
Deadline-Aware Scheduling and Routing for
Inter-Datacenter Multicast Transfers

Siqi Ji, Shuhao Liu, Baochun Li
University of Toronto

Abstract—Many applications like geo-replication need to de-
liver multiple copies of data from a single datacenter to multiple
datacenters, which has benefits of improving fault tolerance,
increasing availability and achieving high service quality. These
applications usually require completing multicast transfers before
certain deadlines. Some of the existing works only consider
unicast transfers, which is not appropriate for the multicast
transmission type. An alternative approach proposed by existing
works was to find a minimum weight Steiner tree for each
transfer. Instead of using only one tree for each transfer, we
propose to use one or multiple trees, which increases the flexibility
of routing, improves the utilization of available bandwidth, and
increases the throughput for each transfer. In this paper, we
focus on the multicast transmission type, propose an efficient
and effective solution that maximizes throughput for all transfer
requests while meeting deadlines. We also show that our solution
can reduce packet reordering by selecting very few Steiner
trees for each transfer. We have implemented our solution on
a software-defined overlay network at the application layer,
and our real-world experiments on the Google Cloud Platform
have shown that our system effectively improves the network
throughput performance and has a lower traffic rejection rate
compared to existing related works.

I. INTRODUCTION

Cloud computing provides users and enterprises with a

massive pool of resources to store and process their data.

Since the volume of data grows exponentially, data migration

and processing have become more crucial than ever before. In

order to increase availability and reduce latency for end users,

large cloud service providers have deployed tens (or even

hundreds) of datacenters around the world in a geographically

distributed fashion.

To improve fault tolerance, increase availability and achieve

high service quality, many applications require efficient data

transfers from one datacenter to multiple datacenters, typi-

cally for data replication, database synchronization, and data

backup. For example, search engines need to synchronize

databases regularly for the purpose of achieving a higher

quality of user experience [1]. Blocks of a file in many

distributed file systems like HDFS are replicated for fault

tolerance.

Inter-datacenter transfers can roughly be classified into three

categories based on their delay tolerance: interactive transfers,

elastic transfers and background transfers [2]. Interactive
transfers, like video streams and web requests, are highly

sensitive to loss and delay, so they should be delivered in-

stantly with strictly higher priority. Elastic transfers are delay

tolerant but still require timely delivery (before a deadline).

For example, many applications need to backup data within

a certain time period. Background transfers, such as data

warehousing, do not have explicit deadlines.

Why do we need to consider transfer deadlines? When

multiple inter-datacenter transfers are sharing the same links

in the inter-datacenter network, the total demand for these

transfers typically far exceeds the available network capacity.

On the one hand, some transfers like elastic transfers need to

be completed timely, which can be modeled as deadlines. On

the other hand, cloud providers set deadlines for most transfers

based on their delay tolerance to different customer service

level agreements (SLAs). A survey of WAN customers at

Microsoft [3] shows that most transfers require deadlines and

they would incur penalties if deadlines are missed. Customers

are willing to pay more for guaranteed deadlines. Therefore,

it is an important topic to meet as many transfer deadlines as

possible.

In this paper, we focus on elastic transfers and background

transfers that deliver data from one datacenters to multiple

datacenters. We propose an efficient solution to maximize

the network throughput and consider transfer deadlines at the

same time. The multicast (one-to-many) transfer type is quite

representative, other transmission types like unicast (one-to-

one) and broadcast (one-to-all) can be transformed into it.

Traditional wisdom used Steiner Tree Packing [4], [5] to

maximize the flow rate from a source to multiple destinations,

which is an NP-complete problem. Another approach is to treat

multicast transmission as multiple unicast transfers. Existing

solutions, like B4 [6], SWAN [2] and BwE [7], aimed to

maximize utilization and focused on max-min fairness. Tem-

pus [8] designed a strategy to maximize the minimum fraction

of transfers finished before deadlines. Amoeba [9] guaranteed

deadlines, it introduced a deadline-based network abstraction

for inter-datacenter transfers. DCRoute [1] scheduled each

transfer with a single path to avoid packet reordering and it

also guaranteed transfer deadlines for admitted requests.

Unfortunately, these solutions were not explicitly designed

for multicast transfers, which can actually waste bandwidth

by finding paths from the source to each destination, result in

rejecting more transfer requests with deadline requirements.

DCCast [10] and DDCCast [11] proposed to use minimum

weight Steiner Trees and DDCCast used As Late As Possible

(ALAP) policy for rate allocation. However, DCCast and

DDCCast used one minimum weight Steiner tree for a re-

quest, which reduced the flexibility of choosing routing paths.

Besides, if the bandwidth required by a request with a specific

deadline is higher than the maximum available bandwidth in

124

2018 IEEE International Conference on Cloud Engineering

0-7695-6371-6/18/31.00 ©2018 IEEE
DOI 10.1109/IC2E.2018.00035

the network, the request will be rejected by only choosing one

tree. However, if we can split the traffic at the source and use

multiple trees for delivering data, then the request can meet its

deadline with higher throughput. Moreover, in the admission

control part of DDCCast, a request can be rejected although

it could have been admitted by choosing other forwarding

trees. DDCCast and DDCast did not aim to achieve maximized

throughput.

In this paper, we design a new routing and scheduling

algorithm for multiple multicast data transfers across geo-

distributed datacenters to maximize network throughput, with

the consideration of transfer deadlines. We have implemented

our solution in an application-layer software-defined inter-

datacenter network. We also evaluate the performance of our

solution with real-world experiments in the Google Cloud

Platform. Our contributions are the following:

First, prior works on inter-datacenter traffic engineering [1],

[2], [6]–[9] focused on unicast transfers, which are not effec-

tive for multicast transfers. We propose to use Steiner trees

for each multicast transfer.

Second, prior work on multicast inter-datacenter trans-

fers [10], [11] used one tree for each transfer, which could

reject some transfer requests that have early deadlines. Our

solution has higher flexibility for routing and uses at least one

tree for each transfer. We formulate the problem as a Linear

Program (LP), which can pack multiple multicast transfers

with deadlines efficiently and achieve high throughput. Be-

sides, to reduce packet reordering overhead at the destination,

we add a penalty function in the objective of LP and use a

log-based heuristic [12], [13] to find sparse solutions.

Third, prior work on multicast techniques [14]–[18] used

software-defined networking (SDN) at the network layer.

However, hardware switches in each datacenter can only

support a limited number of forwarding entries. Besides, it

is complicated and costly to solve the flow table scalability

problem at large scales. We have implemented our solution in

an application-layer software-defined network (SDN), which

does not need to modify the underlying network properties

and can scale up to a large number of transfer requests.

Finally, our real-world experimental results over the Google

Cloud Platform have shown that our solution performs higher

throughput and accommodates more transfer requests with

deadlines as compared with the existing related works that

consider deadlines.

The remainder of this paper is organized as follows. In

Sec. II, we discuss our work in the context of related work.

In Sec. III, we present the motivation of our design by using

an example, talk about our design objectives and choices. In

Sec. IV, we present our solution and formulate the routing

problem of multiple multicast inter-datacenter transfers with

the consideration of deadlines. In Sec. V, to show the practica-

bility, we present our real-world implementation of our design.

In Sec. VI, we evaluate its validity and performance in Google

Cloud Platform, and we provide our discussion about future

work in Sec. VII. We conclude the paper in Sec. VIII.

II. RELATED WORKS

A large amount of related works exist in the literature

on datacenter traffic engineering or deadline-aware routing.

Video streaming is one type of multicast transfers, which

needs to deliver video content from a single source to other

users in remote regions. This kind of transfer is highly delay-

sensitive. Celerity [19] packed only depth-1 and depth-2 trees;

Airlift [20] maximized throughput without violating end-to-

end delay constraints by using network coding; and Liu et
al. [21] proposed a delay-optimized routing scheme by only

solving linear programs. However, these works were explicitly

designed for delay-sensitive video streaming. We focus on

elastic and background transfers which are delay-tolerant and

some of them have deadlines.

Some existing works focused on improving performance

for bulk transfers. Laoutaris et al. [22] proposed NetStitcher

which minimized the completion time of bulk transfers by

stitching unutilized bandwidth and employing a store-and-

forward algorithm. They extended their work in [23] by

considering the time-zone difference for delay-tolerant bulk

transfers. Chen et al. [24] considered bulk transfers with

deadlines in grid networks. Store-and-forward is also used

in [25], [26] to complete transfers. Wang et al. [25] aimed

to minimize network congestion of deadline-constrained bulk

transfers. Wu et al. [26] concentrated on a per-chunk routing

scheme. Storing data at the intermediate datacenters will

increase the storage cost and transfer overhead. Owan [27]

jointly optimized bulk transfers in optical and network layers.

These works only considered unicast bulk transfers.

Google B4 [6] and Microsoft SWAN [2] used SDN among

inter-datacenters for traffic engineering to maximize network

throughput. BwE [7] provided work-conserving bandwidth

allocation and focused on max-min fairness. These works did

not consider transfer deadlines. Tempus [8] proposed an online

scheduling scheme to maximize the minimum fraction of inter-

datacenter transfers finished before deadlines. Ameoba [9] and

DCRoute [1] guaranteed deadlines for admitted requests but

they were not explicitly designed for multicast transfers.

DCCast [10] chose minimum weight forwarding trees for

transfers and it focused on multicast transfers. DDCCast [11]

was based on DCCast which took transfer deadlines into

consideration. Our work differs from DDCCast because our

solution chooses multiple trees (and at least one) for each

transfer, which can accommodate more transfer requests than

using exactly one tree and achieve higher throughput.

III. BACKGROUND AND MOTIVATION

Definition of Meeting Deadlines. In this paper, we focus

on multicast inter-datacenter transfers, which need to send

multiple copies of data from a single source to multiple

destinations. For each multicast transfer, we say that a transfer

meets its deadline when all destinations receive the overall data

before a particular time.

Scheduling of Data Transfers. Our solution aims to pack

transfer requests that arrive in a small time interval opti-

mally by taking full advantage of available inter-datacenter

125

Requests Source Destinations Volume (MB) Deadlines
(seconds)

R1 1 3, 4 200 40
R2 4 2, 3 200 40

TABLE I: Request requirements.

1

2

43

5

55

Source

Destination Destination

5

Link 1-2 is
saturated, no
more available
bandwidth for
request2!

5

Request 1
Request 2

(a) Using unicast transfers.

1

2

43

5

55

5

5

Source

Destination Destination

Link 1-2 is
saturated for
request1 and
request2

5

(b) Using Steiner trees.

Fig. 1: A motivation example: (a) Finding paths from the

source to each destination, request R2 will miss its deadline.

(b) Using Steiner trees for transfers, both R1 and R2 can

complete before deadlines.

capacities. If the available bandwidth can not accommodate

all requests, then we reject requests with lower priorities and

repack these requests when there are available capacities. We

do not use the As Late As Possible policy because it may

reduce the network capacity for future requests and achieve

low throughput. We try to take full advantage of available

bandwidth to pack requests at the current scheduling time slot.

Motivation Example. Considering the directed network

shown in Figure 1, all link capacities are 10MB/s. There

are two transfer requests R1 and R2. Table I shows detailed

requirements for request R1 and R2. If we treat each multicast

transfer as multiple unicast transfers, then we can find paths

from the source to each of its destinations independently and

assign rate for each path. Figure 1(a) illustrates this approach.

However, link 1→ 2 becomes saturated for R1, which results

in no more bandwidth for R2 to deliver data from 4 to 2.

Therefore, R2 will miss its deadline. Missing deadlines of

requests will greatly degrade service quality and violate the

application SLAs. Moreover, sometimes it will cause a great

loss.

A better approach is to use Steiner trees for delivering

source data to all destinations. As we can see in Figure 1(b),

using trees to deliver data to destinations can save more

bandwidth. Datacenter 1 sends one copy to datacenter 2; then

datacenter 2 sends two copies to destinations. Request R1 only

takes 5MB/s of link 1 → 2, which leaves another 5MB/s

for request R2. Therefore, both R1 and R2 will meet their

deadlines.

In this paper, we propose to use Steiner trees for multiple

multicast transfers. Traditional wisdom applies Steiner tree
packing but it is an NP-hard problem. We formulate the

problem as a Linear Program (LP) and use a log-based

heuristic to find sparse solutions.

Notation Intrepretation
T i The set of feasible Steiner trees for request i.
Si Source datacenter of request i.
Ri Destination datacenters of request i.
Qi Data volume in bytes of request i.
Di Deadline requirement of request i.
ai Priority of request i.

G = (V,E,C) G denotes the inter-datacenter network graph, V and E
are the set of vertices (datacenters) and edges (links)
respectively. For each e ∈ E, C(e) represents the
available bandwidth capacity.

TABLE II: Mathematical notations used in this paper.

IV. DEADLINE-AWARE ROUTING AND SCHEDULING

In an inter-datacenter network, given a number of transfer

requests arriving within a small time interval, the key idea of

our design is to determine the sending rate of each request

on each Steiner tree by solving a routing problem. We aim to

maximize the throughput for all requests, subject to deadline

constraints. Moreover, we try to use few Steiner trees for each

request in order to reduce the data splitting overhead at the

source and packet reordering at destinations. Table II presents

notations we used in this paper and their definitions.

A. Finding Feasible Steiner Trees

Network. We model the inter-datacenter network as a

directed graph G = (V,E,C). Link capacity is assumed to

be stable in one time period. C(e) denotes the available link

capacity, which is the maximum packet sending rate on edge

e ∈ E.

We use depth-first search (DFS) to find a set of feasible

Steiner trees for each request. Nodes in trees that are pure

relays are called Steiner nodes. A Steiner tree is a distribution

tree that connects the sender with receivers, possibly through

Steiner nodes. DFS starts at the source node, then explores

as far as possible until it finds destinations, otherwise it will

go backward on the same path to find nodes to traverse. It

will not end until it finds all destinations. The set of feasible

Steiner trees is denoted by T i:

T i = {t |t is a Steiner tree (or multicast tree) from Si to Ri}.
When the number of datacenters and destinations increases,

the number of possible Steiner trees found by DFS will be very

large. In order to reduce the complexity of our solution, we

add some constraints for finding feasible trees. We classify the

Steiner trees into two types: only one path contains all destina-

tions and other trees. Using one path includes all destinations

can save bandwidth efficiently for multicast transfers, so we

keep this kind of paths in the process of DFS. For other trees,

we limit the maximum hop number to be 2, which significantly

reduces the number of possible Steiner trees with negligible

performance loss.

B. Linear Program Formulation

Request Completion Time. The completion time of a

request is measured from the moment the source starts to

send data, to the time all the data have been received by all

126

destinations. It includes the propagation delay, queueing delay

and transmission delay. Propagation delay and queueing delay

are in the order of milliseconds; since delay-tolerant transfers

are always large transfers, these delays are negligible. We only

consider transmission delay when we calculate the transfer

completion time.

A transfer request i can be specified as a tuple

{Si,Ri,Qi,Di, ai}. Large ai represents a high priority. Our

objective is to maximize the network throughput for all trans-

fers and meet transfer deadlines as many as we can. Some

transfers may not have deadlines, so we use very large value

of deadlines for these transfers. We formulate the problem as

the following linear program:

maximize χ (1)

subject to χ ≤
∑
t∈T i

xi (t) , ∀i = 1, ..., n, (2)

n∑
i=1

∑
t∈T i

xi (t)φ (t, e) ≤ C (e), ∀e ∈ E, (3)

Di
∑
t∈T i

xi (t) ≥ Qi, ∀i = 1, ..., n, (4)

xi (t) ≥ 0, χ ≥ 0, ∀t ∈ T i, ∀i = 1, ..., n. (5)

where φ is defined as:

φ (t, e) =

{
1, if e ∈ t,

0, otherwise.

The linear program we formulate above can be solved by a

standard LP solver efficiently. The objective of the problem is

to maximize throughput for all requests, which is the sum of

flow rates in all selected Steiner trees. xi (t) represents the flow

rate for a Steiner tree t. Since flow rates of different requests

contend for edge capacities, for each edge e, the summation

of trees’ flow rates that use edge e should not exceed the

edge capacity. This is reflected in constraint (3). Constraint (4)

ensures that all transfers will complete prior to deadlines. The

flow rate xi (t) and throughput objective χ are guaranteed to

be non-negative in constraint (5).

Post-Processing. However, it is possible that meeting all

transfer deadlines will exceed link capacities, so the linear

program may not have feasible solutions. When the linear

program does not have feasible solutions, our approach is to

reject the transfer which has the lowest priority. If there are

multiple requests with the same priority, then we remove the

request that needs the largest bandwidth.

C. Choose Sparse Solutions

The linear program we just formulated above has a col-

lection of feasible solutions. Since we use multiple Steiner

trees to deliver source data to destinations for each request,

then it is inevitable to split data at the source, which will add

splitting overhead. Besides, using multiple trees will also add

packet reordering overhead at destinations. In order to reduce

such overhead, we prefer to use few trees for distributing data,

which needs us to choose sparse solutions from the feasible

solutions. Therefore, we can add a penalty function at the

objective:

maximize χ− μ

n∑
i=1

∑
t∈T i

g
(
xi (t)

)
, (6)

subject to the same constraints (2)−(5). And g
(
xi (t)

)
is

defined as:

g
(
xi (t)

)
=

{
0, if xi (t) = 0,

1, if xi (t) > 0.

Problem (6) is different from Problem (1) because we

changed the objective function. In order to get the optimal

throughput and use fewer trees, μ should not be too large

or too small. If μ is too large, the solution can be far from

optimality; if it is too small, many trees may be selected. In

our experimental settings, we let μ = 0.01 and Problem (6)

returns almost the same throughput value as Problem (1), the

error is smaller than 10−8, which can be ignored. We will

show this in our forthcoming experimental results.

Problem (6) is a non-convex optimization problem. A log-

based heuristic is widely used for finding a sparse solution, the

basic idea is to replace g
(
xi (t)

)
by log

(|xi (t) |+ δ
)
, where

δ is a small positive threshold value that determines what is

close to zero. Since the problem is still not convex, we can

linearize the penalty function which is inspired by [13] by

using a weighted l1-norm heuristic:

maximize χ− μ
n∑

i=1

∑
t∈T i

(
W i (t) · xi (t)

)
, (7)

subject to the same constraints (2)−(5). In each iteration we

recalculate the weight function W i where:

W i (t) =
1

(xi (t))
k
+ δ

.

Then Problem (6) becomes a linear problem, and it is solved

iteratively.
(
xi (t)

)k
is obtained from the kth iteration, δ is

a small positive constant. We can see that if
(
xi (t)

)k
is

smaller, then the weight function W i becomes larger, xi (t)

will be smaller. Upon convergence,
(
xi (t)

)k ≈ (
xi (t)

)k+1
=(

xi (t)
)∗
, for i = 1, ..., n, t ∈ Ti, then:

W i (t) · (xi (t)
)∗

=

(
xi (t)

)∗
(xi (t))

k
+ δ

=

{
0, if

(
xi (t)

)∗
= 0,

1, if
(
xi (t)

)∗
> 0.

Eventually, the transformed Problem (7) approaches the

Problem (6) and yields sparse solutions. Algorithm 1 presents

a summary of our solution.

D. Proof of Convergence

In this section, we provide a brief proof of convergence for

the Problem (7), which is:

127

Algorithm 1 Deadline-aware routing for multiple multicast

transfers.

1: Input: Transfer requests: {Si,Ri,Qi,Di, ai}; Network

Topology G = (V,E,C).

2: k := 0. Initialize δ = 10−8,
(
W i (t)

)0
= 1,

sparse flag = False.

3: update k = k + 1.

4: If sparse flag == False, given the solution
(
xi (t)

)k
from

the previous iteration, get W i (t) = 1
(xi(t))k+δ

, solve

the linear program (7) to obtain flow rates
(
xi (t)

)k+1
,

throughput optimal value χk+1 and status.

5: If status == infeasible, remove the request with the lowest

priority. Solve the linear program (7) with updated inputs

to obtain
(
xi (t)

)k+1
, χk+1 and status.

6: If status == optimal: if
(
xi (t)

)k+1 ≈ (
xi (t)

)k
, return(

xi (t)
)∗ ≈ (

xi (t)
)k+1

; else go to Step 3 for another

iteration. If status == infeasible, go to Step 5.

7: Output: {xi (t)} and corresponding Steiner trees{
t|t ∈ T i

}
.

Proposition 1.

maximize χ− μ
n∑

i=1

∑
t∈T i

xi (t)

(xi (t))
k
+ δ

(8)

subject to x = (x1 (t) , . . . , xn (t)) ∈ C, ∀t ∈ T i, (9)

with δ> 0 and xi (t) ≥ 0, for i = 1, ..., n, where C ⊂ R
n is

a convex, compact set. When k →∞, we have
(
xi (t)

)k+1 −(
xi (t)

)k → 0, for all i, t ∈ T i.

Proof. Let Ni denotes the number of Steiner trees for request

i. Since Problem (8) yield
(
xi (t)

)k+1
, and our objective is to

minimize
n∑

i=1

∑
t∈T i

xi(t)

(xi(t))k+δ
, thus we have that:

n∑
i=1

∑
t∈T i

(
xi (t)

)k+1
+ δ

(xi (t))
k
+ δ

≤
n∑

i=1

∑
t∈T i

(
xi (t)

)k
+ δ

(xi (t))
k
+ δ

=
n∑

i=1

Ni.

(10)

Using the inequality between the arithmetic and geometric

means, we have:⎛
⎜⎜⎝ 1

n∑
i=1

Ni

⎞
⎟⎟⎠

n∑
i=1

∑
t∈T i

(
xi (t)

)k+1
+ δ

(xi (t))
k
+ δ

≥

n∏
i=1

∏
t∈T i

((
xi (t)

)k+1
+ δ

(xi (t))
k
+ δ

) 1
n∑

i=1
Ni

.

(11)

If we combine Equation (10) and (11) together, we will get:

n∏
i=1

∏
t∈T i

((
xi (t)

)k+1
+ δ

(xi (t))
k
+ δ

) 1
n∑

i=1
Ni ≤ 1. (12)

We let

A
((

xi (t)
)k)

=
((

xi (t)
)k

+ δ
) 1

n∑

i=1
Ni

. (13)

Since
(
xi (t)

)k ≥ 0 and δ > 0, thus A
((

xi (t)
)k)

is

bounded below by δ

1
n∑

i=1
Ni

, then A
((

xi (t)
)k)

will converge

to a nonzero limit as k →∞, which implies that

lim
k→∞

n∏
i=1

∏
t∈T i

((
xi (t)

)k+1
+ δ

(xi (t))
k
+ δ

) 1
n∑

i=1
Ni

= 1. (14)

Now, we combine Equation (14) with Equation (10) and (11),

as k →∞, we have:

n∑
i=1

Ni ≤
n∑

i=1

∑
t∈T i

(
xi (t)

)k+1
+ δ

(xi (t))
k
+ δ

≤
n∑

i=1

Ni, (15)

which equals to:

lim
k→∞

n∑
i=1

∑
t∈T i

(
xi (t)

)k+1
+ δ

(xi (t))
k
+ δ

=
n∑

i=1

Ni. (16)

Therefore, we have
(xi(t))

k+1
+δ

(xi(t))k+δ
= 1 when k → ∞, which

means that
(
xi (t)

)k+1 ≈ (
xi (t)

)k
. Convergence proved.

E. An Example of the Optimal Solution

An example using the inter-datacenter network is shown

in Figure 2. To simplify the example, we assume all link

capacities are 15MB/s. Considering there are two requests

R1 and R2. R1 needs to send source data from datacenter

2 to datacenter 1 and 4; R2 needs to send source data from

datacenter 5 to datacenter 1 and 3. Table III gives detailed

requirements of these two requests. We use this example to

explain the benefit of our linear programming formulation.

Our linear program tries to maximize throughput and meet

deadlines for all requests, Figure 2 shows the optimal solution

obtained by solving the linear program in Sec. IV-C. Our

solution will split the source data at the sender based on the

flow rate allocated to each tree, and send the data through

different trees. We can see that both requests can meet their

deadlines, R2 can even finish the transfer before its deadline

since the linear program aims at maximizing throughput.

If we treat each multicast transfer as multiple unicast

transfers, R1 will miss its deadline, and this approach wastes

a lot of bandwidth. DDCCast [11] finds only one minimum

weight Steiner tree for each request. In our example, the largest

capacity for one tree is only 15MB/s, if we use only one tree

to distribute data, the shortest time to finish the transfer will be

20s, which still makes both R1 and R2 miss their deadlines.

Using multiple trees increases throughput for a transfer, which

can make more transfers meet deadlines.

128

1

54

32

Steiner Trees for Request 1
Steiner Trees for Request 2

Request 1 Request 2

2 1 4

2 5
4

1

15

12.06

10.44

Trees TreesRate Rate

5 1 3 4.56

15

5 4
1

3
2.94

2 4 1 5 3 1

Fig. 2: An example of the optimal solution obtained by solving

the linear program in Sec. IV-C for maximizing the total

throughput of all requests.

Requests Source Destinations Volume (MB) Deadline (sec-
onds)

R1 2 1, 4 300 8
R2 5 1, 3 300 18

TABLE III: Request requirements for the example.

V. IMPLEMENTATION

We have completed a real-world implementation in a

software-defined overlay network testbed at the application

layer. Different from the traditional SDN techniques, our

application-layer SDN does not need to cope with the com-

plicated lower layer properties and management. Besides,

our application-layer solution has higher switching capacities,

which can support more forwarding rules at the datapath node

and scale well to a large number of transfer requests.

Figure 3 shows the high-level architecture of our

application-layer solution. After we start the testbed, the

controller and datapath nodes will establish persistent TCP

connections between each other; we use iperf to measure

bandwidth availability between each node and send it to the

controller, which is an important input for making routing

decisions. We employ a local aggregator at each datapath

node; this aggregator helps to aggregate and schedule inter-

datacenter flows. In our experiments, we use six Virtual

Machines (VM) instances located in six different datacenters,

and one of the VMs is also launched as the central controller.

aggregator

Datapath node 1

aggregator

Datapath node 1

aggregator

Datapath node 1

Controller
Making routing decisions

Data Data Data

Fig. 3: Architecture of the application-layer SDN design.

Now we will explain how an inter-datacenter transfer is

routed and completed through the application-layer SDN

testbed. After a transfer request is submitted, the relative

destination nodes will firstly subscribe to a specific channel by

using a subscriber API implemented in Java, then the source

node publishes its data, destinations, deadline requirement and

priority information to the channel by using a publisher API.

Source data will be aggregated at the local aggregator, then

the aggregator consults the controller for routing rules. In

the controller, our routing algorithm implemented in Python

will compute routing rules by using bandwidth input and

the request’s information. Two types of routing rules will

be published to each datapath node: one is {‘NodeID’: xx,
‘NextHop’:xx, ‘SessionId’: xx} which indicates the next-hop

datacenter for the current datapath node; another is {‘NodeId’:
xx, ‘Weight’: xx, ‘SessionId’: xx}, the value of ‘Weight’
indicates the sending rate of the datapath node. After the

aggregator gets routing rules, if we need to use multiple trees

for sending data, then source data will be split at the source

node. When data arrive at the aggregator of another node, the

aggregator will check the rule. If ‘NextHop’ is the node itself,

then data will be delivered successfully and written back to

the disk. If ‘NextHop’ has a different node, then data will be

relayed by the aggregator to another node.

In our experiments, we generate some transfer requests in a

small time interval and try to send all of them before deadlines

by using our routing algorithm. When a request is rejected,

the controller will make a new routing decision after there

are available capacities and send the decision to all datapath

nodes.

VI. PERFORMANCE EVALUATION

We are now ready to evaluate the performance of our

real-world implementation. In this section, we present our

experimental settings and evaluation results. To make our

evaluation more convincing, a large-scale simulation-based

comparison will also be presented.

A. Experimental Setup

We have deployed our real-world implementation with

the linear program routing algorithm on the Google Cloud

Platform with six datacenters located geographically. In each

129

US West
(Oregon)

US Central
(IOWA)

US East
(North Virginia)

Europe West
(London)

Asia East
(Taiwan)

Asia Northeast
(Taiwan)

Fig. 4: The six Google Cloud datacenters used in our deploy-

ment and experiments.

datacenter, we launch one Virtual Machine (VM). Locations

of these datacenters are shown in Figure 4.

In our deployment, we use all VM instances located in

different datacenters as datapath nodes, and VM instance in

IOWA (US-central1-a) has been used as the controller of our

application-layer testbed. All VM instances are of type n1-

standard-4, each has 4 vCPUs, 15GB memory and 10GB

Solid-State Drive. In each VM instance, we run Ubuntu 14.04

LTS system. In our experiment, we aim at showing the benefit

of using multiple Steiner trees for transfers, so we use the

Linux Traffic Control (TC) to make sure that each inter-

datacenter link has uniform 120Mbps bandwidth.

We use the Linux command truncate to generate input

files with a fixed size for each request. In our experiment, when

a request is submitted, destinations of requests will first launch

the Java API subscriber() to subscribe the request. After

that, the VM instance with source data will launch the Java

API publisher() to read blocks of the file, each block is

4MB, and publish blocks of data to the aggregator.

B. Evaluation Methodology

Workload. We use file replication as inter-datacenter traffic.

For each transfer, we generate the source from six datacenters

randomly and increase the number of destinations from 1 to 5.

The volume of each file is set to be 300MB. For the deadline-

constrained transfers, we choose deadlines from a uniform

distribution between [T, αT] as OWAN [27], α represents the

tightness of deadlines. When α is small, then transfers have

very close deadlines. And T is the most urgent deadline of all

requests, which is related to the volume of transfer data and the

number of transfers. The priority value is generated randomly

for each transfer. We run our experiments in multiple time

slots, at each time slot, six transfer requests will be generated

at the beginning of the slot within a small time interval.

Performance Metrics. We measure two metrics: the inter-

datacenter throughput and the percentage of requests that meet

deadlines. The inter-datacenter throughput is obtained as the

total size of all files transferred divided by the total transfer

time to finish requests, the unit is Mbps.

We compare our solution with two solutions DDCCast [11]

and Amoeba [9]. DDCCast finds only one tree for each

request and schedules requests as late as possible. To maximize

Fig. 5: Completion time deviation.

utilization at the current time slot, it pulls some traffic to the

current slot and pushes forward other traffic close to deadlines.

Since DDCCast only uses one tree for each request, so it can

not accommodate some requests with early deadlines. Amoeba

considers unicast transfers; it finds k-shortest paths for each

source and destination pair.

C. Real-World Evaluation Results

Sparse Solution Performance. To show that our sparse

solution does not affect the optimality, we compare the sparse

solution with the original linear program without penalty in

Table IV. From the table, we can see that the sparse routing

approach has the same optimal value as the original linear

program, and it uses much fewer trees than the original linear

program.

Completion Time Deviation. We run the experiment in

10 time slots and get the completion time for each transfer

request. The completion time is the time from destinations

subscribe requests to all destinations receive the source data. In

order to show our solution performs effectively in scheduling

requests with deadline constraints, we plot the CDF figure of

the difference between the actual completion time and sched-

uled completion time in Figure 5. From the figure, we observe

that 80% of requests finished before the scheduled time, the

possible reason is that we use TC to set the largest bandwidth

as 120Mbps, in our routing decision, we use the same value.

However, it is possible that sometimes the bandwidth used by

flows can not reach 120Mbps. So we set the link bandwidth

a little larger than 120Mbps in later experiments, which is

130Mbps.

Early Deadline Requests and Tightness Deadline Factor:
Some requests may have early deadlines, our solution has

better performance for these requests. When the bandwidth

required by a request is more than each link capacity in the

network, one routing tree is not enough for the request to

meet its deadline. We generate the value of deadlines from a

uniform distribution [T, αT]. In order to show the benefit of

our solution for requests with early deadlines, we let T = 10s
and increase α from 1.2 to 4 to see the effect of the tightness

factor.

Figure 6 presents the comparison of different solutions, and

the number of destinations is 2. The x-axis is the tightness

130

Requests 1 2 3 4 5 6 7 8 9 10 Optimal Value
Workload 1 2/15 5/15 2/18 2/15 2/15 3/6 1/18 3/15 1/15 5/15 5.558/5.558
Workload 2 3/18 2/18 2/18 2/11 1/11 2/18 1/11 3/18 1/11 2/18 7.901/7.901

TABLE IV: Comparison of the sparse routing approach and original linear program, the left side represents the number of

trees for sparse solution, the right side represents the number of trees for original linear program.

α=1.2 α=2 α=3 α=4

The tightness factor α

0.0

0.2

0.4

0.6

0.8

1.0

%
o
f
re
q
u
e
s
ts

th
a
t
m
e
e
t
d
e
a
d
li
n
e
s

Our solution

DDCCast

Amoeba

Fig. 6: Comparison of different solutions for different tightness

factor.

factor α; the y-axis represents the percentage of requests that

meet deadlines. We can see that when the deadline ranges

from 10s to 20s, DDCCast can not accommodate such request

because the largest capacity for one tree is 120Mbps. As α
increases, more requests can meet their deadlines because the

range of deadlines becomes larger. Amoeba achieves lower

percentage of requests that meet their deadlines since the

unicast way uses more bandwidth for each transfer than our

solution. DDCCast performs worse than Amoeba because it

can not accommodate transfers that have deadlines earlier than

20s. The comparison result shows that our solution admits

more early deadline requests than DDCCast and Amoeba.

Effect of the Number of Destinations. We increase the

number of destinations from 1 to 5, and we set α = 2,

T = 20s. Figure 7 shows the percentage of requests that

meet their deadlines as the number of destinations increases.

As a consequence, our solution admits more requests than

the other two solutions since our solution can highly utilize

bandwidth by using multiple multicast trees for each transfer

request. When the number of destinations increases, Amoeba

does not have enough bandwidth to allocate for all source

and destination pairs; DDCCast finds a minimum weight

tree for each transfer request, which has less flexibility in

routing, some requests may not have enough bandwidth to

be scheduled.

Throughput. To demonstrate the throughput improvement

of our solution, we plot the throughput performance in Fig-

ure 8. The average throughput is calculated as the total file size

of all requests that meet their deadlines divided by the total

transfer time. We only consider the throughput for requests

that meet deadlines. Our solution has the maximum utilization

1 2 3 4 5

The number of destinations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

%
o
f
re
q
u
e
s
ts

th
a
t
m
e
e
t
d
e
a
d
li
n
e
s

Our solution DDCCast Amoeba

Fig. 7: Comparison of different solutions as the number of

destinations increases.

1 2 3 4 5

The number of destinations

0

200

400

600

800

1000

1200

1400

T
h
e
a
v
e
ra
g
e
th
ro
u
g
p
u
t/
M
b
p
s

Our solution

DDCCast

Amoeba

Fig. 8: Throughput comparison of different solutions.

of network bandwidth and admits more transfers than the

other two solutions, so the throughput is also the highest.

We can see that, when the number of destinations is 1 or 2,

Amoeba has higher throughput than DDCCast. The possible

reason is DDCCast always tries to push some transfers close

to deadlines, which can make the transfer time longer than

Amoeba.

D. Simulation-Based Comparison

We further present our comparison over large-scale simula-

tions. In each scenario, we repeated 20 times and the average

was measured and plotted in the figure. Figure 9 gives the

comparison of different solutions as the number of destinations

increases when the tightness factor is fixed. 20 requests

are generated in each run. In Figure 10, the comparison is

131

1 2 3 4 5

The number of destinations

0.2

0.4

0.6

0.8

1.0
%

o
f
re
q
u
e
s
ts

th
a
t
m
e
e
t
d
e
a
d
li
n
e
s

Our solution

Amoeba

DDCCast

(a)

1 2 3 4 5

The number of destinations

0.4

0.5

0.6

0.7

0.8

0.9

1.0

%
o
f
re
q
u
e
s
ts

th
a
t
m
e
e
t
d
e
a
d
li
n
e
s

Our solution

Amoeba

DDCCast

(b)

1 2 3 4 5

The number of destinations

0.5

0.6

0.7

0.8

0.9

1.0

%
o
f
re
q
u
e
s
ts

th
a
t
m
e
e
t
d
e
a
d
li
n
e
s

Our solution

Amoeba

DDCCast

(c)

Fig. 9: Comparison of different solutions as the number of destinations increases when the tightness factor : (a) α = 1. (b)

α = 2. (c) α = 3.

1 2 3 4 5

The tightness factor α

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

%
o
f
re
q
u
e
s
ts

th
a
t
m
e
e
t
d
e
a
d
li
n
e
s

Our solution

Amoeba

DDCCast

Fig. 10: Comparison of different solutions as the tightness

factor increases.

presented when the tightness factor increases. 40 requests are

generated in each run and the number of destinations is set to

be 3. Clearly, our solution outperforms DDCCast and Amoeba,

admits more requests than the other two solutions, which is

consistent with the real-world experiment.

We also check the benefits of our solution when the number

of requests increases. Figure 11 shows the result. When

there are 20 requests, our solution admits 3% more requests

than DDCCast and Amoeba. When the number of requests

increases to 80, our solution admits 10%-12% more requests

than the other two baselines. It is obvious that our solution

has a greater ability to accommodate more requests than other

approaches.

Scalability. To show the scalability of our linear program

with sparse solutions, we record the running time of the

LP with different number of requests, which is shown in

Figure 12. Our algorithm packs these requests at the same

time. The running time is the average time of multiple runs.

When the number of requests is 80, the running time is less

than 4s, which is acceptable when compared with the transfer

time of requests since these requests always need to transfer

large files. The result proves that our solution is efficient and

converges very fast. Moreover, the number of datacenters in

20 40 60 80

The number of requests

0.0

0.2

0.4

0.6

0.8

1.0

%
o
f
re
q
u
e
s
ts

th
a
t
m
e
e
t
d
e
a
d
li
n
e
s

Our solution

DDCCast

Amoeba

Fig. 11: Comparison of different solutions as the number of

requests increases.

10 20 30 40 50 60 70 80

The number of requests

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
u
n
n
in
g
ti
m
e
(s
e
c
o
n
d
s
)

Fig. 12: The computation time of our approach.

practice is always small. Thus our solution is scalable.

In a nutshell, from the evaluation results, our solution

maximizes the network throughput and admits more transfer

requests than DDCCast and Amoeba. Compared with DDC-

Cast, our solution can admit some requests that have early

deadlines, which demand more bandwidth than each link

capacity.

132

VII. DISCUSSION

We now give some discussions about our future work.

Dynamic Resources. Our work assumes network resources

are stable as previous related works. However, the network

resources can change dynamically over the time. In the future

work, we may consider dynamic resources in making routing

decisions. The controller will measure bandwidth information

at each time slot and repack the remaining requests under the

current network resources.

Different Request Arrival Rates. Our work does not ex-

plore the effect of the request arrival rate. Since our objective is

to maximize throughput and accommodate a maximal number

of transfer requests with deadline requirements, we assume

requests arrive in a small time interval at the beginning of

each time slot. The results show that our solution has a

good performance in routing requests that arrive closely. In

the future work, we may add the time dimension to our

formulation and explore the effect of different request arrival

rates.

VIII. CONCLUSION

In this paper, we have presented our design of an efficient

solution for multicast inter-datacenter transfers, which aims

at maximizing the network throughput and meeting as many

transfer deadlines as possible. Traditionally, initializing the

multicast transfer as multiple independent unicast transfers can

waste more bandwidth and let some other requests miss their

deadlines. Thus we propose to use multiple Steiner trees for

each multicast transfer. We formulate the problem as a linear

program (LP) and find sparse solutions by using a weighted l1-

norm heuristic. To prove the practicality and efficiency of our

solution, we have implemented our idea in a software-defined

overlay network testbed at the application layer. Google Cloud

Platform is used for our real-world experiments with six

Virtual Machine instances in six different datacenters. Experi-

mental results and large-scale simulations have clearly shown

that our design performs substantially better in maximizing

throughput and meeting transfer deadlines than closely related

existing work.

REFERENCES

[1] M. Noormohammadpour, C. S. Raghavendra, and S. Rao, “DCRoute:
Speeding up Inter-Datacenter Traffic Allocation While Guaranteeing
Deadlines,” in Proc. IEEE International Conference on High Perfor-
mance Computing (HiPC), 2016.

[2] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving High Utilization with Software-Driven
WAN,” in Proc. ACM SIGCOMM, 2013.

[3] V. Jalaparti, I. Bliznets, S. Kandula, B. Lucier, and I. Menache,
“Dynamic Pricing and Traffic Engineering for Timely Inter-Datacenter
Transfers,” in Proc. ACM SIGCOMM, 2016.

[4] K. Jain, M. Mahdian, and M. R. Salavatipour, “Packing Steiner Trees,”
in Proc. ACM-SIAM symposium on Discrete algorithms, 2003.

[5] Y. Wu, P. A. Chou, and K. Jain, “A Comparison of Network Coding
and Tree Packing,” in Proc. International Symposium on Information
Theory (ISIT), 2004.

[6] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a
Globally-Deployed Software Defined WAN,” in Proc. ACM SIGCOMM,
2013.

[7] A. Kumar, S. Jain, U. Naik, A. Raghuraman, N. Kasinadhuni, E. C.
Zermeno, C. S. Gunn, J. Ai, B. Carlin, M. Amarandei-Stavila et al.,
“BwE: Flexible, Hierarchical Bandwidth Allocation for WAN Dis-
tributed Computing,” in Proc. ACM SIGCOMM, 2015.

[8] S. Kandula, I. Menache, R. Schwartz, and S. R. Babbula, “Calendaring
for Wide Area Networks,” ACM SIGCOMM Computer Communication
Review, vol. 44, no. 4, pp. 515–526, 2015.

[9] H. Zhang, K. Chen, W. Bai, D. Han, C. Tian, H. Wang, H. Guan, and
M. Zhang, “Guaranteeing Deadlines for Inter-Data Center Transfers,”
IEEE/ACM Transactions on Networking, 2016.

[10] M. Noormohammadpour, C. S. Raghavendra, S. Rao, and S. Kandula,
“DCCast: Efficient Point to Multipoint Transfers Across Datacenters,”
in Proc. USENIX Workshop on Hot Topics in Cloud Computing (Hot-
Cloud), 2017.

[11] M. Noormohammadpour and C. S. Raghavendra, “DDCCast: Meeting
Point to Multipoint Transfer Deadlines Across Datacenters Using ALAP
Scheduling Policy,” arXiv preprint arXiv:1707.02027, 2017.

[12] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
university press, 2004.

[13] M. S. Lobo, M. Fazel, and S. Boyd, “Portfolio Optimization with Linear
and Fixed Transaction Costs,” Annals of Operations Research, vol. 152,
no. 1, pp. 341–365, 2007.

[14] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing Tables in
Software-Defined Networks,” in Proc. IEEE INFOCOM, 2013.

[15] Yu, Minlan and Rexford, Jennifer and Freedman, Michael J and Wang,
Jia, “Scalable Flow-Based Networking with DIFANE,” ACM SIGCOMM
Computer Communication Review, vol. 40, no. 4, pp. 351–362, 2010.

[16] B. Leng, L. Huang, X. Wang, H. Xu, and Y. Zhang, “A Mechanism for
Reducing Flow Tables in Software Defined Network,” in Proc. IEEE
International Conference on Communications (ICC), 2015.

[17] L.-H. Huang, H.-J. Hung, C.-C. Lin, and D.-N. Yang, “Scalable
and Bandwidth-Efficient Multicast for Software-Defined Networks,” in
Proc. IEEE Global Communications Conference (GLOBECOM), 2014.

[18] S.-H. Shen, L.-H. Huang, D.-N. Yang, and W.-T. Chen, “Reliable
Multicast Routing for Software-Defined Networks,” in Proc. IEEE
INFOCOM, 2015.

[19] X. Chen, M. Chen, B. Li, Y. Zhao, Y. Wu, and J. Li, “Celerity: A Low-
Delay Multi-Party Conferencing Solution,” in Proc. ACM international
conference on Multimedia, 2011.

[20] Y. Feng, B. Li, and B. Li, “Airlift: Video Conferencing as a Cloud
Service Using Inter-Datacenter Networks,” in Proc. IEEE International
Conference on Network Protocols (ICNP), 2012.

[21] Y. Liu, D. Niu, and B. Li, “Delay-Optimized Video Traffic Routing
in Software-Defined Interdatacenter Networks,” IEEE Transactions on
Multimedia, vol. 18, no. 5, pp. 865–878, 2016.

[22] N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez, “Inter-
Datacenter Bulk Transfers with Netstitcher,” in Proc. ACM SIGCOMM,
2011.

[23] N. Laoutaris, G. Smaragdakis, R. Stanojevic, P. Rodriguez, and R. Sun-
daram, “Delay-Tolerant Bulk Data Transfers on the Internet,” IEEE/ACM
Transactions on Networking (TON), vol. 21, no. 6, pp. 1852–1865, 2013.

[24] B. B. Chen and P. V.-B. Primet, “Scheduling Deadline-Constrained Bulk
Data Transfers to Minimize Network Congestion,” in Proc. IEEE Inter-
national Symposium on Cluster Computing and the Grid (CCGRID),
2007.

[25] Y. Wang, S. Su, A. X. Liu, and Z. Zhang, “Multiple Bulk Data Transfers
Scheduling Among Datacenters,” Computer Networks, vol. 68, pp. 123–
137, 2014.

[26] Y. Wu, Z. Zhang, C. Wu, C. Guo, Z. Li, and F. C. Lau, “Orchestrating
Bulk Data Transfers Across Geo-Distributed Datacenters,” IEEE Trans-
actions on Cloud Computing, vol. 5, no. 1, pp. 112–125, 2015.

[27] X. Jin, Y. Li, D. Wei, S. Li, J. Gao, L. Xu, G. Li, W. Xu, and J. Rexford,
“Optimizing Bulk Transfers with Software-Defined Optical WAN,” in
Proc. ACM SIGCOMM, 2016.

133

