
An Online Virtual Machine Placement Algorithm in
an Over-Committed Cloud

Siqi Ji, Ming Da Li, Niannian Ji, Baochun Li
University of Toronto

Abstract—Cloud computing provides users and enterprises
shared pools of resources to store and process their data.
Virtualization is one of the technologies used in cloud computing
to separate the underlying hardware resources to create virtual
machines (VMs). VM placement is the process of choosing the
best PM for newly created VMs. Since different users have a
variety of resource requirements, how to deploy VMs becomes a
challenging problem in cloud management. Most of the existing
works only consider maximizing the resource utilization of PMs
without taking the overcommitment issue into account, which
can cause PM overloading and degrade VM performance. In
this paper, we propose an algorithm, called Min-DIFF, that
can balance the usage of resources along multiple dimensions
and reduce the risk of PM overloading in a threshold-based
placement strategy. To better evaluate the performance of Min-
DIFF, our simulations are driven by both real-world workload
traces and datasets we generated. Extensive simulation results
show that Min-DIFF achieves a significant improvement over
the existing approaches in balancing the utilization of multi-
dimensional resources and reducing the risk of PM overloading.

I. INTRODUCTION

Cloud computing enables cheap and easy access to shared

pools of computational resources, which provides users and

enterprises with capabilities to store and process their data

efficiently and reliably. Virtualization [1] is an important

technology of cloud computing, it separates physical hardware

resources to create virtual machines (VMs) with dedicated

resources. Virtual machine (VM) acts like a real computer

with an operating system. Through virtualization, it is possible

to run multiple VMs on the same physical machine (PM) at

the same time while increasing efficiency and utilization of

hardware resources.

VM placement is the process of selecting the most ap-

propriate PM for deploying VMs. Since different users have

diverse resource requirements for VMs and resources on each

PM are limited, improper VM placement can cause unbal-

anced resource utilization (overloaded in some resources but

underutilized in others). Such resource fragmentation requires

extra PMs and wastes more resources. Therefore, it is crucial

to balance PM resources along multiple dimensions (i.e.,

CPU, memory, storage, network bandwidth, etc.) during VM

placement and minimize the number of activated PMs.

Existing works [2]–[4] indicated that VMs tend to utilize

less resources than reserved capacities, which causes substan-

tial resource wastage. Resource Overcommitment is widely

used for solving this wastage problem by allocating more

resources to VMs than they actually have. For example, a

PM has 64GB memory and it is sold as 128GB memory,

we say that the overcommit ratio of this PM is 2. It could

be problematic if we only consider the problem of mini-

mizing the number of activated PMs and reducing resource

fragmentation in the over-committed cloud. While resource

overcommitment increases resource utilization and benefits the

cloud service providers, the risk of provider-induced overload

is also increased. This happens when users actually demand

enough of resources such that collectively they exhaust all

available physical resources, which leads to VM performance

degradation and could drive off users. As such, it is of interest

to consider resource overcommitment during VM placement,

such that the risk of service degradation is reduced while

resource utilization is enhanced.
There has been a significant amount of work on VM

placement. Some existing works [5]–[8] only considered one

resource dimension when they deploy VM placement, these

approaches overlooked the multi-dimensional nature of the

problem and did not balance resources along different di-

mensions. Other works solved the problem in an offline op-

timization manner [9]–[13]: resource requirements are known

in advance. These approaches did not adequately reflect the

true nature of VM requests, with unpredictable arrivals and

departures. Other approaches like [14], [15] studied the VM

placement problem with the goal of achieving balanced re-

source utilization along multiple dimensions and minimizing

the number of physical machines activated, which has very

close objectives with our work. However, they did not raise the

PM overloading problem in an over-committed cloud as their

concern. The overcommitment issue is typically considered

in VM migration [2], [3] while there were very few works

that took this problem into account in the process of VM

placement.
In this work, we solve the VM placement problem with

the objective of balancing the use of resources along multiple

dimensions and reducing the risk of PM overloading while

considering the over-committed issue. Our contributions are

the following:

1) We consider multiple dimensions of resources in VM

placement, heterogeneous settings regarding PM re-

source capacity configurations are generated in our

simulations, which realistically resembles modern cloud

datacenters.

2) We consider the model that VM deployment requests

arrive and depart dynamically, in an online manner

where resource requirements are not known beforehand.

106

2018 IEEE International Conference on Cloud Engineering

0-7695-6371-6/18/31.00 ©2018 IEEE
DOI 10.1109/IC2E.2018.00033



This dynamic nature produces a realistic scenario.

3) We propose a threshold-based algorithm called Min-

DIFF, which considers resource overcommitment in an

effort to reduce the risk of service degradation. Besides,

Min-DIFF obtains a more balanced use of resources

along different dimensions than related works, which

reduces resource fragmentation effectively.

4) Our simulations are driven by both real-world traces

and datasets we generated, to evaluate the effectiveness

of Min-DIFF under a wider spectrum of conditions.

Our simulation results show that Min-DIFF has better

performance in two aspects: First, Min-DIFF uses fewer

PMs and achieves lower resource fragmentation than

other approaches if we do not take the overcommitment

issue into account. Second, Min-DIFF has a lower risk

of PM overloading compared to other approaches in an

over-committed cloud.

This paper is organized as follows. In Section II, we discuss

the related works. In Section III, we motivate our work by

using a simple example. In Section IV, we discuss how to

deploy VM requests and illustrate details of Min-DIFF. In

Section V, we present our simulation setup and show the

simulation results by using different datasets. Finally, we

conclude the paper in Section VI.

II. RELATED WORKS

The VM placement problem has been extensively studied

in the field of Cloud Computing. VM placement can be

formulated as a bin packing problem which is proved to

be NP-hard [16]. Monil et al. [5] proposed a multi-pass

Best Fit Decreasing VM placement algorithm that achieved

a balance between energy consumption and quality of service.

It did not consider multiple dimensions of resources, rather

focusing on CPU utilization only. Wang et al. [6] formulated

the VM placement problem into a Stochastic Bin Packing

problem, which used random variables to characterize the

uncertain future bandwidth usage for each VM. However,

within their probabilistic characterization, only bandwidth was

considered. Zhang et al. [7] formulated the problem into a

constrained minimum k-cut problem, under the constraint of

VM performance. Nevertheless, the solution was based on

energy consumption as a singular criterion, instead of the

specific PM resources. These approaches did not consider to

balance the use of multiple resources, which could make one

resource in high utilization but other resources under-utilized.

Other approaches solved the VM placement problem in

an offline manner, they assumed that the VM requests are

known beforehand. Beloglazov et al. [13] modified the Best

Fit Decreasing algorithm for deploying VMs, it sorted all VM

requests in decreasing order of their CPU requirements. Most

related works like [8], [17]–[21] formulated the VM placement

problem as an optimization problem which is not suitable for

dynamic VM requests. Rampersaud et al. [9] designed an ap-

proximation algorithm that took multi-dimensional resources

into account for maximizing profit derived from hosting VMs.

However, in real scenarios, requests are coming at different

time slots, and it is hard to know VM requests in advance.

There are a lot of related works that proposed approaches for

the online VM placement [14], [15], [22]–[25] with the con-

sideration of multi-dimensional resources, but few considered

the overcommitment issue in VM placement. Max-BRU[14]

considered multiple resource types, focused on maximizing re-

source utilization and meanwhile balanced the use of multiple

types of resources. EAGLE [15] proposed a multi-dimensional

space partition model to balance resource utilization along

different dimensions while minimizing total energy consumed

by running PMs. Overcommitment is mainly considered in

VM migration [2], [3]. In this paper, we use a threshold-based

idea to efficiently reduce the risk of PM overloading caused by

overcommitment, which also reduces overhead in migration.

III. MOTIVATION EXAMPLE

Previous works on VM placement try to maximize the uti-

lization of PMs and pack VMs as tightly as possible. However,

resource overcommitment may cause PM overloading when

total resources utilized by VMs do exceed the PM’s actual

capacities. We use an example to illustrate PM overloading,

and we only consider memory in this example for simplifi-

cation. As shown in Figure 1(a), considering there are three

VM requests: VM1, VM2, and VM3, each requires memory of

32GB, 24GB, and 16GB, respectively. The memory capacity

of the PM is 36GB, and it is sold as 72GB with the overcommit

ratio of 2. If we pack all VMs in this PM and these VMs

utilize 60% of their required resources, then this PM will

be overloaded. Overloading can substantially degrade VM

performance, and some VMs will not get their fair share of

resources. A better approach is to set an 80% threshold of

72GB memory, total resources of VMs placed in the PM can

not exceed this threshold. As we can see from Figure 1(b),

only VM1 and VM2 are placed in this PM, VM3 will be

placed in another PM. In this way, resources utilized by

VMs will not exceed the PM’s capacities, all VMs can work

well and get good performance. Related works only consider

the overcommitment issue in VM migration. Nevertheless,

migrating VMs in overloaded PMs can cause extra overhead

and increase bandwidth usage. We save overhead and network

bandwidth by considering overcommitment in the VM initial

placement. We will discuss the setting of the threshold in

Section IV.

IV. MIN-DIFF: A THRESHOLD-BASED ONLINE VM

INITIAL PLACEMENT ALGORITHM

In this section, we present our proposed threshold-based

online VM placement algorithm Min-DIFF, which can reduce

resource fragmentation efficiently with the consideration of the

overcommitment issue.

Figure 2 gives a sketch of the threshold-based idea. Grey

squares represent different VMs. We deploy VMs by using one

of the two strategies shown in Figure 2. In Strategy 1, we select

the most appropriate PM to place VMs under the threshold. If

we can not find space under the threshold, then we use Strategy

107



Actual 
resourcesVM1

VM2

VM3

(a) Packing VMs as tightly as possi-
ble.

Actual 
resourcesVM1

VM2

80%
threshold

(b) Setting a 80% threshold for place-
ment.

Fig. 1: A motivation example.

Strategy 1: Place VMs below the threshold: 

Strategy 2: Place VMs without considering the threshold 

threshold

threshold

PM1 PM2 PM3 PM1 PM2 PM3

PM1 PM2 PM3 PM1 PM2 PM3

Fig. 2: A sketch of the threshold-based idea.

2 to place VMs without considering the threshold. Strategy 1

always has the highest priority. Table I presents variables we

use in this paper and their definitions. A VM request i can be

denoted as a tuple {ai, dui,VM
d
i }.

A. Resource Threshold

Typically, to guarantee performance for most VMs and

reduce the risk of PM overloading, some providers do not

expect the utilization of over-committed PMs is higher than

a specific percentage [26], and we call this percentage a
warning line in this paper. For example, if a PM is sold as

72GB memory with the overcommit ratio of 2 and the warning

line of memory is 80%, then the total memory of VMs in this

PM should not exceed 57.6GB. The warning line is considered

when we set the resource threshold in Min-DIFF.

On the other hand, to reduce resource fragmentation, we

reserve enough space for large VMs above the threshold.

Otherwise, if we can not find enough space below the threshold

and need to use Strategy 2, a large VM can not be placed in the

PM, which will cause large resource fragmentation. Therefore,

based on the warning line wd and the largest VM requirement

Ld, the threshold Thd
j is defined as:

Thdj= min

{
PMd

j − Ld

PMd
j

, wd

}
. (1)

B. Find the Best PM for Single VM Request

If there is one VM request at each time slot, we find the

best PM for this request. We will illustrate how to choose the

Variables Meaning
D The number of resource dimensions.
d The index of resource dimensions, d = 1, ...,D.
j The index of PMs.
i The index of VM requests.

Ud
j Used resource along dimension d of the jth PM.

PMd
j Total resource along dimension d of the jth PM.

VMd
i Resource requirement along dimension d of the ith

VM request.
ai Arrival time of the ith VM request.
dui The duration of the ith VM request.

wd The warning line of PMs along dimension d.

Ld The largest VM resource requirement along dimension
d.

Thd
j The threshold along dimension d of the jth PM.

RFj Resource fragmentation of the jth PM.

NRd
j The normalized residual resource along dimension d

of the jth PM.

NUd
j The normalized used resource along dimension d of

the jth PM.

TABLE I: Variables used in this paper.

best PM in this section.

In order to place more future VM requests, we try to

balance resources along multiple dimensions left on each PM.

Otherwise, if residual resources along one dimension become

unavailable, resources along other dimensions are wasted.

Such resource fragmentation will prevent future VM requests

and waste resources.

Considering a datacenter provides a pool of resources

such as CPU, memory, network bandwidth and storage, we

deal with multiple resource types in VM placement. Inspired

by previous works [17], [27], [28], we extend the resource

wastage model to multiple dimensions, which is not specific

to two dimensions. The following equation is used to measure

the resource fragmentation of a PM:

RFj =

∑
p,p �=m

(
NRp

j −NRm
j

)
D∑

d=1

NUd
j

, (2)

where RFj represents the resource fragmentation of the jth

PM. NRm
j indicates the smallest normalized residual resource.

NRp
j denotes the normalized residual resource along dimen-

sion p, and p does not equal to m. Therefore the numerator

calculates the sum of differences between the smallest nor-

malized residual resource and the others. The denominator

represents the sum of the normalized used resource along each

dimension. When computing the resource fragmentation, the

residual resource as well as the used resource on the PM is

normalized by the PM’s overall capacity. It is evident that

the more used resource and more balanced residual resource

along different dimensions, the resource fragmentation value

is smaller.

To reduce resource fragmentation and pack VMs tightly,

we propose an efficient algorithm based on the resource

fragmentation Equation (2). Intuitively, an idea is to choose

the PM that has the minimal resource fragmentation value

after a VM is placed. However, this idea is problematic for

108



utilized PMs. For example, considering there are two utilized

PMs and a VM needs to be placed. If we place the VM in

PM1, RF1 = 0.3; if we place the VM in PM2, RF2 = 0.2,

then PM2 is selected. Nevertheless, this idea does not consider

the resource fragmentation value before the VM is placed. if

RF1 = 0.6 and RF2 = 0.1 before the VM is placed, deploying

the VM in PM2 actually makes the resource fragmentation

value higher.

A proper approach is: for non-empty PMs, we deploy a VM

in the PM that can maximize the resource fragmentation re-

duction. Before a VM is placed, the normalized used resource

is:

NUd
j bef =

Ud
j

PMd
j

, d = 1, ...,D. (3)

The normalized residual resource is:

NRd
j bef = 1−NUd

j bef, d = 1, ...,D. (4)

The smallest value among NRd
j bef is NRm

j bef , then the

initial resource fragmentation is:

RFj bef =

∑
p,p �=m

(
NRp

j bef −NRm
j bef

)
D∑

d=1

NUd
j bef

. (5)

Similarly, after a VM is placed, the normalized used resource

is:

NUd
j aft =

Ud
j + VMd

j

PMd
j

, d = 1, ...,D. (6)

The normalized residual resource is:

NRd
j aft = 1−NUd

j aft, d = 1, ...,D. (7)

We still find the smallest value among NRd
j aft, which is

denoted as NRm
j aft. Therefore the resource fragmentation

value after deploying a VM is:

RFj aft =

∑
p,p �=m

(
NRp

j aft−NRm
j aft

)
D∑

d=1

NUd
j aft

. (8)

Then we calculate the difference of resource fragmentation

before a VM is placed and resource fragmentation after a VM

is placed, which is:

δRFj
= RFj bef −RFj aft. (9)

For non-empty PMs, we choose the PM that has the largest

δRFj
. For empty PMs, we select the PM with the most

balanced utilization along resource dimensions after deploying

a VM. Thus, we calculate the sum of differences between the

smallest normalized residual resource NRm
j and the others

NRp
j , choose the PM that has the smallest RFj empty.

RFj empty =
∑

p,p �=m

(
NRp

j −NRm
j

)
. (10)

To pack VMs tightly, we first find the most appropriate PM

among non-empty PMs, if there is no available utilized PM,

we choose the best PM among empty PMs.

C. VM Selection for Multiple VM Requests

If there are multiple VM requests at each time slot, we do

the placement as follows. When resources are available on a

PM, we choose the set of VM requests at the current time slot

whose resource requirements can be accommodated on that

PM. If the PM is utilized, we compute δRFj to the PM for

each VM request in this set. The request with the largest δRFj

will be placed in that PM. If the PM is empty, we compute

RFj empty and choose the VM with the smallest value to

place in that PM. This process is repeated recursively until

the PM can not accommodate any VM requests in the current

time slot. Then we go to the next PM to place other VM

requests.

D. Details of Min-DIFF

Min-DIFF is illustrated by Algorithm 1. First of all, we cal-

culate the threshold for each PM based on Equation (1) (line 2-

4). If there are multiple requests at the time slot, we use Strat-

egy 1 to place current VMs below the threshold by calling the

function PLACECURVMSBLWTH(current VMs). If there is

not enough space for all current VMs, we use Strategy 2 where

function PLACECURVMS(current VMs) is called. These

two functions use the algorithm we present in Section IV-B. If

there is only one VM request at the time slot, we choose the

best PM for this VM and use the algorithm in Section IV-C.

Function FINDBESTPM(v, PMs) uses Strategy 2, which is

similar to Strategy 1: FINDBESTPMBLWTH(v, PMs).

V. PERFORMANCE EVALUATION

Now we are ready to evaluate the performance of Min-DIFF

through simulations. In this section, we present the simulation

setup and evaluation results.

A. Simulation Setup

We evaluate the performance of Min-DIFF by using four

types of datasets. For the first dataset, we consider the resource

requirement of VMs to be equal to the standard instances

from general purpose applications provided by Amazon EC2.

Table II presents the seven types of T2 instances we use in

our simulations. We set D=3 and use our 3-dimensional VM

placement scheme for this dataset.

For the second and third datasets, we generate the VM

requests that follow the uniform distribution and the normal

distribution as Hieu et al. [14]. Table III shows the resource

requirements of each dimension of the VM requests, where

U (a, b) denotes the uniform distribution and N (μ, σ) denotes

the normal distribution. We set D=4 and use our 4-dimensional

VM placement scheme for the second and third datasets.

The last one is the real-world workload trace GWA-T-12

Bitbrains [29] which contains the performance metrics of VMs

from a distributed datacenter from Bitbrains. Bitbrains is a

service provider that hosts applications used in financial fields.

We extract CPU cores and Memory requested of VMs from

the traces and set the number of dimensions D=2 for VM

placement.

109



Algorithm 1 Min-DIFF algorithm

1: function VMPLACEMENT(VMs, PMs)

2: for m in PMs do:

3: calculate threshold based on Equation (1)

4: end for
5: while VMs �= ∅ do
6: current VMs = requests at the current time slot

7: remove current VMs from VMs

8: if length(current VMs) > 1 then:

9: flag, current VMs
10: =PLACECURVMSBLWTH(current VMs)

11: if flag is False then:

12: PLACECURVMS(current VMs)
13: end if
14: else if length(current VMs) = 1 then:

15: for v in current VMs do
16: BestPM = FINDBESTPMBLWTH(v, PMs)
17: if BestPM is not None then:

18: Place VM v on BestPM

19: Remove VM v from current VMs

20: continue

21: end if
22: BestPM = FINDBESTPM(v, PMs)
23: if BestPM is not None then:

24: Place VM v on BestPM

25: Remove VM v from current VMs

26: end if
27: end for
28: end if
29: end while
30: end function

VM Instances CPU Memory(GB) Bandwidth(MBit/s)
t2.nano 1 0.5 30
t2.micro 1 1 70
t2.small 1 2 200

t2.medium 2 4 300
t2.large 2 8 500
t2.xlarge 4 16 800

t2.2xlarge 8 32 1024

TABLE II: Amazon EC2 VM instances used in the first

dataset.

Typically, cloud environments are not homogeneous and

they are constructed from different types of machines [30].

To better resemble the real-world cloud, we generate hetero-

geneous PMs based on the configurations of machines shown

in Reiss et al. [30] for the first dataset and the real-world

workload trace. For the second and third datasets, we generate

five types of PMs, each with the resource capacity of 200, 250,

300, 350 and 400 along all dimensions.

We compare Min-DIFF with the following schemes for VM

placement: First Fit algorithm, the balanced algorithm EAGLE

in [15] and Max-BRU algorithm in [14]. In our simulations,

to better compare the performance of different algorithms, we

make the durations of all VM requests infinitely long, which

VM
Instances

CPU
capacity
(GHz)

Memory
(GB)

Bandwidth
(Gbps)

Storage
(GB)

U (a, b) U (20, 80) U (20, 80) U (20, 80) U (20, 80)
N (μ, σ) N (50, 12) N (50, 12) N (50, 12) N (50, 12)

TABLE III: Resource requirements used in the second and

third datasets.

means that once they are placed, they will not be deleted.

B. Simulation results: threshold 100%

First, we compare Min-DIFF with First Fit, EAGLE and

Max-BRU by setting the threshold as 100%, which means that

we aim at packing VMs as tightly as possible when resources

of PMs are not over-committed. We consider the following

performance metrics:

• The number of utilized PMs: K.

• The average resource fragmentation of all utilized PMs:

RF =
1

K

K∑
j=1

RFj (11)

1) Simulation results: Figure 3 shows the number of used

PMs. As we can see from the figure, Min-DIFF uses fewer

PMs than EAGLE, First Fit and Max-BRU. Figure 4 gives

comparison results of the average resource fragmentation.

Min-DIFF achieves the lowest resource fragmentation, which

means that Min-DIFF has less resource wastage and obtains a

more balanced resource utilization along different dimensions.

EAGLE and Max-BRU do not perform well in the heteroge-

neous setting since they just open a new PM if they can not

find available resources among the utilized PMs, Min-DIFF

uses Equation (10) which works for deploying VMs in the

empty set of PMs.

C. Simulation results: threshold is smaller than 100%

In this section, we will compare Min-DIFF with other

approaches when the threshold is smaller than 100%, which

means that providers do not prefer too high utilization of

resources because of the over-committed issue, then we need

to use the threshold-based idea to reduce the risk of PM

overloading. We set D = 2 and use our two-dimensional

placement algorithm for deploying VMs. The dataset used in

this section is Amazon EC2.

Considering the warning line is 80% along each resource

dimension, we do simulations when there are enough PMs for

VM requests. Figure 5 shows comparison results of the number

of activated PMs and the average resource fragmentation. In

this scenario, there are enough PMs for all VM requests so

that all VMs will be placed under the threshold. Since we

place VMs below the threshold by using Strategy 1, Min-DIFF

uses more PMs than other baselines. Although Min-DIFF

uses more PMs, it can be seen from Figure 5(b), Min-DIFF

effectively achieves the most balanced use of resources along

different dimensions. Besides, other baselines do not consider

PM overloading, which results in more PMs have the risk of

110



0 1000 2000 3000 4000 5000

Number of VMs

0

100

200

300

400

500

600
N
u
m
b
e
r
o
f
u
s
e
d
P
M
s

MinDIFF

EAGLE

First Fit

MaxBRU

(a)

0 1000 2000 3000 4000 5000

Number of VMs

0

200

400

600

800

1000

1200

1400

1600

N
u
m
b
e
r
o
f
u
s
e
d
P
M
s

MinDIFF

EAGLE

First Fit

MaxBRU

(b)

0 1000 2000 3000 4000

Number of VMs

0

250

500

750

1000

1250

1500

1750

2000

N
u
m
b
e
r
o
f
u
s
e
d
P
M
s

MinDIFF

EAGLE

First Fit

MaxBRU

(c)

200 400 600 800 1000 1200

Number of VMs

0

25

50

75

100

125

150

175

N
u
m
b
e
r
o
f
u
s
e
d
P
M
s

MinDIFF

EAGLE

First Fit

MaxBRU

(d)

Fig. 3: Number of used PMs for different datasets: (a) Amazon EC2. (b) Uniform distribution. (c) Normal distribution. (d)

Real-world workload trace.

0 1000 2000 3000 4000 5000

Number of VMs

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

R
e
s
o
u
rc
e
F
ra
g
m
e
n
ta
ti
o
n

MinDIFF

EAGLE

First Fit

MaxBRU

(a)

0 1000 2000 3000 4000 5000

Number of VMs

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

R
e
s
o
u
rc
e
F
ra
g
m
e
n
ta
ti
o
n

MinDIFF

EAGLE

First Fit

MaxBRU

(b)

0 1000 2000 3000 4000

Number of VMs

0.05

0.10

0.15

0.20

0.25

R
e
s
o
u
rc
e
F
ra
g
m
e
n
ta
ti
o
n

MinDIFF

EAGLE

First Fit

MaxBRU

(c)

200 400 600 800 1000 1200

Number of VMs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

R
e
s
o
u
rc
e
F
ra
g
m
e
n
ta
ti
o
n

MinDIFF

EAGLE

First Fit

MaxBRU

(d)

Fig. 4: The average resource fragmentation of all used PMs for different datasets: (a) Amazon EC2. (b) Uniform distribution.

(c) Normal distribution. (d) Real-world workload trace.

0 2000 4000 6000 8000

Number of VMs

0

200

400

600

800

1000

1200

N
u
m
b
e
r
o
f
u
s
e
d
P
M
s

MinDIFF

EAGLE

First Fit

MaxBRU

(a)

0 2000 4000 6000 8000

Number of VMs

0.200

0.225

0.250

0.275

0.300

0.325

0.350

R
e
s
o
u
rc
e
F
ra
g
m
e
n
ta
ti
o
n

MinDIFF

EAGLE

First Fit

MaxBRU

(b)

Fig. 5: Comparison results: (a) Number of PMs. (b) The

average resource fragmentation of all used PMs.

overloading than Min-DIFF. As shown in Figure 6, Min-DIFF

does not have PMs that utilizes resources higher than 80%,

which can substantially reduce the risk of PM overloading.

For other baselines, the number of PMs that obtain at least

80% utilization of resources increases as the number of

requests increases. PM overloading can substantially degrade

VM performance, Min-DIFF reduces such risk efficiently.

VI. CONCLUSION

In this paper, we propose an online algorithm called Min-

DIFF which makes a tradeoff between minimizing the number

of activated PMs and reducing the risk of PM overloading in

an over-committed cloud. Besides, Min-DIFF achieves a more

balanced use of resources along multiple resource dimensions,

which significantly reduces resource fragmentation. To better

resemble the real-world scenario, we consider VM requests

that come at different time slots, heterogeneous settings of

0 2000 4000 6000 8000

Number of VMs

0.00

0.05

0.10

0.15

0.20

%
o
f
P
M
s
th
a
t
C
P
U
u
ti
li
z
a
ti
o
n

is
h
ig
h
e
r
th
a
n
8
0
%

MinDIFF

EAGLE

First Fit

MaxBRU

(a)

0 2000 4000 6000 8000

Number of VMs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

%
o
f
P
M
s
th
a
t
m
e
m
o
ry

u
ti
li
z
a
ti
o
n
is
h
ig
h
e
r
th
a
n
8
0
%

MinDIFF

EAGLE

First Fit

MaxBRU

(b)

Fig. 6: The percentage of PMs that resource utilization is

higher than 80% (Over-committed resources are included): (a)

CPU. (b) Memory.

PMs are considered in our simulations. Simulation results

demonstrate that our proposed algorithm Min-DIFF achieves

better performance than other schemes in related works.

REFERENCES

[1] R. P. Goldberg, “Survey of Virtual Machine Research,” Computer, vol. 7,
no. 6, pp. 34–45, 1974.

[2] X. Zhang, Z.-Y. Shae, S. Zheng, and H. Jamjoom, “Virtual Machine
Migration in an Over-Committed Cloud,” in Proc. IEEE Network Op-
erations and Management Symposium (NOMS), 2012.

[3] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Efficient Data-
center Resource Utilization Through Cloud Resource Overcommitment,”
in Proc. IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), 2015.

[4] L. Tomás and J. Tordsson, “Improving Cloud Infrastructure Utilization
Through Overbooking,” in Proc. ACM Cloud and Autonomic Computing
conference, 2013.

111



[5] M. A. H. Monil and A. D. Malony, “QoS-Aware Virtual Machine Con-
solidation in Cloud Datacenter,” in Proc. IEEE International Conference
on Cloud Engineering (IC2E), 2017.

[6] M. Wang, X. Meng, and L. Zhang, “Consolidating Virtual Machines
with Dynamic Bandwidth Demand in Data Centers,” in Proc. IEEE
INFOCOM, 2011.

[7] X. Zhang, Y. Zhao, S. Guo, and Y. Li, “Performance-Aware Energy-
efficient Virtual Machine Placement in Cloud Data Center,” in
Proc. IEEE International Conference on Communications (ICC), 2017.

[8] H. Yanagisawa, T. Osogami, and R. Raymond, “Dependable Virtual
Machine Allocation,” in Proc. IEEE INFOCOM, 2013.

[9] S. Rampersaud and D. Grosu, “A Multi-Resource Sharing-Aware
Approximation Algorithm for Virtual Machine Maximization,” in
Proc. IEEE International Conference on Cloud Engineering (IC2E),
2015.

[10] D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, I. Whally, and E. Snible,
“Improving Performance and Availability of Services Hosted on Iaas
Clouds with Structural Constraint-Aware Virtual Machine Placement,”
in Proc. IEEE International Conference on Services Computing (SCC),
2011.

[11] F. Machida, M. Kawato, and Y. Maeno, “Redundant Virtual Ma-
chine Placement for Fault-Tolerant Consolidated Server Clusters,” in
Proc. IEEE Network Operations and Management Symposium (NOMS),
2010.

[12] C. C. T. Mark, D. Niyato, and T. Chen-Khong, “Evolutionary Optimal
Virtual Machine Placement and Demand Forecaster for Cloud Comput-
ing,” in Proc. IEEE International Conference on Advanced Information
Networking and Applications (AINA), 2011.

[13] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-Aware Resource
Allocation Heuristics for Efficient Management of Data Centers for
Cloud Computing,” Future generation computer systems, vol. 28, no. 5,
pp. 755–768, 2012.

[14] N. T. Hieu, M. Di Francesco, and A. Y. Jääski, “A Virtual Machine
Placement Algorithm for Balanced Resource Utilization in Cloud Data
Centers,” in Proc. IEEE International Conference on Cloud Computing
(CLOUD), 2014.

[15] X. Li, Z. Qian, S. Lu, and J. Wu, “Energy Efficient Virtual Machine
Placement Algorithm with Balanced and Improved Resource Utilization
in a Data Center,” Mathematical and Computer Modelling, vol. 58, no. 5,
pp. 1222–1235, 2013.

[16] X. Li, Z. Qian, R. Chi, B. Zhang, and S. Lu, “Balancing Resource
Utilization for Continuous Virtual Machine Requests in Clouds,” in
Proc. IEEE International Conference on Innovative Mobile and Internet
Services in Ubiquitous Computing (IMIS), 2012.

[17] J. Xu and J. A. Fortes, “Multi-Objective Virtual Machine Placement
in Virtualized Data Center Environments,” in Proc. IEEE/ACM In-
ternational Conference on Green Computing and Communications &
International Conference on Cyber, Physical and Social Computing,
2010.

[18] A. C. Adamuthe, R. M. Pandharpatte, and G. T. Thampi, “Multiobjective
Virtual Machine Placement in Cloud Environment,” in Proc. IEEE In-
ternational Conference on Cloud & Ubiquitous Computing & Emerging
Technologies (CUBE), 2013.

[19] F. L. Pires and B. Barán, “Multi-Objective Virtual Machine Placement
with Service Level Agreement: A Memetic Algorithm Approach,” in
Proc. IEEE/ACM International Conference on Utility and Cloud Com-
puting, 2013.

[20] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimal Virtual Machine
Placement Across Multiple Cloud Providers,” in Proc. IEEE Asia-Pacific
Services Computing Conference, 2009.

[21] M. Sun, W. Gu, X. Zhang, H. Shi, and W. Zhang, “A Matrix Transforma-
tion Algorithm for Virtual Machine Placement in Cloud,” in Proc. IEEE
International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom), 2013.

[22] F. Hao, M. Kodialam, T. V. Lakshman, and S. Mukherjee, “Online
Allocation of Virtual Machines in a Distributed Cloud,” in Proc. IEEE
INFOCOM, 2014.

[23] J. Dong, X. Jin, H. Wang, Y. Li, P. Zhang, and S. Cheng, “Energy-Saving
Virtual Machine Placement in Cloud Data Centers,” in Proc. IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CC-
Grid), 2013.

[24] M. Mishra and A. Sahoo, “On Theory of VM Placement: Anomalies
in Existing Methodologies and Their Mitigation Using a Novel Vector

Based Approach,” in Proc. IEEE International Conference on Cloud
Computing (CLOUD), 2011.

[25] M. Alicherry and T. Lakshman, “Optimizing Data Access Latencies in
Cloud Systems by Intelligent Virtual Machine Placement,” in Proc. IEEE
INFOCOM, 2013.

[26] Personal communication with HUAWEI company.
[27] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, “A Multi-Objective Ant

Colony System Algorithm for Virtual Machine Placement in Cloud
Computing,” Journal of Computer and System Sciences, vol. 79, no. 8,
pp. 1230–1242, 2013.

[28] F. Ma, F. Liu, and Z. Liu, “Multi-Objective Optimization for Initial Vir-
tual Machine Placement in Cloud Data center,” Journal of Information
&Computational Science, vol. 9, no. 16, pp. 5029–5038, 2012.

[29] “Bitbrain Workload Traces,” http://gwa.ewi.tudelft.nl/datasets/
gwa-t-12-bitbrains.

[30] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and Dynamicity of Clouds at Scale: Google Trace
Analysis,” in Proc. ACM Symposium on Cloud Computing, 2012.

112


