
It can reduce both stage completion time and traffic ten-
sion, because of higher utilization of the inter-datacenter
links. Also, duplicated inter-datacenter data transfers can be
avoided in case of task failures, further reducing the pressure
on the bottleneck links.

One may argue that even with the aggregated shuffle input,
a good task placement decision is still required. Indeed, the
problem itself sounds like a dilemma, where task placement
and shuffle input placement depend on each other. However,
with the above hints, we are able to break the dilemma
by placing the shuffle input first. After that, a better task
placement decision can be made by even the default resource
schedulers, which has a simple straight-forward strategy to
exploit host-level data locality.

Conceptually speaking, the ultimate goal of
Push/Aggregate is to proactively improve the best data
locality that a possible task placement decision can achieve.
Thus, the Push/Aggregate operations are completely
orthogonal and complementary to the task placement
decisions.

IV. IMPLEMENTATION ON SPARK

In this section, we present our implementation of the
Push/Aggregate mechanism on Apache Spark. We take
Spark as an example in this paper due to its better per-
formances [2] and better support for machine learning algo-
rithms with MLlib [10]. However, the idea can be applied
to Hadoop as well.

A. Overview

In order to implement the Push/Aggregate shuffle mech-
anism, we are required to modify two default behaviors in
Spark: i) Spark should be allowed to directly push the output
of an individual map task to a remote worker node, rather
than storing on the local disk; and ii) the receivers of the
output of map tasks should be selected automatically within
the specific aggregator datacenters.

One may think a possible implementation would be
replacing the default shuffle mechanism completely, by
enabling remote disks, which locate in the aggregator data-
centers, to be the potential storage in addition to the local



disk on a mapper. Though this approach is straight-forward
and simple, there are two major issues.

On the one hand, although the aggregator datacenters
are specified, it is hard for mappers to decide the exact
destination worker nodes to place the map output. In Spark,
it is the Task Scheduler’s responsibility to make centralized
decisions on task and data placement, considering both data
locality and load balance among workers. However, a map-
per by itself, without synchronization with the global Task
Scheduler, can hardly have sufficient information to make
the decision in a distributed manner, while still keeping the
Spark cluster load-balanced. On the other hand, the push will
not start until the entire map output is ready in the mapper
memory, which introduces unnecessary buffering time.

Both problems are tough to solve, requiring undesirable
changes to other Spark components such as the Task Sched-
uler. To tackle the former issues, it is natural to ask: rather
than implementing a new mechanism to select the storage of
map output, is it possible to leave the decisions to the Task
Scheduler?

Because the Task Scheduler can have knowledge of com-
putation tasks, we need to generate additional tasks in the
aggregator datacenter, whose computation is as simple as
receiving the output of mappers.

In this paper, we add a new transformation on RDDs,
transferTo(), to achieve this goal. From a high level,
transferTo() provides a means to explicitly transfer a
dataset to be stored in a specified datacenters, while the
host-level data placement decisions are made by the Spark
framework itself for the sake of load balance. In addition, we
implement an optional mechanism in Spark to automatically
enforce transferTo() before a shuffle. This way, if this
option is enabled, the developers are allowed to use the
Push/Aggregate mechanism in all shuffles without changing
a single line of code in their applications.

B. transferTo(): Enforced Data Transfer in Spark

transferTo() is implemented as a method of the base
RDD class, the abstraction of datasets in Spark. It takes
one optional parameter, which gives all worker hosts in the
aggregator datacenter. However, in most cases, the parameter
can be omitted, such that all data will be transferred to
a datacenter that is likely to store the largest fraction of
the parent RDD, as is suggested in Sec. III-C. It returns
a new RDD, TransferredRDD, which represents the dataset
after the transfer operation. Therefore, transferTo() can be
used in the same way as other native RDD transformations,
including chaining with other transformations.

When an analytic application is submitted, Spark will
interpret the transformation by launching an additional set
of receiver tasks, only to receive all data in the parent
RDD. Then, the Task Scheduler can place them in the same
manner as other computation tasks, thus to achieve automatic
host-level load balance. Because the preferredLocations

attributes of these receiver tasks are set to be in the ag-
gregator datacenters, the default Task Scheduler will satisfy
these placement requirements as long as the datacenters
have workers available. This way, from the application’s
perspective, the parent RDD is thus explicitly pushed to the
aggregator datacenters, without violating any default host-
level scheduling policies.

Besides, a bonus point of transferTo() is that, since
the receiver tasks require no shuffle from the parent RDD,
they can be pipelined with the preceding computation tasks.
In other words, if transferTo() is called upon the output
dataset of a map task, the actual data transfer will start as
soon as there is a fraction of data available, without waiting
until the entire output dataset is ready. This pipelining
feature is enabled by Spark without any further change,
which automatically solves the second issue mentioned in
Sec. IV-A.

It is worth noting that transferTo() can be directly used
as a developer API. For developers, it provides the missing
function that allows explicit data migration across worker
nodes. transferTo() enjoy the following graceful features:

Non-Intrusiveness and Compatibility. The introduction
of the new API modifies no original behavior of the
Spark framework, maximizing the compatibility with exist-
ing Spark applications. In other words, changes made on
the Spark codebase regarding transferTo() are completely
incremental, rather than being intrusive. Thus, our patched
version of Spark maintains 100% backward compatibility
with the legacy code.

Consistency. The principle programming concept remains
consistent. In Spark, RDD is the abstraction of datasets.
The APIs allow developers to process a dataset by applying
transformations on the corresponding RDD instance. The
implementation of transferTo() inherits the same princi-
ple.

Minimum overhead. transferTo() strives to eliminate
unnecessary overhead introduced by enforced data transfers.
For example, if a partition of dataset already locates in our
specified datacenter, no cross-node transfer is made. Also,
unnecessary disk I/O is avoided.

C. Implementation Details of tranferTo()

As a framework for building big data analytic appli-
cations, Spark strives to serve the developers. By letting
the framework itself make tons of miscellaneous decisions
automatically, the developers are no longer burdened by
the common problems in distributed computing, e.g., com-
munication and synchronization among nodes. Spark thus
provides such a high-level abstraction that developers are
allowed to program as if the cluster was a single machine.

An easier life comes at the price of less control. The
details of distributed computing, including communications
and data transfers among worker nodes, are completely
hidden from the developers. In the implementation of
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Figure 4: An example to show how preferredLocations attribute works
without(a) or with(b) transferTo() transformation. A* represents all
available hosts in datacenter A, while Ax represents the host which is
selected as the storage of third map output partition.

transferTo() where we intend to explicitly specify the
cross-node transfer of intermediate data, Spark does not
expose such a functionality to the application developers.

Here we close this gap, by leveraging the internal
preferredLocations attribute of an RDD.

1) preferredLocations in Spark: It is a native attribute
in each partition of all RDDs, being used to specify the host-
level data locality preferences. While the Task Scheduler is
trying to place the corresponding computation on individual
worker nodes, it plays an important role. In other words,
the Task Scheduler takes preferenceLocations as a list
of higher priority hosts, and strives to satisfy the placement
preferences whenever possible.

A simple example is illustrated in Fig. 4 (a), where the
input dataset is transformed by a map() and a reduce().
The input RDD has 3 partitions, located on two hosts
in Datacenter A and one host in Datacenter B, respec-
tively. Thus, 3 corresponding map tasks are generated,
with preferredLocations the same as input data place-
ment. Since the output of map tasks is stored locally, the
preferredLocations of all reducers will be the union of
the mapper hosts.

This way, the Task Scheduler can have enough hints
to place tasks to maximize host-level data locality and
minimize network traffic.

2) Specifying the Preferred Locations for transferTo()
Tasks: In our implementation of transferTo(), we generate
an additional computation task right after each map task,
whose preferredLocations attribute filters out all hosts
that are not in the aggregator datacenters.

Why do we launch new tasks, rather than directly chang-
ing the preferredLocations of mappers? The reason is
simple: if mappers are directly placed in the aggregator
datacenter, it will be the raw input data that is transferred
across datacenters. In most cases, it is undesirable because
map output is very likely to have a smaller size as compared

to the raw input data.
If the parent mapper already locates in the aggregator

datacenter, the generated task will do nothing; however,
if not, thus the parent partition of map output requires
being transferred, the corresponding task will provide a list
of all worker nodes in the aggregator datacenter as the
preferredLocations. In the latter case, the Task Scheduler
will select one worker node from the list to place the
task, which simply receives output from the corresponding
mapper.

As another example, Fig. 4 (b) shows how transferTo()
can impact the preferredLocations of all tasks in a simple
job. As compared to Fig. 4 (a), the map output is explicitly
transferred to Datacenter A. Because the first two partitions
are already placed in Datacenter A, the two corresponding
transferTo() tasks are completely transparent. On the
other hand, since the third partition originated in Datacenter
B, the subsequent transferTo() task should prefer any
hosts in Datacenter A. As a result of task execution, the map
output partition will be eventually transferred to a random
host in Datacenter A, which is selected by the Task Sched-
uler. Finally, since all input of reducers is in Datacenter A,
the shuffle can happen within a single datacenter, realizing
the Push/Aggregate mechanism.

Note that we can omit the destination datacenter of
transferTo(). If no parameter is provided, transferTo()
will automatically decide the aggregator datacenter, by se-
lecting the one with the most partitions of map output.

3) Optimized Transfers in the case of Map-side Com-
bine: There is a special case in some transformations, e.g.,
reduceByKey(), which require MapSideCombine before a
shuffle. Strictly speaking, MapSideCombine is a part of
reduce task, but it allows the output of map tasks to
be combined on the mappers before being sent through
network, in order to reduce the traffic.

In wide-area data analytics, it is critical to reduce cross-
datacenter traffic for the sake of performance. Therefore, our
implementation of transferTo() makes smart decisions, by
performing MapSideCombines before transfer whenever pos-
sible. In transferTo(), we pipeline any MapSideCombine
operations with the preceding map task, and avoid the
repetitive computation on the receivers before writing the
shuffle input to disks.

D. Automatic Push/Aggregate

Even though transferTo() is enough to serve as the
fundamental building block of Push/Aggregate, a mechanism
is required to enforce transferTo() automatically, without
the explicit intervention from the application developers. To
this end, we modified the default DAGScheduler component
in Spark, to add an optional feature that automatically
inserts transferTo() before all potential shuffles in the
application.
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Figure 5: An example of implicit embedding of the transferTo() trans-
formation. transferTo() aggregates all shuffle input in DC1, before the
groupByKey() transformation starts. For the partition natively stored in
DC1, transferTo() simply does nothing.

The programmers can enable this feature by setting a
property option, spark.shuffle.aggregation, to true in
their Spark cluster configuration file or in their code. We did
not enable this feature by default for backward compatibility
considerations. Once enabled, the transferTo() method
will be embedded implicitly and automatically to the code
before each shuffle, such that the shuffle inputs can be
pushed to the aggregator datacenters.

Specifically, when a data analytic job is submitted, we
use DAGScheduler to embed the necessary transferTo()
transformations into the origin submitted code. In Spark,
DAGScheduler is responsible for rebuilding the entire work-
flow of a job based on consecutive RDD transformations.
Also, it decomposes the data analytic job into several shuffle-
separated stages.

Since DAGScheduler natively identifies all data shuffles,
we propose to add a transferTo() transformation ahead of
each shuffle, such that the shuffle input can be aggregated.
Fig. 5 illustrates an example of implicit transferTo()
embedding. Since groupByKey() triggers a shuffle, the
transferTo() transformation is embedded automatically
right before that to start proactive transfers of the shuffle
input.

Note that because transferTo() is inserted automati-
cally, none parameter is provided to the method. Therefore,
it works the same way as if the aggregator datacenter is
omitted, i.e., the datacenter that generates the largest fraction
of shuffle input should be chosen. We approximate the
optimal selection by choosing the datacenter storing the
largest amount of map input, which is a known piece of
information in MapOutputTracker at the beginning of the
map task.

E. Discussion
In addition to the basic feature that enforces aggregation

of shuffle input, the implementation of transferTo() can
trigger interesting discussions in wide-area data analytics.

Reliability of Proactive Data Transfers. One possible
concern is that, since the push mechanism for shuffle input
is a new feature in Spark, the reliability of computation, e.g.,
fault tolerance, might be compromised. However, it is not
true.

Because transferTo() is implemented by creating ad-
ditional receiver tasks rather than changing any internal
implementations, all native features provided by Spark are
inherited. The introduced proactive data transfers, from the
Spark framework’s perspective, are the same as regular data
exchanges between a pair of worker nodes. Therefore, in
case of failure, built-in recovery mechanisms, such as retries
or relaunches, will be triggered automatically in the same
manner.

Expressing Cross-region Data Transfers as Computa-
tion. Essentially, transferTo() provides a new interpreta-
tion for inter-datacenter transfers. In particular, they can be
expressed in a form of computation, since transferTo()
is implemented as a transformation. It conforms with our
intuition, in which moving a large volume of data across dat-
acenters consumes both computation and network resources
that are comparable to a normal computing task.

This concept can help in several ways. For example,
inter-datacenter data transfers can be shown from the Spark
WebUI. It can be helpful in terms of debugging the wide-area
data analytic jobs, by visualizing the critical inter-datacenter
traffic.

Implicit vs. Explicit Embedding. Instead of implicit em-
bedding transferTo() using DAGScheduler, the developers
are allowed to explicitly control the data placement at the
granularity of datacenters. In some real-world data analytic
applications, this is meaningful because the developers al-
ways know better about their data.

For example, it is possible in production that the shuffle
input has a larger size than the raw data. In this case, to
minimize inter-datacenter traffic, it is the raw data rather than
the shuffle input that should be aggregated. The developers
can be fully aware of this situation; however, it is difficult
for the Spark framework itself to make this call, resulting
in an unnecessary waste of bandwidth.

Another example is the cached datasets. In Spark, the
developers are allowed to call cache() on any intermediate
RDD, in order to persist the represented dataset in memory.
These cached datasets will not be garbage collected until
the application exits. In practice, the intermediate datasets
that will be used several times in an application should be
cached to avoid repetitive computation. In wide-area data
analytics, caching these datasets across multiple datacenters
is extremely expensive, since reusing them will induce
repetitive inter-datacenter traffic. Fortunately, with the help



Workload Specification
WordCount The total size of generated input files is 3.2 GB.

Sort The total size of generated input data is 320 MB.

TeraSort
The input has 32 million records. Each record is 100 bytes
in size.

PageRank
The input has 500,000 pages. The maximum number of
iterations is 3.

NaiveBayes The input has 100,000 pages, with 100 classes.

Table I: The specifications of four workloads used in the evaluation.

of transferTo(), the developers are allowed to cache after
all data is aggregated in a single datacenter, avoiding the
duplicated cross-datacenter traffic.

Limitations. Even though the Push/Aggregate shuf-
fle enjoys many graceful features, it does have limita-
tions that users should be aware of. The effectiveness of
transferTo() relies on the sufficient computation resources
in the aggregator datacenter. It will launch additional tasks
in the aggregator datacenters, in which more computation
resources will be consumed. If the chosen aggregator dat-
acenter cannot complete all reduce tasks because of insuf-
ficient resources, the reducers will be eventually placed in
other datacenters, which would be less effective.

We think this limitation is acceptable in wide-area data
analytics for two reasons. On the one hand, Push/Aggregate
basically trades more computation resources for lower job
completion times and less cross-datacenter traffic. Because
the cross-datacenter network resources are the bottleneck in
wide-area data analytics, the trade-off is reasonable. On the
other hand, in practice, it is common that a Spark cluster
is shared by multiple jobs, such that the available resources
within one datacenter is more than enough for a single job.
Besides, when the cluster is multiplexed by many concurrent
jobs, it is very likely that the workload can be rebalanced
across-datacenters, keeping the utilization high.

V. EXPERIMENTAL EVALUATION

In this section, we present a comprehensive evaluation of
our proposed implementation. Our experiments are deployed
across multiple Amazon Elastic Compute Cloud (EC2) re-
gions. Selective workloads from HiBench [7] are used as
benchmarks to evaluate both the job-level and the stage-level
performances.

The highlights of our evaluation results are as follows:
1) Our implementation speeds up workloads from the

HiBench benchmark suite, reducing the average job
completion time by 14% ∼ 73%.

2) The performances are more predictive and stable,
despite the bandwidth jitters on inter-datacenter links.

3) The volume of cross-datacenter traffic can be reduced
by about 16% ∼ 90%.

A. Cluster Configurations

Amazon EC2 is one of the most popular cloud service
providers today. It provides computing resources that are
hosted in their datacenters around the globe. Since EC2 is
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Figure 6: The geographical location and the number of instances in our
Spark cluster. Instances in 6 different Amazon EC2 regions are employed.
Each region has 4 instances running, except N. Virginia where two extra
special nodes deployed.

a production environment for a great number of big data
analytic applications, we decide to run our experimental
evaluation by leasing instances across regions.

Cluster Resources. We set up a Spark cluster with 26
nodes in total, spanning 6 different geographically dis-
tributed regions on different continents, as is shown in
Fig. 6. Four worker nodes are leased in each datacenter. The
Spark master node and the HaDoop File System (HDFS)
NameNode are deployed on 2 dedicated instances in the
N. Virginia region, respectively.

All instances in use are of the type m3.large, which has
2 vCPUs, 7.5 GB of memory, and a 32 GB Solid-State
Drive (SSD) as disk storage. The network performance of
the instances is reported as “moderate”. Our measurement
shows that there is approximately 1 Gbps of bandwidth
capacity between a pair of instances within a region. How-
ever, the cross-region network capacity varies over time.
Our preliminary investigation is consistent with previous
empirical studies [8], [11]. The available bandwidth of inter-
datacenter links fluctuates greatly. Some links can have as
low as 80 Mbps of capacity, while other links may have up
to 300 Mbps bandwidth.

Software Settings. The instances in our cluster are run-
ning a Linux Operating System, Ubuntu 14.04 LTS 64-bit
(HVM). To set up a distributed file system, we use HDFS
from Apache Hadoop 2.6.4. Our implementation is devel-
oped based on Apache Spark 1.6.1, built with Java 1.8 and
Scala 2.11.8. Spark cluster is started in the standalone mode,
without the intervention of external resource managers. This
way, we leave the Spark’s internal data locality mechanism
to make the task placement decisions in a coarse-grained
and greedy manner.

Workload Specifications. Within the cluster, we run
five selected workloads of the HiBench benchmark suite,
WordCount, Sort, TeraSort, PageRank, and NaiveBayes.
These workloads are good candidates for testing the effi-
ciency of the data analytic frameworks, with an increasing
complexity. Among the workloads, WordCount is the sim-
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Figure 7: The average job completion time under different HiBench
workload. For each workload, we present a 10% trimmed mean over 10
runs, with an error bar representing the interquartile range as well as the
median value.

plest, involving one shuffle only. PageRank and NaiveBayes
are relatively more complex and require several iterations at
runtime, with multiple consecutive shuffles. They are two
representative workloads of the machine learning algorithms.
The workloads are configured to run at “large scale,” which
is one of the default options in HiBench. The specifications
of their settings are listed in Table I. The maximum paral-
lelism of both map and reduce is set to 8, as there are 8
cores available within each datacenter.

Baselines. We use two naive solutions, referred as “Spark”
and “Centralized”, in wide-area data analytics as the base-
lines to compare with our proposed shuffle mechanism.
“Spark” represents the deployment of Spark across geo-
distributed datacenters, without any optimization in terms of
the wide-area network. The job execution will be completely
blind about the network bottleneck. The “Centralized”
scheme refers to the naive and greedy solution in which
all raw data is sent to a single datacenter before being
processed. After all data is centralized within a cluster, Spark
works within a datacenter to process data.

As a comparison, the Spark patched with our proposed
shuffle mechanism is referred to as “AggShuffle” in the
remainder of this section, meaning the shuffle input is
aggregated in a single datacenter. Note that we do not use
implicitly embedded transferTo() transformation. Only
are the implicit transformations involved in the experiments,
leaving the benchmark source code unchanged.

B. Job Completion Time

The completion time of a data analytic job is the primary
performance metric. Here, we report the measurement results
from HiBench, which records the duration of running each
workload. With 10 iterative runs on the 5 different work-
loads, the mean and the distribution of completion times
are depicted in Fig. 7. Note that running Spark applications
across EC2 regions is prone to the unpredictable network
performances, as the available bandwidth and network la-
tency fluctuates dramatically over time. As a result, running

the same workload with the same execution plan at different
times may result in distinct performances. To eliminate the
incurred randomness as much as possible, we introduce the
following statistical methods to process the data.

Trimmed average of the job completion time. The bars
in Fig. 7 reports the 10% trimmed mean value of job
completion time measurements over 10 runs. In particular,
the maximum and the minimum values are invalidated before
we compute the average. This methodology, in a sense,
eliminates the impact of its long-tail distribution on the
mean.

According to Fig. 7, AggShuffle offers the best perfor-
mances in all three schemes in evaluation. For example,
AggShuffle shows as much as 73% and 63% reduction in
job completion time, as compared to Spark and Centralized,
respectively. Under other workloads, using Spark as the
baseline, our mechanism achieves at least 15% performance
gain in terms of job durations.

As compared to the Centralized mechanism, we can easily
find that AggShuffle is still beneficial, except TeraSort.
Under the TeraSort workload, the average job completion
time in Centralized is only 4% higher, which is a minor
improvement in practice. The reason is hidden behind the
TeraSort algorithm. In the HiBench implementations, there
is a map transformation before all shuffles, which actually
bloats the input data size. In other words, the input of
the first shuffle is even larger in size as compared to the
raw input. Consequently, extra data will be transferred to
the destination datacenter, incurring unnecessary overhead.
Looking ahead, the analysis is supported by the cross-
datacenter traffic measurement shown in Fig. 8. TeraSort
turns out to be a perfect example to show the necessity of de-
velopers’ interventions. Only can the application developers
tell the increase of data size beforehand. This problem can be
resolved by explicitly calling transferTo() before the map,
and we can expect further improvement from AggShuffle.

Interquartile range and the median of the job comple-
tion time. In addition to the average job completion time, we
think the distribution of durations of the same job matters in
wide-area data analytics. To provide further the distribution
information in Fig. 7, according to our measurements over
10 iterative runs. To this end, we add the interquartile range
and the median into the figure as error bars. The interquartile
range shows the range from the 25-th percentile and the 75-
th percentile in distribution. Also, the median value is shown
as a dot in the middle of an error bar.

Fig. 7 clearly shows that AggShuffle outperforms both
other schemes in terms of minimizing the variance. In other
words, it can provide wide-area data analytic applications
with more stable performances, making it more predictive.
It is an important feature, as is suggested in the experimental
results, even running in the same environment settings, the
completion time of a wide-area analytic job varies signifi-
cantly over time. We argue the ability to limit the variance
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Figure 8: Total volume of cross-datacenter traffic under different workloads.

of data analytics frameworks is a performance metric that
has been overlooked in the literature.

The reason of AggShuffle’s stability is two-fold. On the
one hand, the major source of performance fluctuation is the
network performance. As the wide-area links interconnect-
ing datacenters, unlike the datacenter network, are highly
unstable with no performance guarantees. Flash congestion
and temporarily connections lost are common, whose impact
will be magnified in the job completion times. On the other
hand, since AggShuffle initiates early data transfers without
waiting for the reducers to start. This way, concurrent bulk
traffic on bottleneck links will be smoothed over time, with
less link sharing and a better chance for data transfer to
complete quickly.

As for TeraSort, rather than offering help, our proposed
aggregation of shuffle input actually burdens the cross-
datacenter network. Again, it can be resolved by explicitly
invoking transferTo() for optimality.

C. Cross-Region Traffic

The volume of cross-datacenter traffic incurred by wide-
area analytic applications is another effective metric for
evaluation. During our experiments on EC2, we tracked
the cross-datacenter traffic among Spark worker nodes. The
average of our measurement is shown in Fig. 8. Note in this
figure, the “Centralized” scheme indicates the cross-region
traffic to aggregate all data into the centralized datacenter.

Except for TeraSort, whose transferTo() is automat-
ically called on a bloated dataset, all other workloads in
the evaluation can enjoy much less bandwidth usage in
AggShuffle. As shuffle input is proactively aggregated in
early stages and all further computation is likely to be
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Figure 9: Stage execution time breakdown under each workload. In the
graph, each segment in the stacked bars represents the life span of a stage.

scheduled within one datacenter, cross-datacenter traffic will
be reduced significantly on average. In particular, it is worth
noting that under the PageRank workload, the required cross-
datacenter traffic can be reduced by 91.3%, which is pretty
impressive.

Fig. 8 shows that the “Centralized” scheme requires the
least cross-datacenter traffic in TeraSort among the three. It
is consistent with the conclusion in our previous discussions.

D. Stage Execution Time

In Fig. 9, we breakdown the execution of different work-
loads by putting them under the microscope. Specifically,
we show the detailed average stage completion time in our
evaluation. Particularly, the length of stacked bars represents
the trimmed average execution time for each stage under spe-
cific workloads. Again, the error bars read the interquartile
regions and median values.

Inferred from the large variances, any stages in Spark
may suffer from degraded performances, most likely due to
poor data locality. As a comparison, the Collective strategy
usually performs well in late stages, while has the longest
average completion time in early stages. It is supposed to be
the result of collecting all raw data in early stages. However,



AggShuffle can finish both early and late stages quickly.
Similar to the Collective scheme, it offers an exceptionally
low variance in the completion time of late stages.

Although different stages under different workloads have
specific features and patterns, we are still able to provide
some useful insights. The “magic” behind AggShuffle is
that it proactively improves the data locality during shuffle
phases, without the need to transfer excessive data. Then,
as shuffle input is aggregated in a smaller number of
datacenters, the achievable data locality is high enough to
guarantee a better performance.

Note that in Fig. 9, the total completion time of all
stages is not necessarily equivalent to the job completion
time presented in Fig. 7. First of all, though being stacked
together in Fig. 9, some of the stages may overlap with
each other at runtime. The summation does not directly
contribute to the total job completion time. Second, stage
completion time is measured and reported by Spark, while
the measurement of job completion time is implemented
by HiBench, with different concepts. Third, the cross-stage
delays such as scheduling and queuing are not covered by
the stage completion time measurements.

VI. RELATED WORK

Wide-area Data Analytics. Running analytic jobs whose
input data originates from multiple geographically dis-
tributed datacenters is commonly known as wide area data
analytics in the research literature. Recent work on wide
area data analytics focuses mostly on task placement.

Geode [4], WANalytics [5] and Pixida [3] propose task
assignment strategies aiming at reducing the total volume
of traffic among datacenters. Iridium [6], on the other hand,
argues that less cross-datacenter traffic does not necessarily
result in shorter job completion time, which is a better metric
for analytic job performance. Thus, they propose an online
heuristic to make joint decisions on both input data and task
placement across datacenters. Our work, as is mentioned in
previous sections (Sec. III-C), is complementary to these
proposals on task placement. We focus on the placement of
shuffle input, the intermediate data, to help task placement
algorithms achieve even better performances.

Heintz et al. [12] propose an algorithm to produce an
entire job execution plan, including both data and task place-
ment, for geo-distributed MapReduce. However, their model
requires too much prior knowledge such as intermediate data
sizes, which makes it far from practical. Other existing work
in the literature tries to solve a different problem in wide-
area data analytics, which is beyond the scope of this paper.
For example, Hung et al. [13] propose a greedy scheduling
heuristic to schedule multiple concurrent analytic jobs, with
an objective of reducing the average job completion time.
Instead of caring about the cross-job performance, we aim
to optimize the execution of a single job. There is work on
wide-area streaming analytics [14], [15] and SQL queries

[16] in the literature, which is a different story from the
batch MapReduce jobs that we are focusing on.

Shuffle Input Placement in MapReduce. When it comes
to running MapReduce jobs within a datacenter, there exist
several proposals on optimizing shuffle input data placement.
iShuffle [17] proposes to shuffle before the reducer tasks
are launched in Hadoop. Shards in the shuffle input are
pushed to the predicted reducers, respectively, during shuffle
write, that is, a “shuffle-on-write” service. However, it is
not practical to predict the reducer placement before hand,
especially in Spark. MapReduce Online [18] also proposes a
push-based shuffle mechanism, in order to optimize the per-
formance under continuous queries. Unfortunately, general
analytic jobs that are submitted randomly will not benefit.

VII. CONCLUDING REMARKS

In this paper, we have designed and implemented a new
system framework that optimizes network transfers in the
shuffle stages of wide-area data analytic jobs. The gist
of our new framework lies in the design philosophy that
the output data from mapper tasks should be proactively
aggregated to a subset of datacenters, rather than passively
fetched as they are needed by reducer tasks in the shuffle
stage. The upshot of such proactive aggregation is that data
transfers can be pipelined and started as soon as computation
finishes, and do not need to be repeated when reducer
tasks fail. The core of our new framework is a simple
transferTo transformation on Spark RDDs, which allows
it to be implicitly embedded by the Spark DAG scheduler,
or explicitly added by application developers. Our extensive
experimental evaluations with the HiBench benchmark suite
on Amazon EC2 have clearly demonstrated the effectiveness
of our new framework, which is complementary to existing
task assignment algorithms in the literature.
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