Random Network Coding on the iPhone: Fact or Fiction?

Hassan Shojania, Baochun Li
Department of Electrical and Computer Engineering
University of Toronto

ABSTRACT

In multi-hop wireless networks, random network coding rep-
resents the general design principle of transmitting random
linear combinations of blocks in the same “batch” to down-
stream relays or receivers. It has been recognized that ran-
dom network coding in multi-hop wireless networks may im-
prove unicast throughput in scenarios when multiple paths
are simultaneously utilized between the source and the desti-
nation. However, the computational complexity of random
network coding, and its energy consumption implications,
may potentially limit its applicability and practicality in mo-
bile devices. In this paper, we present our real-world imple-
mentation of random network coding on the Apple iPhone
and iPod Touch mobile platforms, and offer an in-depth in-
vestigation with respect to the difficulties towards such an
implementation, the limitations of the ARM processor and
the hardware platform, as well as our hand-tuning efforts
to maximize coding performance on the iPhone platform.
With our implementation deployed on both the iPhone 3G
and the second-generation iPod Touch, we report its cod-
ing performance, energy consumption rates, as well as CPU
usage with multimedia streaming.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance
of Systems; C.2.4 [Computer Systems Organization]:
Computer-Communication Networks—Distributed Systems

General Terms

Algorithms, Performance, Experimentation.

1. INTRODUCTION

First introduced by Ahlswede et al. [1] in information the-
ory, network coding has received significant research atten-
tion in recent years in the networking community. In multi-
hop IEEE 802.11-based wireless networks, Katti et al. [2] has
shown that, random network coding is able to significantly
improve end-to-end throughput of unicast sessions, provided
that multiple paths between the source and the destination
are used simultaneously.

Unfortunately, to date, there has been no real-world im-
plementations of random network coding on real-world mo-
bile devices. The closest efforts towards this objective are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NOSSDAV’09, June 3-5, 2009, Williamsburg, Virginia, USA.

Copyright 2009 ACM 978-1-60558-433-1/09/06 ...$5.00.

reflected in the following works in the literature: First, in
Chachulski et al. [2], each node in a wireless network that
performs random network coding is a PC equipped with a
IEEE 802.11 (WiFi) wireless card. Second, Katti et al. [3]
have also performed random network coding on off-the-shelf
Intel PCs, each equipped with Universal Software Radio Pe-
ripherals and Zigbee software radios.

Third and most recently, Pedersen et al. [4] have imple-
mented XOR-only network coding in Nokia N95 mobile de-
vices, since XOR-only network coding may improve through-
put when paths of multiple unicast flows intersect in multi-
hop wireless networks, originated by Katti et al.’s earlier
results on COPE [5]. However, random network coding is
able to offer substantially more flexibility, allowing coding
over symbols and the use of multiple paths. It has been
the coding mechanism of choice in recent wireless network-
ing literature, including MORE (Chachulski et al. [2]), and
symbol-level network coding (Katti et al. [5]). Random net-
work coding is much more computationally intensive than
simply performing XORs on incoming packets, and involves
random linear combinations on the Galois Field (GF).

Another motivation to justify the use of random network
coding on mobile devices comes from advances of using ran-
dom network coding in peer-to-peer (P2P) applications, such
as Avalanche [6]. It is customary for mobile Internet devices
to connect to the Internet using a variety of technologies:
WiFi, EDGE, and 3G. When connected, they are allocated
an [P address, potentially a public IP, and appear precisely
as a peer in P2P streaming applications. Assuming that net-
work coding is deployed in these applications, it is preferable
not to treat mobile peers as “second-class citizens”.

This paper presents our experiences with our real-world
implementation of random network coding on the iPhone
platform, including the second-generation iPod Touch, and
the iPhone 3G. We have chosen the iPhone platform due to
the following justifications: (1) It offers the most state-of-
the-art hardware platform for multimedia applications, with
an ARMv6 architecture core, support for WiFi, EDGE and
3G connections, as well as an excellent software develop-
ment platform; (2) The ARMv6 core has been widely in use
in other mobile devices, increasing the applicability of our
implementation; (3) The iPhone platform has already been
widely used in the real world for streaming multimedia ap-
plications from the Internet, especially from YouTube. Our
objective in this paper is to present an in-depth evaluation
of what can be feasibly achieved at the time of this writing
on the best possible mobile devices in the market.

It is non-trivial to develop for the iPhone platform, es-
pecially an application as computationally intensive as ran-
dom network coding. In this paper, we report our difficulties
with the hardware platform, as we explore all possible av-
enues — including hand-tuning optimizations tailored for
the ARMv6 core — to maximize coding performance. With

our implementation optimized for the iPhone, we have also
evaluated its performance extensively. We have discovered
that random network coding is feasible and manageable on
the iPhone platform, in the context of streaming applica-
tions currently used (e.g., at typical media streaming rates).
We believe that the use of random network coding involves
an array of tradeoffs: decisions must be made concerning the
network coding configuration, CPU usage overhead, energy
consumption rates and battery life, as well as limitations to
participate fully in peer-to-peer streaming applications by
contributing upload bandwidth. Future hardware platforms
for mobile devices are expected to offer a better tradeoff and
a smaller footprint incurred by network coding.

The remainder of this paper is organized as follows. Sec. 2
presents our experiences implementing random network cod-
ing on the ARM architecture core, which the iPhone plat-
form uses. Sec. 3 evaluates our implementation on both the
iPhone 3G and the second-generation iPod Touch. Sec. 4
concludes the paper.

2. RANDOM NETWORK CODING ON THE
IPHONE PLATFORM

We first present a concise introduction to the operations
performed in random network coding. In random network
coding, data to be disseminated is divided into n blocks
[b1,b2,. .., bn]T, where each block b; has a fixed number of
bytes k (referred to as the block size). To code a new coded
block z;, a node first independently and randomly chooses
a set of coding coefficients [c;1,cj2,- -+ ,cjn] in GF(2%), one
for each received block (or each original block on the data
source). It then produces one coded block z; of k bytes:

2y =y cjibi 1)
=1

A node decodes as soon as it has received n linearly inde-
pendent coded blocks x = [z1,22,...,2,]7. Tt first forms
a n X n coefficient matrix C, using the coefficients in each
coded block z;. Each row in C corresponds to the coef-
ficients of one coded block. It then recovers the original
blocks b = [by, b2, ...,b,]T as:

b=C"'x (2)

In this equation, the inverse of C needs to be computed us-
ing Gaussian elimination, with a complexity of O(n®). The
inversion of C is only possible when its rows are linearly
independent, i.e., C is full rank.

GF(2®) operations are routinely used in random network
coding within tight loops. Since addition in GF(2®) is sim-
ply an XOR operation, it is important to optimize the im-
plementation of multiplication on GF(2®%). A baseline im-
plementation is performed using logarithm and exponential
tables, similar to the traditional multiplication of large num-
bers. Fig. 1 shows a C function that multiplies two bytes,
where log and exp reflect GF(2®) logarithmic and exponen-
tial tables. Such a baseline implementation requires three
memory reads and one addition for each multiplication.

byte table_gf_multiply(byte x, byte y)
{

if (x==0 || y == 0)
return O;
return expllogl[x] + loglyll;

}
Figure 1: Table-based multiplication in GF(2°).

We are now ready to present challenges and solutions in-
volved in the design of our implementation of random net-
work coding for the ARMv6 architecture, used in the iPhone
platform. We have selected the ARMv6 architecture in this
paper since it is used in a wide variety of other mobile de-
vices — prominent examples include the Nokia N95, Nokia
N800, Microsoft Zune, Motorola Razr2 V9, HTC TyTN II,
and the Android-based HTC Magic. Our objectives are to
first study the feasibility of using the ARMv6 architecture
to perform network coding, and if feasibility is not an issue,
to maximize the performance of our implementation.

Table-based multiplications in GF(2®), shown in Fig. 1,
require multiple accesses to the lookup tables, and consti-
tute one of the important performance bottlenecks in ran-
dom network coding. To accelerate this costly operation,
in our previous work [7], we are the first to explore the use
of a loop-based approach in Rijndael’s finite field, rather
than using traditional log/exp tables. Although the basic
loop-based multiplication takes longer to perform (up to 8
iterations), it lends itself better to a parallel implementation
in Intel CPUs by taking advantage of SSE2 SIMD (single-
instruction, multiple data) vector instructions.

Before smartphone hardware platforms, such as the iPhone,
gain access to multicore processors (such as the proposed
ARM Cortex-A9), our only option of parallelizing GF mul-
tiplication is to explore parallel loop-based multiplication on
a single processing core, using either SIMD instructions or
an equivalent mechanism. Is it at all possible to achieve such
parallel multiplication on the ARMv6 architecture core? At
first glance, it is a daunting challenge since the ARMv6
core is designed for embedded devices, with a much sim-
pler, non-superscalar architecture, plain 32-bit registers and
arithmetic units, and runs at much lower frequencies.

2.1 Evaluating table-based network coding

As a starting point, we first attempted to implement ran-
dom network coding based on table-based GF multiplication
on the iPhone. It turned out to be a much more challenging
venture than we predicted. The iPhone development SDK is
based on the Objective-C language, and iPhone applications
are required to be in GUI form, using the UIKit library.

To evaluate its performance, we use (n = 128,k = 4096)
(128 blocks of 4096 bytes each) as our “base” network coding
configuration. If such a configuration is used in a P2P media
streaming application with a 768 Kbps (96 KB/s) streaming
rate (representing high-quality videos), it leads to a media
segment size of 512 KB or 5.33 seconds. This represents an
acceptable buffering delay. Our first measurements show an
encoding rate of 16.4 KB/s and decoding rate of 60 KB/s
with 128 blocks of 4 KB each, on our second-generation iPod
Touch. The low coding rates may not be as surprising as the
observation that encoding performs only 27% of decoding,
since decoding is more computationally complex.

It turns out that this anomaly is due to the memory access
pattern, and most likely related to specifics of cache perfor-
mance in the ARMv6 architecture. Our original encoding
process generated n coded blocks in a column-by-column
fashion, i.e., generating a coded byte for all coded blocks.
The encoding rate improved to 66.7 KB/s after revising the
encoding process to a row-by-row pattern.

It has now become apparent that, at a decoding rate of
only 60 KB/s, the iPhone will not be able to decode a net-
work coded 96 KB/s stream, even at 100% CPU usage.

byte 1oop_gf_multip1y_word(byte factor, word data)
{

word PrimPolyMask, result = 0; (1)
while (factor != 0) { (2)
if ((factor & 1) != 0) 3
result = result ~ data; (4)

// creating the irreducible poly mask
PrimPolyMask = data & 0x80808080; (5)
PrimPolyMask = PrimPolyMask >> 7; (6)
PrimPolyMask = PrimPolyMask+*0x1d; 9]

// clear top-bit of bytes before shift

data = data & Ox7f7f7f7f; (8)
data = data << 1; 9)
data = data ~ PrimPolyMask; (10)
factor = factor >> 1; (11)
¥
return result; (12)

}

byte loop_gf_multiply_word_armv6(byte factor, word data)

word PrimPolyMask, result = O; 1)
while (factor != 0) { (2)
PrimPolyMask = PrimPolyMask >> 1; (3)
PrimPolyMask = data & 0x40404040; (4)
if ((factor & 1) != 0) (5)
result = result ~ data; (6)

// creating the irreducible poly mask
PrimPolyMask = smulw(PrimPolyMask, Oxld << 10);)

// clear top-bit of bytes before shift

data = data << 1; (8)
data = data & Oxfefefeff; 9)
factor = factor >> 1; (10)
data = data " PrimPolyMask; (11)
¥
return result; (12)

}

Figure 2: Loop-based GF(2°%) word multiplication for
a 32-bit processor.

2.2 Revisiting loop-based network coding

Is it feasible to implement random network coding using
loop-based multiplication on the ARMv6 architecture? The
current iPhone and iPod Touch series use the ARM1176JZF-
S processor, which belongs to the ARMI11 family, and is
based on the ARMv6 core with a set of features that include
SIMD support [8]. Our first impression was that such SIMD
support is of the NEON SIMD type. The ARM NEON
technology is quite similar to SSE2 and AltiVec SIMD tech-
nologies found in x86 and PowerPC families, and comes with
support for 128-bit registers and 16 parallel byte operations
[9]. Having access to such SIMD support could have been of
tremendous help to a parallel loop-based implementation of
GF multiplication in network coding. Much to our dismay,
we discovered that ARM1176’s support of SIMD is not a
full-fledged SIMD of the NEON type. Rather, it is a lim-
ited set of parallel instructions on byte or half-word length
granularities of 32-bit registers [10].

We now propose a scheme, inspired by our work in [11],
to take advantage of simple ARMv6 32-bit processors, even
with no SIMD support, to perform loop-based GF multipli-
cations in parallel. The scheme uses a series of shifts and
logical operations to perform a loop-based byte-by-word GF-
multiplication, through parallel byte-length arithmetic and
test operations on 32-bit registers. The basic skeleton of our
scheme is shown in Fig. 2.

With such a byte-by-word loop-based implementation of
random network coding on the iPhone, at the same (n =
128,k = 4096) setting, we achieve encoding and decoding
rates of 86.6 KB/s and 81.9 KB/s, respectively. This reflects
a speedup of 1.3 and 1.37 over the table-based implementa-
tion. However, we are still far short of participating in a
high-quality streaming session of 96 KB/s.

2.3 Thumb versus ARM instruction sets

The ARMv6 architecture supports both Thumb and ARM
instruction sets. The Thumb instruction set is specifically
designed to reduce code density for memory-constrained em-
bedded systems by encoding a subset of the 32-bit ARM in-
structions into a 16-bit instruction set space. The iPhone
development platform generates Thumb instructions by de-
fault, since it typically reduces code sizes by about 35%.
However, we discovered that Thumb instructions has a num-
ber of drawbacks in the context of network coding. First,
a predicated instruction (tagged for conditional execution)
is not allowed, leading to two instructions instead of one in
the ARM instruction set. More importantly, a Thumb in-

Figure 3: Hand-tuned loop-based multiplication for
ARMV6.

struction cannot use both the barrel shifter and the ALU
unit, unlike an ARM instruction. A barrel shifter can shift
incoming data from the register file on its way to the ALU.
This is a unique feature of ARM cores that cannot be used
with Thumb instructions.

Noting such differences, we have compiled our implemen-
tation for the ARM instruction set, and repeated our previ-
ous experiments at the (n = 128,k = 4096) setting. Table-
based coding now improves by 50% and 26% to 100.4 KB/s
and 75.8 KB/s for encoding and decoding, respectively. Our
loop-based coding improves by 89% and 93% to 163.8 KB/s
and 157.8 KB/s for encoding and decoding, respectively.
This improvement is essentially due to a reduction in the
number of executed instructions. The number of machine in-
structions executed in each iteration of the GF-multiplication
loop is reduced from 17 to 10, by using ARM instead of
Thumb instructions. The loop-based implementation has
achieved a more substantial gain, due to its heavy use of
logical and shift operations, which can be combined into
concurrent barrel shift and ALU operations.

2.4 Hand-tuned optimizations

To improve the coding performance further, we attempted
to optimize our GF-multiplication by using specific features
from the ARMv6 core. Our focus is the multiplication at
statement (7) in Fig. 2. By examining the ARM assembly
generated by the compiler, we have observed that statements
(6) and (7) are combined and performed with only 3 machine
instructions that perform a series of shifting and arithmetic
operations, and that take advantage of barrel shifts. The full
32-bit multiplication was avoided by the compiler, due to its
2-cycle throughput and an extra 2-cycle output latency.

We note that our multiplication in statement (7) is not a
full 32-bit multiplication, and a byte-by-word multiplication
would be sufficient. The closest alternative in the ARM in-
struction set is SMULW, a 16-by-32 bit multiplication with a
single-cycle throughput. To take advantage of SMULW, how-
ever, we will have to hand-tune the remaining code to ensure
integrity of our computation (SMULW operates only on signed
values and returns the upper 32-bit of the result). The hand-
tuned optimization of loop-based multiplication is shown in
Fig. 3. In addition, we explicitly take advantage of the bar-
rel shifter before an ALU operation, as indicated in state-
ment pairs (3)-(4) and (8)-(9). Finally, the calculation steps
are reordered based on the timing of individual instructions,
in order to minimize pipeline stalls due to the latency of
register writes. With our hand-tuned implementation, the

420415 KB/ o LB (n=64)
378 s 371 KB/s - TB (n=64)
- LB

— 336

bandwidth

128 256 512 1024 2048 4096 8192 16384
(a) Encoding

block size (bytes)

a78 370 KB/s
336
Q
£ 294
172
Q
s.252
g
=210
P 178 KB/s
kel
= S Akl i AELEL SEEEY 4
=
©
Ke}

128 256 512 1024 2048 4096 8192 16384
(b) Decoding

Figure 4: Coding bandwidth of loop-based (LB) and table-based (TB) for network (a) encoding; and (b)

decoding processes on the 2ndGen iPod Touch.

number of ARM instructions executed in each iteration is
reduced from 10 to 8. This effectively improves the coding
performance of our base setting by 11%, to 181.3 KB/s and
175.3 KB/s for encoding and decoding, respectively.

As our final optimization attempt, we take advantage of
the only SIMD instruction that may potentially be helpful.
The statement pair (8)-(9) was originally meant to shift-left
individual bytes of 32-bit data without affecting the neigh-
boring bytes. Although these two statements were already
compiled to a single machine instruction, replacing them
with a single uadd8 SIMD instruction (effectively doubling
individual bytes of data) leads to a minor improvement of
around 4%. At this point, the encoding performance has
improved to 188 KB/s, and decoding to 182.3 KB/s.

3. PERFORMANCE EVALUATION

‘We now proceed to evaluate the performance of our hand-
tuned implementation of random network coding, on an
iPhone 3G and a second-generation iPod Touch. The focus
of our attention is on the coding bandwidth, CPU usage, and
energy consumption, in the context of a realistic application
scenario for media streaming.

Our evaluations use fully dense coding matrices with non-
zero coefficients unless explicitly mentioned otherwise.

3.1 Coding performance on the iPod Touch

As we evaluate the coding performance on our second-
generation iPod Touch, we have tested a range of 128 bytes
to 16 KB per block, with 64, 128 and 256 blocks. Both
encoding and decoding bandwidth of our table-based and
optimized loop-based implementation are shown in Fig. 4.
They are interpreted as the total bytes of generated coded
blocks (or decoded source blocks) with a (n, k) coding setup
within one second. Fig. 4(a) shows that encoding achieves
its peak performance across almost all coding settings. It
is not a surprise that Fig. 4(b) shows a lower decoding per-
formance, since decoding needs to perform an O(n®) matrix
inversion, in addition to matrix multiplication.

In encoding performance results, an interesting result is
the reduction of encoding rates with block sizes beyond
k = 256 at n = 64, and beyond k£ = 128 at n = 128. The
reduction occurs for both table-based and loop-based imple-
mentations, with a sharper decline for the loop-based ap-
proach. This behavior leads to an interesting find. The en-
coding process has a rather fixed working set, which is n x k,
i.e., the total size of a segment. The sharp decline happens
when the segment size goes beyond 16 KB. Our hypothesis

is that the L1 cache size on the iPod Touch is 16 KB, and
cache misses have been the cause to such declines, when the
source blocks no longer fit in the L1 cache. However, there
exists very little public-domain literature documenting the
ARM1176 specification of the iPhone platform; and without
entering supervisor mode (only possible in the OS kernel),
we are unable to read the ARM’s status registers with spe-
cialized ARM instructions. We eventually managed to use
an undocumented interface to the kernel to read such spec-
ifications. The L1 data cache is indeed 16 KB across both
the iPhone and the iPod Touch, confirming our hypothesis.

The number of executed instructions to achieve an encod-
ing bandwidth of 415 KB/s at (n = 64, k = 128) is estimated
to be around 470.2 MIPS (Mega instructions per second).
This instruction rate is over 88% of the theoretical limits of
533 MIPS for our ARM1176 processor running at 533 MHz
in the second-generation iPod Touch. This represents stel-
lar performance, reflecting that the encoding performance
of our loop-based implementation is mainly constrained by
the computation limits of the ARMv6 core.

3.2 Coding performance: iPhone vs. iPod Touch
The first-generation iPhone, iPod Touch and the iPhone
3G have all used the same ARM1176 as its main processing
core, but they are clocked at 412 MHz (with a 103 MHz bus),
about 29% lower than the clock frequency of 533 MHz in the
second-generation iPod Touch (with a 133 MHz bus). Fig. 5
compares the encoding performance of a second-generation
iPod Touch and an iPhone 3G. The ratio in coding perfor-
mance very closely reflects the ratio of processor frequencies.

-0~ iPodTouch 2G (n=64) -=-iPhone 3G (n=64)
-0~ iPodTouch 2G (n=128) -4-iPhone 3G (n=128)
-0~ iPodTouch 2G (n=256) =---iPhone 3G (n=256)

420

378

AT

204 e TR A Vot ¥y

210 g
8

bandwidth (KBytes/sec)
N
o
N

Ny U Sy N
126 ae Ty A A-----A
B ; 0 0 0 ¢

block size (bytes)
128 256 512 1024 2048 4096 8192 16384
Figure 5: Coding bandwidth of loop-based network
encoding: iPhone 3G vs. 2ndGen iPod Touch.

3.3 Is network coding feasible for media streaming
on the iPhone?

We are now ready to investigate the following question:
From the perspectives of CPU usage and energy consump-
tion, is it feasible to incorporate random network coding as
part of a P2P media streaming solution on the iPhone plat-
form? Although we are not yet at the stage of deploying a
complete and working P2P media streaming system on the
iPhone, it would be interesting to study its feasibility before
such a deployment. We would like to know if there exist
realistic network coding settings that can work efficiently
while the content of a media stream is received and played
back on the iPhone.

3.3.1 Profiling YouTube playback on the iPhone

Before bringing network coding to the picture, we need to
know more about properties of receiving and playing back
content of a video stream on the iPhone platform. We use
iPhone’s YouTube player for this purpose, and try to pro-
file the network bandwidth and CPU usage while watch-
ing a video stream over the WiFi connection of our iPod
Touch (chosen over the iPhone 3G due to its higher clock fre-
quency). We use WiFi connectivity over 3G as it is the com-
mon denominator of wireless interfaces across the iPhone
family of devices. It also allows us to playback higher qual-
ity videos than using the 3G network.

To monitor the activity of processes during playback, we
use the Instruments application included in the iPhone de-
velopment environment (Xcode), running on a Mac desktop
connected to our iPod Touch via a USB connection. We
tested three video clips from YouTube, with various media
properties. We monitor the CPU usage and network activity
while each video clip is played. As it is not possible to save
video clips on the iPhone platform, we eventually needed to
determine their properties using our Mac desktop.

Table 1: YouTube contents & steaming experiments

Clip name Size Bitrate Length CPU Ingress
min:sec | usage

History of 320x 300 Kbps 8:10 12.9% 61 KB/s

the Internet | 180 (37.5 KB/s)

Validation 320x 400 Kbps 16:23 14.1% 101 KB/s
240 (50 KB/s)

Obama’s 640x 620 Kbps 21:22 14.9% 112 KB/s

Inauguration | 360 (77.5 KB/s)

Table 1 shows the properties of each clip and our measure-
ment results regarding the average ingress streaming rate
and average CPU usage due to video decoding and playback
of the clip. It turned that the YouTube process is only active
for a short period of time, when the user interacts with the
GUI to search and to launch a video clip. The decoding and
playback are handled by the mediaserverd process. The
springboard process, which manages the matrix of applica-
tions on the iPhone, consumes about 2% of the CPU. We
noticed a separate DTMobileIS process continuously consum-
ing around 6% of CPU cycles, which is the instrumentation
service running on the device to collect measurements and
to transfer the data via USB to the monitoring Mac desktop.

As noted in Table 1, media decoding and playback con-
sume only a small portion of the CPU processing power,
implying that more complex media decoding operations are
all delegated to the POWERVR GPU. This is good news
for us as it enables us to use the available CPU cycles for
network coding. The average ingress rate is higher than the
actual video rate because it reflects the raw incoming bytes,
and also due to the overhead of the streaming protocol.

3.8.2 CPU usage of random network coding

At this point, we wish to design experiments with network
coding that complement the playback of YouTube video
clips. Without a fully integrated network coded stream-
ing system, we have designed a simpler experimental setup
that is still able to capture the CPU usage of network cod-
ing at the streaming rates relevant to each video clip. In
our experiments, we have implemented an iPhone applica-
tion that performs network decoding and encoding at rates
corresponding to a realistic P2P media streaming scenario.
Since the iPhone prohibits third-party applications running
as a background process, we have no choice but to run our
streaming experiments in a standalone manner, i.e., without
the YouTube application running concurrently.

We first need to determine the appropriate settings for
network coding in our video clips. Our (n = 128, k = 4096)
benchmark leads to a segment size of 512 KB, suitable for
higher quality streaming rates, such as 768 Kbps. For a 300
Kbps clip such as History of the Internet, a segment size
of 512 KB would correspond to over 13 seconds worth of
content, leading to a long initial buffering delay. We have
selected a segment size of 256 KB, corresponding to initial
buffering delays of 3—7 seconds in our three video clips. With
this segment size, we intend to evaluate two network coding
settings: (n = 128,k = 2048) and (n = 64, k = 4096).

If a network coded P2P streaming system is deployed on
the iPhone, it not only needs to decode the incoming stream,
but also needs to encode and serve a small number of neigh-
boring nodes with network coded blocks. We intend to run
different experiments for 1, 2 and 4 downstream nodes. Un-
fortunately, based on our coding performance results, the
ARMvV6 core does not have the computation power to decode
at the video bit rate R and encode at 4R (for four down-
stream nodes). To reduce the computation load, we vary
the density of random network coding. Existing work [12]
has demonstrated that the coding matrix can be as sparse
as a 7 — 10% density setting, without increasing the risk
of linear dependence among coded blocks. Conservatively,
we use a density of 1/d if d downstream nodes are served
concurrently so the aggregate encoding rate will still be R.

Table 2 shows the average CPU usage in our experiments,
with network coding performed at the corresponding stream-
ing rates of the three test video clips. In addition to the
actually measured CPU usage, we have also estimated the
CPU usage through CPU usagep,, = R/BWenc + R/BWaec,
where BW reflects the coding bandwidth from Fig. 4 at the
related setting. As observed from the table, the measured
CPU usage for d = 1 is very close to our estimates based
on the above formula. Also, the CPU usage of (n =64,k =
4096) is almost half of (n = 128,k = 2048)’s across the
board as expected. However, the CPU usage decrease for
d = 2 and even further for d = 4 are surprising results. This
turns out to be from improved decoding performance as the
codes become sparser. The last column, d = 0, corresponds

Table 2: CPU usage of network coded streaming.
(n =128, k = 2048)

Clip name Est. | d=1d=2d=4|d=0
Hist. of the Internet | 41% 42% 37% 35% 22%
Validation 55% 55% 49% 44% 31%

Obama’s Inauguration 86% | 85% T75% 69% 44%
(n = 64, k = 4096)

Clip name Est. | d=1d=2d=4|d=0
Hist. of the Internet | 21% 22% 18% 17% 12%
Validation 27% | 28% 25% 22% 16%

Obama’s Inauguration 43% | 43% 38% 35% 22%

Renc=Raec=77.5 KB/s 3.3 sec
[
&o % User Load
=1
> Renc=Rdec= 50 KB/s 5.12 sec (b)
O
I% User Load ‘
Renc=Raec=37.5KB/s ~ $.8 sec ’ (©)
% User Load
0 6 12 18 24 30 36 4 48 54 60 SeC

Figure 6: Instantaneous CPU usage for d = 1.

to decoding a stream at rate R without encoding, e.g., not
serving any neighboring node. The CPU usage in this setting
is about 51% to 58% of the d = 1 setting, when encoding was
concurrently present. This setting reflects a realistic mobile
node which does not have incentives to serve others, or does
not have the capability, e.g., due to a low battery.

Our experiments on the instantaneous CPU usage have
revealed other interesting discoveries. Fig. 6 shows the CPU
usage over the course of our (n = 128,k = 2048) experi-
ments, at three different video bit rates. Fig. 6(a) shows
both user-mode and the total system CPU usage to empha-
size that other background tasks, e.g., the instrumentation
service on the device, and some system tasks eventually in-
crease the CPU usage to 100% at some instances. In addi-
tion, we observed a sawtooth shape of the CPU usage. While
encoding a number of blocks takes a constant time for each
block, decoding a full segment, n blocks, with Gauss-Jordan
elimination has varying complexity, from one to 2n — 1 row
operation(s) [7], causing such a sawtooth phenomenon.

3.3.3 Energy consumption with network coding

To test the consumption of energy with network coding,
we use some unofficial header files to query the remaining ca-
pacity of the battery, as a percentage of the full capacity. We
playback the Inauguration clip as the foreground applica-
tion while our power metering utility is running as a console
application launched through a remote session into a “jail-
broken” iPhone over WiFi. We have tested three settings at
(n =64,k = 4096): video playback without network coding,
playback with network decoding at 77.5 KB/s, and playback
with both encoding and decoding, each at 77.5 KB/s.

The decline of iPhone’s battery energy reserves over a 31
minute period is shown in Fig. 7. The results reflect that
about 33% of the reduction is due to network encoding and
decoding, with decoding contributing to around 15% of the
reduction. This result should be treated as a first-order es-
timate, since the accuracy of the API is not high.

(a) Video playback at R

88
....... (b) Video playback & network
=a decoding at Raec= R

——— (c) Video playback & network

87

—~86 -
9 enc/dec at Renc = Rdec = R
>.85
.(-*:) R=77.5KB/s
S 84 (n=64, k=4096)
Q
@ 83
o
o 82
=
O 81
o

80

79

78 min.

0 3 6 9 12 15 18 21 24 27 30
Figure 7: Energy consumption on the iPhone 3G.

For our discussions, we are able to conclude that, as a
general guideline, network coding with 128 blocks results in
excessive CPU usage, especially for video streams with high
bit rates. Though the CPU usage does not linearly relate to
energy consumption, it certainly is one of the leading causes.
We believe that network coding with 64 blocks is more suit-
able to the current generation of the iPhone platform.

4. CONCLUSIONS

This paper presents the first real-world implementation
of random network coding on smartphones, and in partic-
ular on the iPhone family of mobile devices. We provided
a highly optimized network coding implementation for the
ARMv6 architecture core which should be applicable, di-
rectly or with minor modifications, to the majority of mo-
bile devices in the market. An in-depth analysis of cod-
ing bandwidth, CPU usage and energy consumption exper-
iments were presented. The verdict is that it is possible
to take advantage of network coding at realistic P2P video
streaming rates on current-day mobile devices. With a cod-
ing setting of 64 blocks of 4096 bytes each, decoding even
at high rates of 620 Kbps is possible with a 22% increase
in CPU load. Generating encoded blocks for four neighbor-
ing nodes, beside decoding, for the same 620 Kbps rate is
possible with a 35% increase in CPU load.

In a realistic P2P streaming scenario, however, the trade-
offs between CPU usage and power consumption might limit
the use of network coding to low rates. There are a num-
ber of high-level system design decisions to make in order
to justify the use of network coding. On the other hand,
mobile devices are evolving rapidly and equipped with more
advanced hardware in each new generation. Faster and more
advanced processors would further assist to improve the per-
formance of network coding. As we see it, as mobile hard-
ware platforms advance in the future, the tradeoffs will be
more aligned in favor of using network coding on mobile
devices for real-world multimedia streaming applications.

S. REFERENCES

[1] R. Ahlswede et al. Network Information Flow. IEEE
Trans. on Information Theory, 46, July 2000.
[2] S. Chachulski, M. Jennings, S. Katti, and D. Katabi.
Trading Structure for Randomness in Wireless Oppor-
tunistic Routing. In Proc. of ACM SIGCOMM, 2007.
[3] S. Katti et al. Symbol-level Network Coding for
Wireless Mesh Networks. In ACM SIGCOMM 2008.
[4] M. Pedersen et al. Implementation and Performance
Evaluation of Network Coding for Cooperative Mobile
Devices. In Proc. of IEEE ICC Workshops, May 2008.
[5] S. Katti et al. XORs in The Air: Practical Wireless
Network Coding. In Proc. of ACM SIGCOMM, 2006.
[6] C. Gkantsidis and P. Rodriguez. Network Coding for
Large Scale Content Distribution. In INFOCOM 2005.
[7] H. Shojania and B. Li. Parallelized Network Coding
With Hardware Acceleration. In IEEE IWQoS 2007.
[8] ARM Ltd. ARM1176JZ(F)-S Processor Sheet.
[9] ARM Ltd. NEON Support in the RealView Compiler.
[10] ARM Ltd. ARM Architecture Reference Manual, 2005.
[11] H. Shojania, B. Li, and X. Wang. Nuclei: GPU-accele-
rated Many-core Network Coding. In INFOCOM 2009.

[12] G. Ma, Y. Xu, M. Lin, and Y. Xuan. A Content
Distribution System based on Sparse Linear Network
Coding. In Proc. of NetCod 2007.

