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Abstract— This paper considers transmitting a sequence of
messages (streaming messages) over a packet erasure channel.
In each time slot, the source constructs a packet based on the cur-
rent and the previous messages and transmits the packet, which
may be erased when the packet travels from the source to the des-
tination. Every source message must be recovered perfectly at the
destination subject to a fixed decoding delay. We assume that the
channel loss model introduces either one burst erasure or multi-
ple arbitrary erasures in any fixed-sized sliding window. Under
this channel loss assumption, we fully characterize the maximum
achievable rate by constructing streaming codes that achieve the
optimal rate. In addition, our construction of optimal streaming
codes implies the full characterization of the maximum achievable
rate for convolutional codes with any given column distance,
column span, and decoding delay. Numerical results demonstrate
that the optimal streaming codes outperform existing streaming
codes of comparable complexity over some instances of the
Gilbert–Elliott channel and the Fritchman channel.

Index Terms— Burst and arbitrary erasures, channel capacity,
convolutional codes, column distance, column span, forward error
correction, low-latency, packet erasure channel, sliding window,
streaming codes.

I. INTRODUCTION

LOW-LATENCY video conferencing has been a corner-
stone for communication and collaboration for individ-

uals and enterprises. The advent of 5G networks promises
to make high-throughput at low-latency ubiquitous. This
enables new applications such as high-quality video con-
ferencing, virtual reality (VR) and Internet-of-things (IoT)
applications including vehicle-to-vehicle communication and
mission-critical machine-type communication [1]. At the core
of these important applications is the need to reliably deliver
packets with low latency. Packet losses at the physical layer
and the network layer are inevitable, which may be caused by

Manuscript received January 15, 2018; revised December 5, 2018; accepted
January 2, 2019. Date of publication January 22, 2019; date of current version
June 14, 2019. This work was supported by a grant from the Cisco Research
Center and matching funds from the NSERC CRD program. This paper was
presented in part at the 2018 IEEE International Symposium on Information
Theory.

S. L. Fong, A. Khisti, and B. Li are with the Department of Electrical
and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4,
Canada (e-mail: silas.fong@utoronto.ca; akhisti@ece.utoronto.ca; bli@ece.
utoronto.edu).

W.-T. Tan, X. Zhu, and J. Apostolopoulos are with Enterprise Networking
Innovation Labs, Cisco Systems, San Jose, CA 95134 USA.

Communicated by A. Jiang, Associate Editor for Coding Theory.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2019.2894124

unreliable wireless links or congestion at network bottlenecks.
In order to alleviate the effect of packet losses on applica-
tions that are run over the Internet, two main error control
schemes have been implemented at the data link and transport
layers: Automatic repeat request (ARQ) and forward error
correction (FEC).

For long-distance low-latency communication, it is not
suitable to use ARQ schemes for error control because
each retransmission incurs an extra round-trip delay. More
specifically, correcting an erasure using ARQ results in a
3-way delay (forward + backward + forward), and this
aggregate (3-way) delay including transmission, propagation
and processing delays is required to be lower than 150 ms
for interactive applications such as voice and video according
to the International Telecommunication Union [2] (see [3]
for an overview of the ubiquitous H.264/AVC video coding
standard). This aggregate delay makes ARQ impractical for
communication between two distant points with aggregate
delay larger than 150 ms. For example, ARQ cannot be
used for communication between two diametrically opposite
points on the earth’s circumference because the corresponding
propagation delay alone is at least 200 ms [4].

For short-distance low-latency communications in the Tac-
tile Internet [5], the next evolution of IoT, whose round-
trip latency is required to be less than 1 ms [1], using
ARQ schemes at the transport layer for error control is an
inefficient use of precious time resources because the time
budget allocated for retransmissions could instead be used
for processing data at end users or data processing servers.
Consider the example of remotely controlling a critical device
where a sensor wants to communicate with an actuator in
real time through a control server with round-trip latency less
than 1 ms as illustrated in [1, Fig. 3]. The latency goals for
processing delay at the terminals, transmission delay over the
air interfaces between the terminals and the control server
and data processing delay at the control server are 0.3 ms,
0.2 ms and 0.5 ms respectively. If an ARQ scheme is used
for error control, then retransmissions compete the precious
time resources with data computation at the terminals and the
control server.

On the contrary, FEC schemes are amenable to low-
latency communications because no retransmission is required.
Instead of using retransmissions to achieve high reliability,
FEC schemes increase the correlation among the transmitted
symbols by adding redundant information. In other words,
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FEC schemes avoid the extra round-trip latency needed by
retransmissions at the expense of the extra processing time
spent on adding and removing redundant information at end
users. Since FEC schemes inject redundancy at a constant
rate while retransmissions inject redundancy at a highly non-
uniform rate, FEC rather than ARQ schemes are more suitable
for controlling delay for low-latency communications.

In order to search for FEC codes at the transport layer which
are suitable for low-latency communications over the Internet,
we are motivated to investigate the fundamental limits of low-
latency streaming codes with FEC.

A. Motivation of Studying Packet-Erasure Channel

In practice, packet losses experienced at the network layer
can be well approximated by statistical models [6], [7], includ-
ing the well-known Gilbert-Elliott (GE) channel [8], [9] and
its generalization the Fritchman channel [10]. In order to find
good FEC codes for error correction at the transport layer,
it would be ideal if we could find the maximum achievable rate
of a statistical model under a low decoding latency constraint
and a given target error rate. However, characterizing such
a rate over a statistical channel seems intractable. Therefore,
we are motivated to study other simplified channel models
that provide useful approximations to practical low-latency
communications over the Internet.

In this paper, we focus on a packet-erasure channel model
that introduces both burst and arbitrary errors. In any window
of a fixed size, we assume that the channel introduces either
a burst erasure or multiple arbitrary erasures. Although this
channel model is not statistical, it has been shown in [11]
that streaming FEC codes that correct both burst and arbitrary
erasures can significantly outperform traditional streaming
FEC codes that correct only one type of erasures (either
burst or arbitrary) for both the GE channel and the Fritchman
channel.

B. System Model

In order to describe the existing results for the packet-
erasure channel model, we would like to briefly describe the
channel model. A formal description will appear later in the
paper. The channel consists of a source and a destination.
In each time slot, the source chooses a collection of k symbols
destined for the destination and encodes the k symbols into
a collection of n symbols followed by transmitting the n
symbols through the channel. The collection of n symbols
transmitted in a time slot are either received perfectly by the
destination or erased (lost). The fraction k/n specifies the
coding rate. We call the k symbols chosen by the source, the n
symbols transmitted by the source and the n symbols received
by the destination the source packet, the transmitted packet
and the received packet respectively. Since every low-latency
application is subject to a tight delay constraint, we assume
that every source packet generated in a time slot must be
decoded with delay T , i.e., within the future T time slots.

In order to capture the packet loss behavior over the Internet,
we first consider the simple scenario where either one burst

erasure with length no longer than B occurs or multiple
arbitrary erasures with total count no larger than N occur on
the discrete timeline. Since a channel that introduces any N
arbitrary erasures can introduce any burst erasure of length N ,
we assume without loss of generality (wlog) that

B ≥ N. (1)

In order to avoid triviality, we assume wlog that

B > 0, (2)

or otherwise B = N = 0 by (1) in which case no cod-
ing is needed to achieve the maximum rate one. Similarly,
a channel that introduces any burst erasure of a positive length
can introduce one arbitrary erasure, hence we assume wlog
that

N ≥
{

1 if B > 0,

0 otherwise.
(3)

In addition, we assume wlog that

T ≥ B, (4)

or otherwise a burst erasure of length B starting from a certain
time slot would prevent the destination from timely recovering
the source packet transmitted in the same time slot. Under
the erasure channel model described above, we are interested
in characterizing the maximum coding rate k/n for sending
information over the channel such that every source packet
can be perfectly recovered by the destination with delay T .
In the rest of the paper, we assume wlog the following holds
due to (1), (2), (3) and (4):

T ≥ B ≥ N ≥ 1. (5)

C. Related Work

Correcting burst erasures using convolutional codes has a
long history starting in the late 1950’s, and the achievable
rates for convolutional codes that correct burst erasures have
been discussed in numerous works including [12]–[15], but
the optimality of the convolutional codes under delay con-
straints was not discussed until the work by Martinian and
Sundberg [16] in 2004. In [16], streaming codes for the special
case N = 1 are considered and the maximum achievable rate
for convolutional codes over a channel that introduces only a
single burst erasure (because N = 1) was proved to be T

T +B .
Various generalizations of the burst erasure model and the
low-latency convolutional codes in [16] have been proposed
in [17]–[20].

For a channel that introduces both burst and arbitrary
erasures as described in Section I-B, optimal convolutional
codes with rate 1/2 were discovered in [19] in 2013. Recently,
it was proved by Badr et al. [11, Ths. 1 and 2] that the
maximum achievable rate is bounded between T −N

T +B−N and
T −N+1

T +B−N+1 for any (T, B, N).

D. Main Contribution

This paper studies the sliding window model suggested
in [11] which generalizes the simple system model described
in Section I-B. Under this model, we assume that either one
burst erasure with length no longer than B occurs or multiple
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arbitrary erasures with total count no larger than N occur in
any sliding window of size W . If we set W = ∞, then the
sliding window model reduces to the simple system model
described in Section I-B. Throughout this paper, we assume

W ≥ T + 1 (6)

unless specified otherwise. The assumption of the window
size W ≥ T + 1 can be explained intuitively as follows—
A source packet generated in a time slot must be decoded by
the destination in T time slots, implying that the “lifespan” of
each source packet is T +1. Setting the window size no smaller
than the lifespan of a source packet enables us to investigate
how the erasures within the lifespan of a source packet affects
the recovery of the packet. Nevertheless, the case where
W < T + 1 will also be discussed in the sequel.

Under the sliding window model, Badr et al.
[11, Ths. 1 and 2] showed that the maximum achievable rate

lies between T −N
T +B−N and T −N+1

T +B−N+1 for any (W, T, B, N),
which is not a satisfactory result because the lower and upper
bounds do not coincide for any (W, T, B, N). The main result
of this paper shows that the upper bound is indeed achievable,
i.e., the maximum achievable rate equals T −N+1

T +B−N+1 for any
(W, T, B, N). This generalizes the results in [16] and [19]
and strengthens the result in [11] (cf. Section I-C). The exact
statement of our main result will be stated in Section II-C.
The proof of the main result can be divided into the following
two steps:

1. Construct an (n, k)-block code with k
n = T −N+1

T +B−N+1 hav-
ing the following property: The destination can perfectly
recover the k source symbols with decoding delay T as
long as the block code is used over the erasure channel
in n consecutive time slots.

2. Convert the (n, k)-block code into a convolutional code
by periodic interleaving [15].

The details of the above two steps can be found in Section IV
and Section III.

In addition, our construction of optimal streaming codes
implies the full characterization of the maximum achievable
rate for convolutional codes with any given column distance,
column span and decoding delay, whose details can be found
in Section VII. Simulation results in Section IX reveal that
our proposed codes outperform all existing practical stream-
ing codes over some instances of the GE channel and the
Fritchman channel.

E. Paper Outline

This paper is organized as follows. The notation in this
paper is explained in the next subsection. Section II presents
the formulation of streaming codes for the packet erasure
channel and states the main result. Section III presents the
preliminary results — a standard procedure for interleaving a
block code into a streaming code and two key lemmas which
enable us to construct block codes that can be interleaved to
form optimal streaming codes. Section IV contains the proof
of the main result, i.e., the existence of optimal streaming
codes over the packet erasure channel for all parameters of
(W, T, B, N). The optimal streaming codes take the form of

convolutional codes obtained by interleaving the block codes
as described in the two key lemmas in Section III. Section V
and Section VI present the proofs of the two key lemmas
respectively. In Section VII, we discuss the column distance
and the column span for low-latency convolutional codes, and
use the result in Section IV to characterize the maximum
achievable rate for convolutional codes with fixed column dis-
tance, column span and decoding delay. Section VIII describes
a practical random code construction of optimal low-latency
convolutional codes. Section IX contains numerical results that
compare the performance of the optimal convolutional codes
with state-of-the-art schemes over the GE channel and the
Fritchman channel. Section X concludes this paper.

F. Notation

The set of non-negative integers is denoted by Z+. All the
elements of any matrix considered in this paper are taken from
a common finite field F, where 0 and 1 denote the additive
identity and the multiplicative identity respectively. The set
of k-dimensional row vectors over F is denoted by F

k , and
the set of k × n matrices over F is denoted by F

k×n . For
any matrix G, we let Gt and rank(G) denote respectively the
transpose and the rank of G. A row vector in F

k is denoted
by a � [a0 a1 . . . ak−1] where a� denotes the (� + 1)th

element of a. The k-dimensional identity matrix is denoted
by Ik and the L × B all-zero matrix is denoted by 0L×B .
An L × B parity matrix of a systematic maximum-distance
separable (MDS) (L + B, L)-code is denoted by VL×B , which
possesses the property that any L columns of [IL VL×B] ∈
F

L×(L+B) are independent. It is well known that a systematic
MDS (L + B, L)-code always exists as long as |F| ≥ L +
B [21]. For a matrix G ∈ F

k×n , the column space of G is
the set space(G) � {Gα|α ∈ F

n×1}. A W -dimensional tuple
is denoted by eW � (e0, e1, . . . , eW−1) where ei denotes the
(i + 1)th element of eW . The W -dimensional diagonal matrix
with diagonal elements eW is denoted by

diag(e0, e1, . . . , eW−1) �

⎡
⎢⎢⎢⎣

e0 0 · · · 0
0 e1 · · · 0
...

...
. . .

...
0 · · · 0 eW−1

⎤
⎥⎥⎥⎦.

II. STREAMING CODES FOR CHANNELS WITH BURST

AND ARBITRARY ERASURES

This section formally defines our system model that was
described in Sections I-B and I-D, and states the main result.

A. Problem Formulation

The source wants to send a sequence of length-k pack-
ets {si }∞i=0 to the destination. Each si is an element in F

k where
F is some finite field. In each time slot i ∈ Z+, the source
packet si is encoded into a length-n packet xi ∈ F

n to be
transmitted to the destination through an erasure channel, and
the destination receives yi ∈ F

n ∪ {∗} where yi equals either
xi or the erasure symbol ‘∗’. The code is subject to a delay
constraint of T time slots, meaning that the destination must



FONG et al.: OPTIMAL STREAMING CODES FOR CHANNELS WITH BURST AND ARBITRARY ERASURES 4277

produce an estimate of si , denoted by ŝi , upon receiving yi+T .
In any sliding window that consists of W ≥ T +1 consecutive
time slots, there exists either one burst erasure with length no
longer than B or multiple arbitrary erasures with total count
no larger than N . By the assumptions (5) and (6), we assume

W > T ≥ B ≥ N ≥ 1 (7)

unless specified otherwise.

B. Standard Definitions

The formal definition of the streaming code described in the
previous subsection is stated as follows.

Definition 1 [11, Sec. II-B]: An (n, k, T )F-streaming code
consists of the following:

1) A sequence of source packets {si }∞i=0 where si ∈ F
k .

2) An encoding function

fi : F
k × . . .× F

k︸ ︷︷ ︸
i+1 times

→ F
n

for each i ∈ Z+, where fi is used by the source at time i
to encode si according to

xi = fi (s0, s1, . . . , si ).

3) A decoding function

ϕi+T : F
n ∪ {∗} × . . .× F

n ∪ {∗}︸ ︷︷ ︸
i+T +1 times

→ F
k

for each i ∈ Z+, where ϕi+T is used by the destination
at time i + T to estimate si according to1

ŝi = ϕi+T (y0, y1, . . . , yi+T ). (8)

Definition 2: An (n, k,m, T )F-convolutional code is an
(n, k, T )F-streaming code constructed as follows: Let
Gconv

0 ,Gconv
1 , . . . ,Gconv

m be m + 1 generator matrices in F
k×n .

Then for each i ∈ Z+,

xi =
m∑
�=0

si−� Gconv
� (9)

where s−1 = s−2 = . . . = s−m = 01×k by convention.
Remark 1: For an (n, k,m, T )F-convolutional code, m is

commonly referred to as the encoder memory (see, e.g.,
[23, Sec. 1.4]), and the role of T specifies the decoding delay
associated with the convolutional code (cf. (8)).

Definition 3: An erasure sequence is a binary sequence
denoted by e∞ � {ei }∞i=0 where

ei = 1{erasure occurs at time i}.
A (W, B, N)-erasure sequence is an erasure sequence e∞ that
satisfies the following: For each i ∈ Z+ and any window

Wi � {i, i + 1, . . . , i + W − 1}, (10)

1Early decoding is not considered in this definition. In practice, early
decoding could decrease the average delay of decoding. See [22] for an imple-
mentation of streaming codes where early decoding is permitted. However,
the theoretical and simulation results in this paper remain unchanged even if
early decoding is permitted because this paper focuses on maximum rather
than average decoding delay.

Fig. 1. A periodic (5, 3, 2)-erasure sequence with period 16.

either N <
∑
�∈Wi

e� ≤ B holds with all the 1’s
in (ei , ei+1, . . . , ei+W−1) occupying consecutive posi-
tions or

∑
�∈Wi

e� ≤ N holds with no restriction on the
positions of 1’s. In other words, a (W, B, N)-erasure sequence
introduces either one burst erasure with length no longer
than B or multiple arbitrary erasures with total count no larger
than N in any window Wi , i ∈ Z+. The set of (W, B, N)-
erasure sequences is denoted by �∞

(W,B,N).

Example 1: Suppose (W, B, N) = (5, 3, 2). Consider the
periodic sequence with period 16 as shown in Figure 1. The
sequence is in �∞

(5,3,2) because in any sliding window of
size W = 5, there is either a single burst erasure of length no
longer than B = 3 or no more than N = 2 arbitrary erasures.

Definition 4: The mapping gn : F
n × {0, 1} → F

n ∪ {∗} of
the erasure channel is defined as

gn(x, e) =
{

x if e = 0,

∗ if e = 1.
(11)

For any erasure sequence e∞ and any (n, k, T )F-streaming
code, the following input-output relation holds for the erasure
channel for each i ∈ Z+:

yi = gn(xi , ei ). (12)

Definition 5: An (n, k, T )F-streaming code is said to
be (W, B, N)-achievable if the following holds for any
(W, B, N)-erasure sequence e∞ ∈ �∞

(W,B,N): For all i ∈ Z+
and all si ∈ F

k , we have

ŝi = si

where

ŝi = ϕi+T
(
y0, . . . , yi+T

)
= ϕi+T

(
gn(x0, e0), . . . , gn(xi+T , ei+T )

)
due to (8) and (12).

Definition 6: Fix any (W, T, B, N) that satisfies (7). The
(W, T, B, N)-capacity, denoted by C(W,T ,B,N), is the supre-
mum of the rates attained by (n, k, T )F-streaming codes that
are (W, B, N)-achievable, i.e.,

C(W,T ,B,N) � sup

{
k

n

∣∣∣∣A (W, B, N)-achievable (n, k, T )F-
streaming code exists for some F

}
.

It was shown in [11, Ths. 1 and 2] that

T − N

T + B − N
≤ C(W,T ,B,N) ≤ T − N + 1

T + B − N + 1
(13)

holds for any (W, T, B, N). Our main result stated in the next
subsection closes the gap.
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C. Main Result

Theorem 1: Fix any (W, T, B, N) that satisfies (7) and fix
a finite field F such that

|F| > 2

((
T + 1

N

)
+ T − B + 2

)
. (14)

Then, there exists an (n, k, T, T )F-convolutional code that is
(W, B, N)-achievable where k = T − N +1 and n = T + B −
N + 1.

Combining Theorem 1, Definition 6 and (13), we fully
characterize the (W, T, B, N)-capacity to be

C(W,T ,B,N) = T − N + 1

T + B − N + 1

for all (W, T, B, N) that satisfies (7), which generalizes the
capacity results for the special case N = 1 in [16] and for the
special case T −N+1

T +B−N+1 = 1
2 in [19]. In particular, the upper

bound in (13) obtained in [11] is tight and the supremum in
Definition 6 can be replaced with a maximum.

III. PRELIMINARIES FOR THE PROOF OF THEOREM 1

An important step of the proof of Theorem 1 is to construct
streaming codes by periodically interleaving block codes. The
definition of a block code is formally stated as follows.

Definition 7: An (n, k, T )F-block code consists of the
following:

1) A set of k source symbols {s[i ]}k−1
i=0 where s[i ] ∈ F.

2) A k × n generator matrix

G �
[
Ik P

]
where P ∈ F

k×(n−k) is some parity-check matrix to be
determined later. The codeword is generated as[
x[0] x[1] . . . x[n − 1]] � [s[0] s[1] . . . s[k − 1]]G.

(15)

3) A decoding function

ϕi+T : F ∪ {∗} × . . .× F ∪ {∗}︸ ︷︷ ︸
i+T +1 times

→ F

for each i ∈ {0, 1, . . . , k −1}, where ϕi+T is used by the
destination at time i + T to estimate s[i ] according to

ŝ[i ]=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ϕi+T (y[0], . . . , y[i + T ]) if i + T ≤n−1,

ϕi+T (y[0], . . . , y[n − 1], ∗, . . . , ∗︸ ︷︷ ︸
i+T +1 symbols

)

if i + T >n−1.

(16)

The following definition concerns the error-correcting capabil-
ity of (n, k, T )F-block codes.

Definition 8: An (n, k, T )F-block code is said to be
(W, B, N)-achievable if the following holds for any
(W, B, N)-erasure sequence2 e∞ ∈ �∞

(W,B,N): Let

y[i ] � g1(x[i ], ei) (17)

be the symbol received by the destination at time i for each
i ∈ {0, 1, . . . , n − 1} where g1 is as defined in (11). For the
(n, k, T )F-block code, we have

ŝ[i ] = s[i ]
for all i ∈ {0, 1, . . . , k − 1} and all s[i ] ∈ F where ŝ[i ] is
constructed according to (16) and (17).

The following lemma implies that constructing a (W, B, N)-
achievable convolutional code is not more difficult than con-
structing a (W, B, N)-achievable block code. The proof of
the following lemma is deferred to Appendix A because it
follows the standard argument of interleaving a block code into
a convolutional code by means of periodic interleaving [15]
(see also [16, Sec. IV-A]).

Lemma 1: Given an (n, k, T )F-block code which is
(W, B, N)-achievable, we can construct an (n, k, n − 1, T )F-
convolutional code which is (W, B, N)-achievable. More
specifically, given that G = [

gi, j
]

0≤i≤k−1,
0≤ j≤n−1

is the generator

matrix of the (n, k, T )F-block code where gi, j is the entry
situated in row i and column j of G, we can construct the n−
1 generator matrices of the (n, k, n − 1, T )F-convolutional
code as follows: For each � ∈ {0, 1, . . . , n − 1}, construct
Gconv
� according to (18) as shown at the bottom of this

page where G = ∑n−1
�=0 Gconv

� . In particular, if we let si �
[si [0] si [1] · · · si [k − 1]] and let[
xi [0] xi+1[1] · · · xi+n−1[n − 1]]

�
[
si [0] si+1[1] · · · si+k−1[k − 1]]G

for all i ∈ Z+, then the symbols generated at time i by the
(n, k, n − 1, T )F-convolutional code are

xi �
[
xi [0] xi [1] · · · xi [n − 1]]. (19)

Example 2: Suppose we are given a (5, 3, 2)-achievable
(6, 3, 4)F-block code with generator matrix

G =
⎡
⎣ 1 0 0 1 1 0

0 1 0 0 1 1
0 0 1 0 1 2

⎤
⎦.

Let {si }i∈Z+ be a sequence of streaming messages where si =[
si [0] si [1] si [2]] ∈ F

3. From time i − 2 to i + 5, the symbols
yielded by the (6, 3, 5, 4)F-convolutional code constructed by
interleaving the (6, 3, 4)F-block code according Lemma 1 are
shown in Table I. The symbols in Table I highlighted in the

2Only the first n elements of e∞ play a role in the definition.

Gconv
� �

⎧⎪⎨
⎪⎩
[
0k×� diag

(
g0,�, g1,�+1, . . . , gk−1,�+k−1

)
0k×(n−k−�)] if 0 ≤ � ≤ n − k,[

0k×� diag
(
g0,�, g1,�+1, . . . , gn−1−�,n−1

)
0(k−n+�)×(n−�)

]
if n − k < � ≤ n − 1,

(18)
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TABLE I

SYMBOLS YIELDED BY A (6, 3, 5, 4)F-CONVOLUTIONAL CODE THROUGH INTERLEAVING A (6, 3, 4)F-BLOCK CODE

same color diagonally (in 	 direction) are encoded using the
same (6, 3, 4)F-block code. Given the fact that each (6, 3, 4)F-
block code is (5, 3, 2)-achievable, we can see from Table I that
si = [

si [0] si [1] si [2]] can be perfectly recovered by time i +5
as long as the erasure sequence belongs to �∞

(5,3,2).
Instead of proving Theorem 1 by enumerating all possible

(W, B, N)-erasure sequences, we will prove Theorem 1 by
enumerating a small subset of sequences called maximal
(W, B, N)-erasure patterns.

Definition 9: A maximal (W, B, N)-erasure pattern is a
W -dimensional binary tuple εW that satisfies either∑W−1
�=0 ε� = B with all the 1’s in εW occupying consecutive

positions or
∑W−1
�=0 ε� = N with no restriction on the

positions of 1’s. The set of maximal (W, B, N)-erasure
patterns is denoted by �W

B,N .
Recall the definition of window Wi in (10) (where

|Wi | = W ). For any (W, B, N)-erasure sequence e∞ and
any Wi , there always exists a maximal (W, B, N)-erasure
pattern εW such that e� ≤ ε� for all � ∈ Wi by Definition 3
and Definition 9. The following lemma enables us to prove
Theorem 1 by considering only maximal (T + 1, B, N)-
erasure patterns in �T +1

B,N rather than all possible (W, B, N)-
erasure sequences in �∞

(W,B,N). Before presenting the lemma,
we define the following notations which will be used in the rest
of the paper. We let u(k)i denote the k-dimensional unit column
vector [01×i 1 01×(k−i−1)]t for each i ∈ {0, 1, . . . , k − 1}, let

I(k)j �
[

0(k− j )×(k− j ) 0(k− j )× j

0 j×(k− j ) I j

]
(20)

be the k × k diagonal matrix which embeds I j as a submatrix
for each j ∈ {0, 1, . . . , k}, and let

Eε j � I j − diag(ε j ) (21)

be the j × j diagonal matrix with diagonal elements (1 − ε0),
(1 − ε1), . . . , (1 − ε j−1) for any length- j binary tuple ε j .
We will always multiply Eε j on the right side of a matrix
having j columns, and the multiplication characterizes the
erasure operation introduced by Eε j by zeroing the columns of
the multiplied matrix according to ε j . The proof of the lemma
is straightforward and hence relegated to Appendix B.

Lemma 2: Fix any (W, T, B, N) that satisfies (7). Let G =
[g0 g1 . . . gn−1] be a k × n matrix in F

k×n , and let

Gi �
{[ gi . . . gi+T ] if i ≤ n − T − 1,[

gi . . . gn−1 0
]

if i > n − T − 1
(22)

be a submatrix of G for each i ∈ {0, 1, . . . , k − 1} where 0
is the k × (i + T − n + 1) zero matrix. The (n, k, T )F-block
code with generator matrix G is (W, B, N)-achievable if G
satisfies the following sufficient condition:

For each i ∈ {0, 1, . . . , k − 1} and each maximal (T + 1,
B, N)-erasure pattern εT +1 ∈ �T +1

B,N , it is true that

u(k)i ∈ space
(
I(k)k−i Gi EεT +1

)
. (23)

Remark 2: Lemma 2 transforms the problem of finding
optimal (n, k, T )F-block codes that are (W, B, N)-achievable
into a purely algebraic problem stated in (23). The physical
meaning of (23) can be interpreted as follows: Suppose
[x[0] x[1] · · · x[n − 1]] = [s[0] s[1] · · · s[k − 1]] G. Then,
(23) implies that si can be perfectly recovered by time i + T
as long as s0, s1, . . . , si−1 have been perfectly recovered and
the erasure patten in Wi is in �T +1

B,N .
The following lemma shows the existence of a generator

matrix G which satisfies the sufficient condition in (23) when
T − N + 1 ≥ B . One component of the generator matrix is an
m × (N + m) N-diagonal matrix defined as

Dm×(N+m)
N

�

⎡
⎢⎢⎢⎢⎣

d(0)0 · · · d(0)N−1 0 · · · · · · 0

0 d(1)0 · · · d(1)N−1 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 d(m−1)
0 . . . d(m−1)

N−1 0

⎤
⎥⎥⎥⎥⎦ (24)

with arbitrary values for {d(i)� }0≤i≤m−1
0≤�≤N−1

. The proof of the fol-

lowing lemma is tedious and is therefore deferred to Section V.
Lemma 3: Fix any (W, T, B, N) that satisfies (7) and let

k � T − N + 1 and n � k + B . Suppose k ≥ B , which is
equivalent to k/n ≥ 1/2 (high-rate regime). If F satisfies (14),
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there exists a P ∈ F
k×B having the form

⎡
⎢⎢⎣

D(B−N)×B
N

0N×(B−N) Pright

V(k−B)×B

⎤
⎥⎥⎦ (25)

such that G = [ Ik P] satisfies (23) for all i ∈ {0, 1, . . . , k} and
all εT +1 ∈ �T +1

B,N , where Dm×(N+m)
N is an N-diagonal matrix

as defined in (24), Pright is a N × N matrix with non-zero
entries, and V(k−B)×B denotes the (k − B)× B parity matrix
of a systematic MDS code.

Remark 3: For the special case N = 1 with delay T =
k + N − 1 = k, the parity-check matrix P in Lemma 3
reduces to the parity-check matrix of the Martinian-Sundberg
scheme [16, Th. 2] in which P was simply chosen to be[

IB

V(k−B)×B

]
. For the case N > 1 with delay T = k +

N − 1 > k, the Martinian-Sundberg scheme is no longer
(W, B, N)-achievable because the row weight (number of
non-zero elements) in each of the first B columns in the
generator matrix of the base block code equals 2, implying
that the contribution of some source symbol can be completely
erased by some choice of 2 arbitrary erasures. In contrast, our
choice of P in Lemma 3 having the form (25) ensures that
the minimum row weight of the generator matrix is N + 1,
implying that the contribution of every source symbol is not
completely erased by any choice of N arbitrary erasures. Since
T = k + N − 1 and n = k + B , it follows that B − N symbols
encoded by G need to be decoded before the whole block has
been received.

Remark 4: For the special case N = B with delay T =
k + N − 1 = n − 1, we can simply choose P in Lemma 3
to be Vk×B such that the resultant code is an MDS code.
In this case, the decoding of every symbol encoded by G can
be performed after the whole block has been received because
T = n − 1.

Example 3: Suppose (W, T, B, N) = (6, 5, 3, 2) where
k = 4 ≥ B . Fix F = GF(41) so that (14) is satisfied.
By Lemma 3, there exists a G = [ Ik P] with P having the
form (25) such that G satisfies (23). A candidate for such
a G is

G =

⎡
⎢⎢⎣

1 0 0 0 1 2 0
0 1 0 0 0 1 3
0 0 1 0 0 2 1
0 0 0 1 1 1 1

⎤
⎥⎥⎦,

where the minimum row weight of G equals 3. In particular,
condition (23) is satisfied for each i ∈ {0, 1, 2, 3} and each
maximal (6, 3, 2)-erasure pattern ε6 ∈ �6

(3,2) due to the
following two facts:

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ∈ space

⎛
⎜⎜⎝
⎡
⎢⎢⎣

1 0 0 0 1 2
0 1 0 0 0 1
0 0 1 0 0 2
0 0 0 1 1 1

⎤
⎥⎥⎦Eε6

⎞
⎟⎟⎠

and

space

([
0
I3

])
⊆ space

⎛
⎜⎜⎝
⎡
⎢⎢⎣

0 0 0 0 0 0
1 0 0 0 1 3
0 1 0 0 2 1
0 0 1 1 1 1

⎤
⎥⎥⎦Eε6

⎞
⎟⎟⎠

where Eε6 = diag(1 − e0, 1 − e1, . . . , 1 − e5) and 0 is
the 1 × 3 zero matrix. The effect of Eε6 is to replace the
columns of the multiplied matrix whose indices are inside
{i ∈ {0, 1, 2, 3, 4, 5}|ei = 1} with 04×1, which is equivalent to
“erasing” those columns when we evaluate the column space
of the multiplied matrix. Since ε6 is an arbitrary maximal
(6, 3, 2)-erasure pattern, the erased columns specified by Eε6

take the form of any consecutive 3 columns or any 2 arbi-
trary columns. The intuition behind the idea of finding G
is explained as follows. Consider the baseline Martinian-
Sundberg matrix (cf. Remark 3) denoted by

G∗ �

⎡
⎢⎢⎣

1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 0 1 0 0 0 1
0 0 0 1 1 1 1

⎤
⎥⎥⎦

which has the same dimension as the desired G with dimension
(T −N +1)×(T +B−N +1) = 4×7. Since the minimum row
weight of G∗ equals 2, some symbols cannot be recovered if
the channel is subject to 2 arbitrary erasures. Therefore, we are
motivated to construct a G with minimum row weight 3 by
replacing some zeros in G∗ with non-zeros so that G would
satisfy (23) for each i ∈ {0, 1, 2, 3}. This example remains
valid if we replace GF(41) by GF(5), which is not surprising
because (14) is only a sufficient condition on F.

Example 4: Suppose (W, T, B, N) = (8, 7, 4, 2) where
k = 6 ≥ B . Fix F = GF(67) so that (14) is satisfied.
By Lemma 3, there exists a G = [ Ik P] with P having the
form (25) such that G satisfies (23). An example for such
a G is

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 1 6 0 0
0 1 0 0 0 0 0 5 52 0
0 0 1 0 0 0 0 0 42 43

0 0 0 1 0 0 0 0 32 33

0 0 0 0 1 0 1 2 22 23

0 0 0 0 0 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The following lemma shows the existence of a generator
matrix G which satisfies the sufficient condition in (23) when
T − N +1 < B . The proof is tedious and is therefore deferred
to Section VI.

Lemma 4: Fix any (W, T, B, N) that satisfies (7) and let
k � T − N + 1 and n � k + B . Suppose k < B , which is
equivalent to k/n < 1/2 (low-rate regime). If F satisfies (14),
there exists a P ∈ F

k×B having the form⎡
⎣ Pleft

V(k−B+N)×(B−k)
left

D(B−N)×k
k−B+N

0 V(k−B+N)×(k−B+N)
right

⎤
⎦ (26)

such that G = [ Ik P] satisfies (23) for all i ∈ {0, 1, . . . , k} and
all εT +1 ∈ �T +1

B,N , where Pleft is a (B − N)× (B − k) matrix,

D(B−N)×k
k−B+N is a (k − B + N)-diagonal matrix as defined in (24),
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[
V(k−B+N)×(B−k)

left V(k−B+N)×(k−B+N)
right

]
constitutes the (k −

B + N) × N parity matrix of a systematic MDS code, and 0
is the (k − B + N) × (B − N) zero matrix.

Remark 5: Suppose k < B . Then N > 1 must hold, and
our choice of P in Lemma 4 having the form (26) ensures that
the minimum row weight of the generator matrix is N + 1.
As in the case k ≥ B discussed in Remark 3, we see from (26)
that the contribution of every source symbol is not completely
erased by any choice of N arbitrary erasures, and B − N
symbols encoded by G need to be decoded before the whole
block has been received.

Example 5: Suppose (W, T, B, N) = (6, 5, 4, 3) where
k = 3 < B . Let F = GF(47) so that (14) is satisfied.
By Lemma 4, there exists a G = [ Ik P] with P having the
form (26) such that G satisfies (23). A candidate for such
a G is ⎡

⎣ 1 0 0 1 1 3 0
0 1 0 1 0 2 4
0 0 1 1 0 1 1

⎤
⎦,

where the minimum row weight of G equals 4. This example
remains valid if we replace GF(47) by GF(5), which is not
surprising because (14) is only a sufficient condition on F.

Example 6: Suppose (W, T, B, N) = (8, 7, 6, 4) where
k = 4 < B . Let F = GF(149) so that (14) is satisfied.
By Lemma 4, there exists a G = [ Ik P] with P having the
form (26) such that G satisfies (23). A candidate for such
a G is⎡

⎢⎢⎣
1 0 0 0 1 4 42 43 0 0
0 1 0 0 1 3 0 33 34 0
0 0 1 0 1 2 0 0 24 25

0 0 0 1 1 1 0 0 1 1

⎤
⎥⎥⎦.

IV. PROOF OF THEOREM 1

Fix any (W, T, B, N) that satisfies (7) and choose a suffi-
ciently large F which satisfies (14). Let k � T − N + 1 and
n � k + B . Consider the following two cases:

Case k ≥ B: By Lemma 3 and Lemma 2, there
exists an (n, k, T )F-block code with generator matrix G =
[ Ik P] ∈ F

k×n which is (W, B, N)-achievable where P has
the form (25).

Case k < B: By Lemma 4 and Lemma 2, there
exists an (n, k, T )F-block code with generator matrix G =
[ Ik P] ∈ F

k×n which is (W, B, N)-achievable where P has
the form (26).

Combining the two cases, there exists an (n, k, T )F-block
code which is (W, B, N)-achievable. Based on the (n, k, T )F-
block code, we can construct an (n, k, n−1, T )F-convolutional
code according to Lemma 1. In addition, since P has the form
either (25) or (26), it follows from (18) that Gconv

� = 0k×n for
any � ≥ k+N = T +1, which implies that the (n, k, n−1, T )F-
convolutional code is also an (n, k, T, T )F-convolutional code
(cf. Definition 2). This concludes the proof.

V. PROOF OF LEMMA 3

Fix any (W, T, B, N) that satisfies (7) and recall that k =
T − N + 1. Suppose k ≥ B . Fix any finite field F that

satisfies (14). Our goal is to show that G = [ Ik P] satisfies (23)
for some P having the form (25), where I(k)k−i , Gi and EεT +1

in (23) are as defined in (20), (22) and (21) respectively. To this
end, we construct a variable vector

�q (i) �
[
q(i)0 q(i)1 . . . q(i)N−1

]
∈ F

N

for each i ∈ {0, 1, . . . B −1} where the values of the B vectors
will be determined later in this proof. In addition, we define

�p (i) �
{

[01×i �q (i) 01×(B−N−i)] if 0 ≤ i ≤ B − N − 1,

[01×(B−N) �q (i)] if B − N ≤ i ≤ B − 1.

(27)

Construct a (k − B)× B parity matrix of a systematic MDS
(k, k − B)-code denoted by V(k−B)×B , which always exists
because |F| ≥ 2(2T − B + 1) ≥ k by (14). Then, let

P �

⎡
⎢⎢⎢⎢⎢⎣

�p (0)
...

�p (B−1)

V(k−B)×B

⎤
⎥⎥⎥⎥⎥⎦ (28)

where �p (i) denotes the (i + 1)th row of P. It can be seen
that P has the form (25). It remains to show that G = [Ik P]
satisfies (23) for i = k − 1, k − 2, . . . , 0 for some {�q (i)}B−1

i=0 .
By inspecting (23) and (28), we see that condition (23)
depends on only {�q (B−1− j )}i

j=0 for each i ∈ {B − 1, B −
2, . . . , 0} and does not depend on {�q ( j )}B−1

j=0 for each i ∈
{k − 1, k − 2, . . . , B}. In the rest of the proof, we will
verify condition (23) in the order i = k − 1, k − 2, . . . , 0,
which means that we will choose {�q (i)}B−1

i=0 by choosing
�q (B−1), �q (B−2), . . . , �q (0) sequentially. Consider the following
three mutually exclusive cases which will be investigated in
the following three subsections respectively:

A. Case i = k − 1, k − 2, . . . , B

In this case, we have the following fact due to (22) and
G = [Ik P]:

GB = [
gB gB+1 . . . gn−1 0k×N

]
=

[
0B×(k−B)

Ik−B
P 0k×N

]
. (29)

Since

I(k)k−B GB =
[

0B×(T+1)

Ik−B V(k−B)×B 0(k−B)×N

]
(30)

by (29) (recall the definition of P in (28) and the definition of

I(k)k−B in (20)) and any (k − B) columns of [Ik−B V(k−B)×B] ∈
F
(k−B)×k are independent due to the property of systematic

MDS codes, it follows that

space
(
I(k)k−B GB EεT +1

) = space
(
I(k)k−B GB

)
(31)

for any εT +1 with B positions of 1’s (multiplying EεT+1 on the
right side of a matrix has the effect of zeroing B columns of
the multiplied matrix). Combining (31) and (30), we conclude
that (23) holds for all i ∈ {k − 1, k − 2, . . . , B}.
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B. Case i = B − 1, B − 2, . . . , B − N

We will choose �q (i) in a recursive manner for i = B − 1,
B − 2, . . . , B − N . Suppose i = B − j for some j ∈
{1, 2, . . . , N}. Assume �q (B−1), �q (B−2), . . . , �q (B− j+1) have
been chosen such that (23) holds for i = B − 1, B − 2, . . . ,
B − j +1 for any εT +1 ∈ �T +1

B,N . Our goal is to choose �q (B− j )

such that (23) holds for i = B − j . To this end, we first
recognize the following fact due to (22) and G = [Ik P]:

GB− j = [
gB− j gB− j+1 . . . gn−1 0k×(N− j )

]
=

[
0(B− j )×(k−B+ j )

Ik−B+ j
P 0k×(N− j )

]
. (32)

Using (32), (27) and (28), we obtain

I(k)k−B+ j GB− j =
[

0(B− j )×(T+1)

K(k−B+ j )×(k+ j ) 0(k−B+ j )×(N− j )

]
(33)

where

K(k−B+ j )×(k+ j ) �

⎡
⎢⎢⎢⎢⎢⎣ Ik−B+ j

0 j×(B−N)

�q (B− j )

...

�q (B−1)

V(k−B)×B

⎤
⎥⎥⎥⎥⎥⎦.

By definition, we have

K(k−B+ j )×(k+ j ) =
[

1 01×(k+ j−N−1) �q (B− j )

0(k−B+ j−1)×1 K(k−B+ j−1)×(k+ j−1)

]
.

(34)

Due to the previous case in Section V-A and the assumption
in this case, the sufficient condition (23) holds for each i =
k − 1, k − 2, . . . , B − j + 1 for any εT +1 ∈ �T +1

B,N , which
together with (33) implies that

rank
( [

K(k−B+ j−1)×(k+ j−1) 0(k−B+ j−1)×(N− j+1)
]

EεT +1
)

= k − B + j − 1

and hence

rank(K(k−B+ j−1)×(k+ j−1)Eεk+ j−1) = k − B + j − 1 (35)

for any εk+ j−1 ∈ �k+ j−1
B,N (cf. Definition 9). We would like to

show the existence of a �q (B− j ) ∈ F
N such that

u(k−B+ j )
0 ∈ space

(
K(k−B+ j )×(k+ j ) Eεk+ j

)
(36)

for any εk+ j ∈ �k+ j
B,N , which together with (33) will then imply

that (23) holds for i = B − j . Fix an arbitrary εk+ j ∈ �k+ j
B,N

and consider the following three subcases:
Subcase ε0 = 0: Using (34) and ε0 = 0, we conclude that

the first column of K(k−B+ j )×(k+ j )Eεk+ j is u(k−B+ j )
0 , which

together with (34) implies that (36) holds for any choice of
�q (B− j ).

Subcase ε0 = 1 and
∑k+ j−1
�=0 ε� = B With All the 1’s

in εk+ j Occupying Consecutive Positions: In this case, εk+ j

equals (1, . . . , 1︸ ︷︷ ︸
B times

, 0, . . . , 0), and

K(k−B+ j−1)×(k+ j−1)E(ε1,...,εk+ j−1)

consists of exactly (B − 1) zero column vectors and k + j −
1 − (B − 1) = k − B + j non-zero column vectors, and the
non-zero column vectors are denoted by h1,h2, . . . ,hk−B+ j .
In addition,

rank
([

h1 h2 . . . hk−B+ j
]) = k − B + j − 1

by (35) (due to our induction hypothesis), which implies that
there exists a non-zero vector

λ � [λ1 λ2 · · · λk−B+ j ]t ∈ F
(k−B+ j )×1

such that [
h1 h2 . . . hk−B+ j

]
λ = 0(k−B+ j−1)×1. (37)

Since
[
h1 h2 . . . hk−B+ j

]
contains a (k−B)×(k−B+ j) sub-

matrix of V(k−B)×B (which is the parity matrix of some MDS
code) where any k − B columns of V(k−B)×B are independent,
it follows that any k − B columns of

[
h1 h2 . . . hk−B+ j

]
are

independent, which implies from (37) that λ contains at least
k−B+1 non-zero elements. Consequently, it follows from (37)
that there exists a non-zero vector

ρ � [01×(B−1) λ]t ∈ F
(k+ j−1)×1

which contains at least k − B + 1 non-zero elements such that[
01×(k+ j−N−1) �q (B− j )

K(k−B+ j−1)×(k+ j−1)

]
E(ε1,...,εk+ j−1)ρ

=
[ [

01×(k+ j−N−1) �q (B− j )
]

E(ε1,...,εk+ j−1)ρ

0(k−B+ j−1)×1

]

=
[ [

01×(k+ j−N−1) �q (B− j )
]
ρ

0(k−B+ j−1)×1

]
. (38)

Using the fact that �q (B− j ) is a length-N variable vector and
ρ contains at least k − B + 1 non-zero elements, we claim
that

[
01×(k+ j−N−1) �q (B− j )

]
ρ is a non-zero linear function

of (q(B− j )
0 , q(B− j )

1 , . . . , q(B− j )
N−1 ), and we let ψ(B− j )

εk+ j (�q (B− j ))
denote the non-zero linear function. To see the above claim,
we can assume the contrary that

[
01×(k+ j−N−1) �q (B− j )

]
ρ ≡

0, which implies λ contains at least N zeros, which together
with the fact that λ contains at least k−B+1 non-zero elements
leads to the conclusion that λ contains at least k− B +1+ N >
k − B + j elements, contradicting that fact that the length of λ

is k − B + j . Combining (34) and (38), we conclude that (36)
holds as long as �q (B− j ) satisfies ψ(B− j )

εk+ j (�q (B− j )) = 0.

Subcase ε0 = 1 and
∑k+ j−1
�=0 e� = N With No Restriction

on the Positions of 1’s in εk+ j : In this case,

K(k−B+ j−1)×(k+ j−1)E(ε1,...,εk+ j−1)

consists of exactly (N −1) zero column vectors and k+ j −1−
(N−1) = k+ j−N non-zero column vectors, which we denote
as h1,h2, . . . ,hk+ j−N ∈ F

k−B+ j−1. Construct the following
(k − B + j)× (k + j − N) submatrix of K(k−B+ j )×(k+ j ):

A �
[

p1 p2 · · · pk+ j−N

h1 h2 · · · hk+ j−N

]
(39)

for some [p1 p2 · · · pk+ j−N ] ∈ F
k+ j−N which is a

subvector of
[
01×(k+ j−N−1) �q (B− j )

]
. Since the length of
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[p1 p2 · · · pk+ j−N ] is strictly larger than the number of
zeros in

[
01×(k+ j−N−1) �q (B− j )

]
, there exists an r ∈ {1, 2, . . . ,

k+ j− N} such that pr = 0 where pr is an element of �q (B− j ).
Since

rank
( [

h1 · · · hr−1 hr+1 · · · hk+ j−N
] ) = k − B + j − 1

by (35) (due to the induction hypothesis), we have

hr ∈ space
( [

h1 · · · hr−1 hr+1 · · · hk+ j−N
] )
,

which implies that there exists a non-zero vector

λ � [λ1 . . . λr−1 1 λr+1 . . . λk+ j−N ]t ∈ F
(k+ j−N)×1

such that

[
h1 · · · hr−1 hr hr+1 · · · hk+ j−N

]
λ = 0(k−B+ j−1)×1,

which together with (39) and the fact pr = 0 implies that

Aλ =
[
�
(B− j )
εk+ j (�q (B− j ))

0(k−B+ j−1)×1

]
(40)

for some non-zero linear function of (q(B− j )
0 , q(B− j )

1
, . . . , q(B− j )

N−1 ) denoted by �(B− j )
εk+ j (�q (B− j )). Using (34), (39),

the fact that A consists of columns of K(k−B+ j )×(k+ j )

and (40), we conclude that (36) holds as long as �q (B− j )

satisfies �(B− j )
εk+ j (�q (B− j )) = 0.

Combining the above three subcases, we see that for any
εk+ j ∈ �

k+ j
B,N , statement (36) holds for all i ∈ {B − 1, B −

2, . . . , B − N} as long as �q (i) ∈ F
N satisfies ψ(i)

εk+ j (�q (i)) = 0

and �
(i)
εk+ j (�q (i)) = 0. Since the number of �q (i) ∈ F

N that

satisfies either ψ(i)
εk+ j (�q (i)) = 0 or �(i)

εk+ j (�q (i)) = 0 is less
than 2|F|N−1 for each i and each εk+ j and

∣∣∣�k+ j
B,N

∣∣∣ ≤
(

T + 1

N

)
+ T − B + 2,

the hypothesis (14) guarantees the following: For each i =
B −1, B −2, . . . , B − N where the vectors �q (B−1), . . . , �q (i+1)

have been chosen, we can always choose a �q (i) ∈ F
N such

that ψ(i)
εk+ j (�q (i)) = 0 and �(i)

εk+ j (�q (i)) = 0 for all εk+ j ∈ �k+ j
B,N

because∣∣∣∣∣
{

�q (i) ∈ F
N

∣∣∣∣∣ψ
(i)
εk+ j (�q (i)) = 0 or �(i)

εk+ j (�q (i)) = 0

for some εk+ j ∈ �k+ j
B,N

}∣∣∣∣∣
total number of �q (i)

≤ 2
((T +1

N

) + T − B + 2
)|F|N−1

|F|N

< 1.

By induction, there exist �q (B−1), . . . , �q (B−N) such that
ψ
(i)
εk+ j (�q (i)) = 0 and �

(i)
εk+ j (�q (i)) = 0 for all i ∈ {B −

1, . . . , B − N} and all εk+ j ∈ �
k+ j
B,N . This together with the

conclusions made in the above three subcases implies that
statement (36) holds for all i ∈ {B − 1, B − 2, . . . , B − N}
and all εk+ j ∈ �

k+ j
B,N , which together with (33) implies

that (23) holds for all i ∈ {B − 1, B − 2, . . . , B − N} and
all εk+ j ∈ �k+ j

B,N .

C. Case i = B − N − 1, B − N − 2, . . . , 0

Suppose �q (B−1), �q (B−2), . . . , �q (B−N) have been chosen in
the previous subcase. We will choose �q (i) in a recursive
manner for i = B − N − 1, B − N − 2, . . . , 0. Suppose
i = B − N − j for some j ∈ {1, 2, . . . , B − N}.
Assume �q (B−N−1), �q (B−N−2), . . . , �q (B−N− j+1) have been
chosen such that (23) holds for i = B − N − 1, B − N −
2, . . . , B − N − j + 1 for any εT +1 ∈ �T+1

B,N . Our goal is to
choose �q (B−N− j ) such that (23) holds for i = B − N − j .
To this end, we first use the first clause in (27), (28) and the
fact G = [Ik P] to obtain

I(k)k−B+N+ j GB−N− j =
[

0(B−N− j )×(T +1)

J(k−B+N+ j )×(T +1)

]
(41)

where J(k−B+N+ j )×(T +1) is defined in (42) as shown at the
bottom of this page with V(k−B)×(B− j ) being the matrix
consisting of the first B − j columns of V(k−B)×B . We would
like to show the existence of a �q (B−N− j ) ∈ F

N such that

u(k−B+N+ j )
0 ∈ space

(
J(k−B+N+ j )×(T +1) EεT +1

)
(43)

for any εT +1 ∈ �T +1
B,N , which together with (41) will then

imply that (23) holds for i = B − N − j . Fix an arbitrary
εT +1 ∈ �T +1

B,N and consider the following three subcases:
Subcase ε0 = 0: Using (42) and ε0 = 0, we conclude that

the first column of J(k−B+N+ j )×(T +1) EεT +1 is u(k−B+N+ j )
0 ,

J(k−B+N+ j )×(T +1) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ik−B+N+ j

01×(B−N− j ) q(B−N− j )
0 q(B−N− j )

1 · · · · · · · · · q(B−N− j )
N−1

01×(B−N− j+1) q(B−N− j+1)
0 q(B−N− j+1)

1 · · · · · · q(B−N− j+1)
N−2

. . .
. . .

. . .
...

...

01×(B−N) q(B−N)
0 q(B−N)

1 · · · q(B−N)
N− j−1

...
...

... · · · ...

01×(B−N) q(B−1)
0 q(B−1)

1 · · · q(B−1)
N− j−1

V(k−B)×(B− j )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(42)
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which together with (42) implies that (43) holds for any choice
of �q (B−N− j ).

Subcase ε0 = 1 and
∑T
�=0 ε� = B With All the 1’s in

εT +1 Occupying Consecutive Positions: In this case, εT +1 =
(1, . . . , 1︸ ︷︷ ︸

B times

, 0, . . . , 0) and j ≤ B − N . Using (42) and the fact

that (k− B+ N + j)− B ≤ k− B , we see that the first k− B+1
non-zero columns of J(k−B+N+ j )×(T +1)EεT +1 equals⎡

⎢⎢⎣ 0(N+ j )×(k−B) q(B−N− j )
0

0(N+ j−1)×1

V∗

⎤
⎥⎥⎦ (44)

where V∗ is a (k − B) × (k − B + 1) submatrix of
[Ik−B V(k−B)×B]. Since any (k − B) columns of V∗ are
independent due to the property of systematic MDS matrices,
it follows from (44) that[

q(B−N− j )
0

0(k−B+N+ j−1)×1

]
∈ space

(
J(k−B+N+ j )×(T +1)EεT +1

)
,

which implies that (43) holds for any choice of �q (B−N− j ) that
satisfies q(B−N− j )

0 = 0.
Subcase ε0 = 1 and

∑T
�=0 ε� = N With No Restriction on

the Positions of 1’s in εT +1: In this case,

J(k−B+N+ j )×(T +1) EεT +1

consists of exactly N zero column vectors and k − B + j
non-zero column vectors. Consider

Q �
[

01×(k−B+N+ j−1)

Ik−B+N+ j−1

�q (B−N− j )

D

]
∈ F

(k−B+N+ j )×(k−B+2N+ j−1) (45)

which consists of the second to the (k − B + N + j)th columns
and the last N columns of J(k−B+N+ j )×(T+1) where D is some
(k − B + N + j − 1)× N matrix that is determined by (42).
Since ε0 = 1 and

∑T
�=1 ε� = N − 1, there exists a (k − B +

N + j)× (k − B + N + j) submatrix of Q denoted by

B �
[
h1 h2 · · · hk−B+N+ j

]
(46)

such that h1,h2, . . . ,hk−B+N+ j are non-zero columns of
J(k−B+N+ j )×(T +1) EεT +1 . By (46) and the linear dependence
among the column vectors of the lower (k − B + N + j −1)×
(k − B + N + j) submatrix of B, there exist a non-zero vector

λ � [λ1 λ2 . . . λk−B+N+ j ]t ∈ F
(k−B+N+ j )×1

and a linear function of (q(B−N− j )
0 , q(B−N− j )

1 , . . . , q(B−N− j )
N−1 )

denoted by χ(B−N− j )
εT +1 (�q (B−N− j )) such that

Bλ =
[
χ
(B−N− j )
εT +1 (�q (B−N− j ))

0(k−B+N+ j−1)×1

]
. (47)

In addition, we claim that χ(B−N− j )
εT +1 (�q (B−N− j )) is a non-zero

function. To see this claim, we can assume the contrary that
χ
(B−N− j )
εT +1 (�q (B−N− j )) ≡ 0, which would imply that Bλ ≡ 0

with λ = 0(k−B+N+ j )×1, which together with (45) and (46)
would imply

[
01×(k−B+N+ j−1)

Ik−B+N+ j−1

�q (B−N− j )

D

]
λ′ = 0(k−B+N+ j )×1

for some λ′ = 0(k−B+2N+ j−1)×1, which together with the
fact that �q (B−N− j ) does not contain any zero would imply
the contradiction that[

01×(k−B+N+ j−1)

Ik−B+N+ j−1

]
λ∗ = 0(k−B+N+ j )×1 (48)

for some λ∗ = 0(k−B+N+ j−1)×1. Using (46), the fact that
B consists of columns of J(k−B+N+ j )×(T +1) EεT +1 and (47),
we conclude that (43) holds as long as �q (B−N− j ) satisfies
χ
(B− j )
εT+1 (�q (B− j )) = 0.
Combining the above three subcases, we see that for any

εT +1 ∈ �T +1
B,N , statement (43) holds for all i ∈ {B − N − 1,

B − N − 2, . . . , 0} as long as �q (i) ∈ F
N satisfies q(i)0 = 0 and

χ
(i)
εT+1(�q (i)) = 0. Since the number of �q (i) ∈ F

N that satisfies

either q(i)
0

= 0 or χ(i)
εT+1(�q (i)) = 0 is less than 2|F|N−1 for

each i and each εT +1 and

∣∣∣�T+1
B,N

∣∣∣ ≤
(

T + 1

N

)
+ T − B + 2,

the hypothesis (14) guarantees the following: For each i = B−
N −1, B − N −2, . . . , 0 where the vectors �q (B−1), . . . , �q (i+1)

have been chosen, we can always choose a �q (i) ∈ F
N such that

q(i)0 = 0 and χ(i)
εT +1(�q (i)) = 0 for all εT +1 ∈ �T+1

B,N because

∣∣∣∣∣
{

�q (i) ∈ F
N

∣∣∣∣∣ q(i)
0

= 0 or χ(i)
εT+1(�q (i)) = 0 for some

εT +1 ∈ �T +1
B,N

}∣∣∣∣∣
total number of �q (i)

≤ 2
((T +1

N

) + T − B + 2
)|F|N−1

|F|N

< 1.

By induction, there exist �q (B−N−1), . . . , �q (0) such that
q(i)0 = 0 and χ(i)

εT +1(�q (i)) = 0 for all i ∈ {B − 1, . . . , B − N}
and all εT +1 ∈ �T +1

B,N . This together with the conclusions
made in the above three subcases implies that statement (43)
holds for all i ∈ {B − N − 1, B − N − 2, . . . , 0} and all
εT +1 ∈ �T +1

B,N , which together with (41) implies that (23)
holds for all i ∈ {B − N − 1, B − N − 2, . . . , 0} and all
εT +1 ∈ �T +1

B,N .

D. Combining the Three Cases

Combining the three cases studied in the preced-
ing three subsections, we conclude that there exist
�q (B−1), �q (B−2), . . . , �q (0) such that G = [Ik P] with P having
the form (28) satisfies (23) for all i ∈ {k − 1, k − 2, . . . , 0}
and all εT +1 ∈ �T +1

B,N . In particular, P has the form (25).
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VI. PROOF OF LEMMA 4

Fix any (W, T, B, N) that satisfies (7) and recall that k =
T − N + 1. Suppose k < B . Fix any finite field F that
satisfies (14). Our goal is to show that G = [ Ik P] satisfies (23)
for some P having the form (26), where I(k)k−i , Gi and EεT +1

in (23) are as defined in (20), (22) and (21) respectively. To this
end, we construct a variable vector

�q (i) � [q(i)0 q(i)1 . . . q(i)N−1] ∈ F
N

for each i ∈ {0, 1, . . . B − N − 1} where the values of the
B − N vectors will be determined later in this proof.
In addition, we let

�q (i)left � [q(i)0 q(i)1 . . . q(i)B−k−1]

and

�q (i)right � [q(i)B−k q(i)B−k+1 . . . q(i)N−1]

such that �q (i) � [�q (i)left �q (i)right], and define �p (i) ∈ F
B as

�p (i) � [�q (i)left 01×i �q (i)right 01×(B−N−i)] (49)

for each i ∈ {0, 1, . . . , B − N − 1}. Construct a (k − B +
N) × N parity matrix of a systematic MDS (k − B + 2N,
k−B+N)-code denoted by V(k−B+N)×N , which always exists
because |F| ≥ 2(2T − B + 1) ≥ k − B + 2N by (14). Let
V(k−B+N)×(B−k)

left be the (k − B + N)× (B − k) matrix formed
by collecting the first B − k columns of V(k−B+N)×N and
let V(k−B+N)×(k−B+N)

right be the (k − B + N) × (k − B + N)
matrix formed by collecting the last k − B + N columns of
V(k−B+N)×N such that[

V(k−B+N)×(B−k)
left V(k−B+N)×(k−B+N)

right

]
= V(k−B+N)×N .

Then, let

P �

⎡
⎢⎢⎢⎢⎢⎢⎣

�p (0)
...

�p (B−N−1)

V(k−B+N)×(B−k)
left 0 V(k−B+N)×(k−B+N)

right

⎤
⎥⎥⎥⎥⎥⎥⎦

(50)

where 0 is the (k−B+N)×(B−N) zero matrix. It can be seen
that P has the form (26). It remains to show that G = [Ik P]
satisfies (23) for i = k−1, k−2, . . . , 0 for some {�q (i)}B−N−1

i=0 .
By inspecting (23) and (50), we see that condition (23)
depends on only {�q (B−N−1− j )}i

j=0 for each i ∈ {B − N − 1,

B − N − 2, . . . , 0} and does not depend on {�q (i)}B−N−1
i=0 for

each i ∈ {k −1, k −2, . . . , B − N}. In the rest of the proof, we
will verify condition (23) in the order i = k − 1, k − 2, . . . , 0,
which means that we will choose {�q (i)}B−N−1

i=0 by choosing
�q (B−N−1), �q (B−N−2), . . . , �q (0) sequentially. Consider the fol-
lowing two mutually exclusive cases which will be investigated
in the following two subsections respectively:

A. Case i = k − 1, k − 2, . . . , B − N

In this case, we have the following fact due to (22) and
G = [Ik P]:

GB−N = [
gB−N gB−N+1 . . . gn−1

]
=

[
0(B−N)×(k−B+N)

Ik−B+N
P

]
. (51)

Using (51), the definition of P in (50) and the definition of
I(k)k−B+N in (20), we have

I(k)k−B+N GB−N

=
⎡
⎣ 0(B−N)×(T +1)

Ik−B+N V(k−B+N)×(B−k)
left 0 V(k−B+N)×(k−B+N)

right

⎤
⎦.

(52)

Since any (k − B + N) columns of[
Ik−B+N V(k−B+N)×(B−k)

left V(k−B+N)×(k−B+N)
right

]
∈ F

(k−B+N)×(k−B+2N)

are independent due to the property of systematic MDS codes
and⎡
⎣ 0(B−N)×(T +1)

Ik−B+N V(k−B+N)×(B−k)
left 0 V(k−B+N)×(k−B+N)

right

⎤
⎦EεT +1

contains at least (k− B+ N) non-zero columns for any εT +1 ∈
�T+1

B,N with N arbitrary positions of 1 and exactly (k − B + N)
non-zero columns for any εT +1 ∈ �T +1

B,N with B consecutive
positions of 1, it follows from (52) that

space
(

I(k)k−B+N GB−N EεT +1

)
= space

([
0(B−N)×(k−B+N)

Ik−B+N

])

for any εT +1 ∈ �T+1
B,N , which then implies (23) for all i ∈

{k − 1, k − 2, . . . , B − N}.

B. Case i = B − N − 1, B − N − 2, . . . , 0

We will choose �q (i) in a recursive manner for i =
B − N − 1, B − N − 2, . . . , 0. Suppose i = B −
N − j for some j ∈ {1, 2, . . . , B − N}. Assume
�q (B−N−1), �q (B−N−2), . . . , �q (B−N− j+1) have been chosen
such that (23) holds for i = B−N−1, B−N−2, . . . , B−N−
j + 1 for any εT +1 ∈ �T +1

B,N . Our goal is to choose �q (B−N− j )

such that (23) holds for i = B − N − j . To this end, we first
use (49), (50) and the fact G = [Ik P] to obtain

I(k)k−B+N+ j GB−N− j =
[

0(B−N− j )×(T +1)

J(k−B+N+ j )×(T +1)

]
(53)

where J(k−B+N+ j )×(T +1) is defined in (54) as shown at the
top of the next page with V(k−B+N)×(k−B+N− j )

right being the
matrix consisting of the first k − B + N − j columns of
V(k−B+N)×(k−B+N)

right . We would like to show the existence
of a �q (B−N− j ) ∈ F

N such that

u(k−B+N+ j )
0 ∈ space

(
J(k−B+N+ j )×(T +1) EεT +1

)
(55)
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J(k−B+N+ j )×(T +1)

�

⎡
⎢⎢⎢⎢⎣ Ik−B+N+ j

�q (B−N− j )
left

...

�q (B−N−1)
left

V(k−B+N)×(B−k)
left

01×(B−N− j ) q(B−N− j )
B−k · · · · · · · · · q(B−N− j )

N−1
. . .

. . .
...

...

01×(B−N−1) q(B−N−1)
B−k · · · q(B−N−1)

N− j

0(k−B+N)×(B−N) V(k−B+N)×(k−B+N− j )
right

⎤
⎥⎥⎥⎥⎦ (54)

for any εT +1 ∈ �T +1
B,N , which together with (53) will then

imply that (23) holds for i = B − N − j . Fix an arbitrary
εT +1 ∈ �T +1

B,N and consider the following three subcases:
Subcase ε0 = 0: Using (42) and ε0 = 0, we conclude that

the first column of J(k−B+N+ j )×(T +1) EεT +1 is u(k−B+N+ j )
0 ,

which together with (54) implies that (55) holds for any choice
of �q (B−N− j ).

Subcase ε0 = 1 and
∑T
�=0 ε� = B With All the 1’s

in εT +1 Occupying Consecutive Positions: In this case,
εT +1 equals (1, . . . , 1︸ ︷︷ ︸

B times

, 0, . . . , 0) and B ≥ N + j . There-

fore, it follows from (54) that the first non-zero column of
J(k−B+N+ j )×(T +1)EεT +1 equals[

q(B−N− j )
0

0(k−B+N+ j−1)×1

]
,

which implies that (55) holds for any choice of �q (B−N− j ) that
satisfies q(B−N− j )

0 = 0.
Subcase ε0 = 1 and

∑T
�=0 ε� = N With No Restriction on

the Positions of 1’s in εT +1: In this case,

J(k−B+N+ j )×(T +1) EεT +1

has at least k − B + N + j non-zero column vectors. Consider

Q �
[

01×(k−B+N+ j−1)

Ik−B+N+ j−1

�q (B−N− j )

D

]
∈ F

(k−B+N+ j )×(k−B+2N+ j−1)

which consists of the second to the (N + j)th columns and
the last N − B + k columns of J(k−B+N+ j )×(T +1) where D
is some (k − B + N + j − 1)× N matrix that is determined
by (54). Since ε0 = 1 and

∑T
�=1 ε� = N − 1, there exists a

(k − B + N + j)× (k − B + N + j) submatrix of Q denoted by

B �
[
h1 h2 · · · hk−B+N+ j

]
(56)

such that h1,h2, . . . ,hk−B+N+ j are non-zero columns of
J(k−B+N+ j )×(T +1) EεT +1 . By (56) and the linear dependence
among the column vectors of the lower (k − B + N + j − 1)
× (k − B + N + j) submatrix of B, there exist a non-zero
vector

λ � [λ1 λ2 . . . λk−B+N+ j ]t ∈ F
(k−B+N+ j )×1

and a linear function of (q(B−N− j )
0 , q(B−N− j )

1 , . . . ,

q(B−N− j )
N−1 ) denoted by χ(B−N− j )

εT +1 (�q (B−N− j )) such that

Bλ =
[
χ
(B−N− j )
εT +1 (�q (B−N− j ))

0(k−B+N+ j−1)×1

]
. (57)

In addition, χ(B−N− j )
εT +1 (�q (B−N− j )) is a non-zero function by

very similar arguments used in the proof of Lemma 4 between
(47) and (48). Using (56), the fact that B consists of columns
of J(k−B+N+ j )×(T +1) EεT +1 and (57), we conclude that (55)
holds as long as �q (B−N− j ) satisfies χ(B− j )

εT +1 (�q (B− j )) = 0.
Combining the above three subcases and following similar

arguments used in the proof of Lemma 4 at the end of
Section V-C, we conclude that there exist �q (B−N−1), . . . , �q (0)
such that q(i)0 = 0 and χ

(i)
εT+1(�q (i)) = 0 for all i ∈ {B −

1, . . . , B − N} and all εT +1 ∈ �T +1
B,N . This together with the

conclusions made in the above three subcases implies that
statement (55) holds for all i ∈ {B − N −1, B − N −2, . . . , 0}
and all εT +1 ∈ �T +1

B,N , which together with (53) implies
that (23) holds for all i ∈ {B − N − 1, B − N − 2, . . . , 0}
and all εT +1 ∈ �T +1

B,N .

C. Combining the Two Cases

Combining the two cases studied in the preceding two
subsections, we conclude that there exist �q (B−N−1), �q (B−N−2)

, . . . , �q (0) such that G = [Ik P] with P having the form (50)
satisfies (23) for all i ∈ {k − 1, k − 2, . . . , 0} and all εT +1 ∈
�T+1

B,N . In particular, P has the form (26).

VII. OPTIMAL CONVOLUTIONAL CODES WITH GIVEN

COLUMN DISTANCE, COLUMN SPAN AND DELAY

In this section, we will use Theorem 1 and existing results
to derive the maximum achievable rate for convolutional codes
given any column distance, column span and decoding delay.
For an (n, k,m, T )F-convolutional code with memory m and
generator matrices Gconv

0 ,Gconv
1 , . . . ,Gconv

m , define

Gconv �

⎡
⎢⎢⎢⎣

Gconv
0 Gconv

1 · · · Gconv
T

0k×n Gconv
0 · · · Gconv

T −1
...

...
. . .

...

0k×n 0k×n . . . Gconv
0

⎤
⎥⎥⎥⎦ (58)

to be the truncated generator matrix where Gconv
� � 0k×n for

any m < � ≤ T by convention. The following definition is
standard (see, e.g., [11, Appendix A]).

Definition 10: For each (n, k,m, T )F-convolutional code,
the column distance and the column span are

dT � min

{
wt

(
[s0 s1 . . . sT ] Gconv

) ∣∣∣∣ s0 = 01×k, s� ∈ F
k

for each 1≤�≤T

}
and

cT �min

{
span

(
[s0 s1 . . . sT ] Gconv

)∣∣∣∣ s0 = 01×k, s� ∈ F
k

for each 1≤�≤T

}
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respectively, where

wt
([x0 x1 . . . xT ]) �

∣∣ {i ∈ {0, 1, . . . , T }
∣∣∣ xi = 01×n

} ∣∣
denotes the weight of [x0 x1 . . . xT ] and

span
([x0 x1 . . . xT ])� max

{
i ∈ {0, 1, . . . , T }

∣∣∣ xi = 01×n
}

− min
{

i ∈ {0, 1, . . . , T }
∣∣∣xi = 01×n

}
denotes the length of the support of [x0 x1 . . . xT ] for any
[x0 x1 . . . xT ] ∈ F

(T+1)n . Obviously, cT ≥ dT ≥ 1.
The following proposition states a well-known fact regard-

ing the column distance and the column span for convolutional
codes (see, e.g., [11, Appendix A]).

Proposition 5: Any (n, k,m, T )F-convolutional code
whose column distance and column span are dT and cT

respectively is (T + 1, cT − 1, dT − 1)-achievable. Conversely,
if an (n, k,m, T )F-convolutional code is (T + 1, B, N)-
achievable, then dT ≥ N + 1 and cT ≥ B + 1.

Combining Proposition 5 and (13), we conclude that

k

n
≤ T − dT + 2

T + cT − dT + 1
(59)

for any (n, k,m, T )F-convolutional code with column dis-
tance dT and column span cT . Motivated by (59), we define
the optimality of a convolutional code as follows.

Definition 11: An (n, k,m, T )F-convolutional code is said
to be optimal if

k

n
= T − dT + 2

T + cT − dT + 1
.

We are ready to invoke Theorem 1 to infer the following
result regarding dT and cT for optimal convolutional codes.

Theorem 2: Fix any T , d and c where c ≥ d ≥ 1, and let
F be a finite field that satisfies

|F| > 2

((
T + 1

d − 1

)
+ T − c + 3

)
. (60)

Then, there exists an optimal (n, k, T, T )F-convolutional code
with column distance dT = d and column span cT = c.

Proof: Let N � d − 1 and B � c − 1. By (60), F

satisfies (14). By Theorem 1, there exists an (n, k, T, T )F-
convolutional code that is (T + 1, B, N)-achievable where
k = T − N + 1 and n = T + B − N + 1, which implies
from Proposition 5 that dT ≥ N + 1 and cT ≥ B + 1. Since

k

n
= T − N + 1

T + B − N + 1

≥ T − dT + 2

T + B − dT + 2

≥ T − dT + 2

T + cT − dT + 1

by all the preceding equations in this proof, it together
with (59) implies that

k

n
= T − dT + 2

T + cT − dT + 1
. (61)

In addition, since the equations dT ≥ N + 1, k = T − N + 1,
n = T + B − N + 1 and (61) imply that cT ≤ B + 1,
it together with the preceding equation cT ≥ B+1 follows that

cT = B+1, which together with (61) implies that dT = N +1.
By Definition 11, this (n, k, T, T )F-convolutional code with
column distance dT = N + 1 = d and column span cT =
B + 1 = c is optimal.

Remark 6: Regarding Theorem 2, if c = d , then the field
size requirement can be relaxed to |F| ≥ T + 1 due to the
following. For any dT ∈ {1, 2, . . . , n}, a systematic MDS
(n, k)-code with n � T + 1 and k � T − dT + 2 (any
dT − 1 symbol erasures can be recovered) always exists as
long as |F| ≥ n = T + 1 [21], which together with Lemma 1
implies the existence of an optimal (n, k, T, T )F-convolutional
code such that cT = dT (any dT − 1 packet erasures can be
recovered).

VIII. RANDOM CODE CONSTRUCTION

Suppose we are given a channel model which introduces
packet erasures, and we would like to communicate through
the channel using an optimal (n, k, T, T )F-convolutional code
with column distance dT and column span cT where the
optimality is as defined in Definition 11. If F satisfies

|F| > 2

((
T + 1

dT − 1

)
+ T − cT + 3

)
,

Theorem 2 guarantees the existence of such an optimal con-
volutional code, but does not tell us how to find it efficiently.
Therefore, we suggest in this section a practical method of
finding optimal convolutional codes efficiently. To this end,
we first fix any (T, dT , cT ) such that T ≥ cT − 1 ≥ dT − 1,
and let W � T + 1, B � cT − 1, N � dT − 1, k � T − N + 1
and n � k + B . In addition, we fix a finite field F which does
not necessarily satisfy (14). Our goal is to find an optimal
(n, k, T, T )F-convolutional code with column distance dT and
column span cT . Recall the definition of Gconv in (58) and the
definition of Gconv

� in Definition 2. A method that constructs
the generator matrix Gconv of an optimal convolutional code
is described in the following subsection.

A. Random Encoding

Consider the following two steps of constructing {Gconv
� }T

�=0
and Gconv in a random manner:

(I) Construct G � [Ik P] through randomly generating P
according to the following rule:

• Depending on whether k ≥ B or k < B . we generate
P in the form either (25) in Lemma 3 or (26) in
Lemma 4 by selecting the non-zero elements in
an i.i.d. fashion where each non-zero element is
uniformly distributed on F \ {0}.

Let Cblock
i.i.d. (G) denote the random (n, k, T )F-block code

with random generator matrix G as constructed above.
(II) Based on the block code Cblock

i.i.d. (G) constructed
above, we construct an (n, k, T, T )F-convolutional code
denoted by Ci.i.d.(Gconv) as outlined in the proof of
Theorem 1 in Section IV, where the generator matrix
Gconv is constructed according to (18) in Lemma 1.
If Cblock

i.i.d. (G) is (W, B, N)-achievable, it then follows
from the arguments in the proof of Theorem 2 in
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TABLE II

SUCCESS PROBABILITIES PT ,cT ,dT OF GENERATING AN
OPTIMAL (n, k, T, T )F-CONVOLUTIONAL CODE

Section VII that Ci.i.d.(Gconv) is an optimal (n, k, T, T )F-
convolutional code with column distance dT and column
span cT .

B. Numerical Evaluation of a Randomly
Constructed Code Being Optimal

In this subsection, we would like to estimate the probability
that the random code constructed according to Section VIII-A
is optimal. To simplify notation, we let PT ,cT ,dT denote the
probability of the random code Ci.i.d.(Gconv) being an optimal
(n, k, T, T )F-convolutional code with column distance dT and
column span cT . Since characterizing the exact expression of
PT ,cT ,dT seems intractable, we would like to estimate PT ,cT ,dT

by simulation. In our simulation, PT ,cT ,dT is estimated for
the following parameters of (T, cT , dT ): (7, 8, 6), (7, 8, 2),
(7, 7, 5), (7, 7, 3), (7, 6, 4), and (7, 5, 5). For each of the afore-
mentioned parameters (T, cT , dT ), we plot the corresponding
PT ,cT ,dT for |F| = 3, 7, 13, 31, 61 by generating 3000 samples
for each |F|, and those PT ,cT ,dT ’s are displayed in Table II.
We can see from Table II that all the PT ,cT ,dT ’s are positive
for a field size as small as 7 and they are increasing with the
field size as expected.

IX. NUMERICAL STUDIES

The state-of-the-art MiDAS-interleaved and MiDAS-m-
MDS convolutional codes have been proposed in [11, Sec. IV]
for the erasure channel, whose constructions involve inter-
leaved block codes and m-MDS codes respectively. In general,
convolutional codes that involve m-MDS codes require large
field size that grows exponentially in T (as mentioned in [11,
Sec. IV-D]), hence they may not be practical for large T .
On the other hand, convolutional codes that are based on inter-
leaved block codes can be implemented with practical field
size. In particular, the random convolutional codes described
in the previous subsection are based on interleaved block
codes as illustrated in Table I, which leads to low decoding
complexity (comparable to decoding a block code). Since
we would like to compare the performance of the random
convolutional codes described in the previous subsection with
existing practical convolutional codes in real-world systems,
only convolutional codes based on interleaved block codes
(rather than m-MDS) codes are considered in our numerical
studies. More specifically, we will compare the performance
of our low-complexity random codes with several practi-
cal convolutional codes including MiDAS-interleaved codes

[11, Sec. IV-D] and the Martinian-Sundberg code [16] over
the following two popular statistical channel models — the
GE channel [8], [9] and the Fritchman channel [10].

A. The Gilbert-Elliott Channel and the Fritchman Channel

In our numerical studies, we consider the GE channel model
and the Fritchman channel model as described in [11, Sec. VI],
which are introduced below for the sake of completeness.

The GE channel is a two-state Markov model which consists
of a good state and a bad state. In the good state, each channel
packet is lost with probability ε ∈ [0, 1) whereas in the bad
state each channel packet is lost with probability 1. Let α and
β denote the transition probabilities from the good state to the
bad state and vice versa. Then, the average loss rate of the
GE channel is given by

β

α + β
· ε + α

α + β

As long as the channel stays in the bad state, the channel
behaves as a burst erasure channel. In contrast, the channel
behaves like an i.i.d. erasure channel when the channel stays
in the good state.

The Fritchman channel model consists of one good state
denoted by G and M bad states denoted by E1, E2, . . . , EM .
If the state equals G at time i , then it will transition to E1
with probability α or stay at state G with probability 1 − α
at time i + 1. If the state equals EM at time i , it will
transition to G with probability β or stay at state EM with
probability 1 − β at time i + 1. If the state equals E� for
some � ∈ {1, 2, . . . ,M − 1}, then it will transition to E�+1
with probability β or stay at state E� with probability 1−β at
time i + 1. In the good state, each channel packet is lost with
probability ε whereas in the bad state each channel packet
is lost with probability 1. Fritchman and related higher-order
Markov models are commonly used to model fade durations
in mobile links.

B. Simulation Results

In order to compare our random code with existing codes
over practical channels, we plot their loss probabilities over
the GE channel and the Fritchman channel where each loss
probability is generated by simulating the codes over 108

channel uses. The field size is set to be 997.
In Figure 2(a), we plot the loss probabilities over the GE

channel with constant parameters (α, β) = (1 × 10−4, 0.6)
against the varying parameter ε for our random code,
the MiDAS-interleaved code, the Martinian-Sundberg code
and the random MDS code with (W, T, B, N) equal to
(8, 7, 6, 2), (8, 7, 5, 2), (8, 7, 7, 1) and (8, 7, 4, 4) respectively
and rates equal to 1/2, 21/41 ≈ 1/2, 1/2 and 1/2 respectively.
The corresponding statistics of the burst length are plotted
in Figure 2(b), which shows that the burst histogram follows a
geometric distribution with a success probability of β = 0.6.
As shown in Figure 2(a), our random code outperforms all
the other codes over the GE channel for 0.003 ≤ ε ≤ 0.01.
For ε ≤ 0.002, the Martinian-Sundberg code performs the
best, which indicates that the loss probability in this case is
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Fig. 2. Simulation for the GE channel with (α, β) = (1 × 10−4, 0.6). (a) Loss probability. (b) Burst histogram.

Fig. 3. Simulation for the 4-state Fritchman channel with (α, β,M) = (3 × 10−5, 0.6, 4). (a) Loss probability. (b) Burst histogram.

dominated by burst rather than arbitrary errors. For ε > 0.01,
the random MDS code performs the best, indicating that the
loss probability in this case is dominated by arbitrary rather
than burst errors. Indeed, our random code, the Martinian-
Sundberg code and the random MDS code belong to the class
of optimal convolutional codes in the sense of Definition 11.
Therefore, it is not surprising that they collectively achieve the
best performance as ε varies between 0 and 1.

In Figure 3(a), we plot the loss probabilities over the 4-state
Fritchman channel with constant parameters (α, β,M) =
(3 × 10−5, 0.6, 4) against the varying parameter ε for our
random code, the MiDAS-interleaved code, the Martinian-
Sundberg code and the random MDS code with (W, T, B, N)
equal to (12, 11, 10, 2), (12, 11, 9, 2), (12, 11, 11, 1) and
(12, 11, 6, 6) respectively and rates equal to 11/21 ≈ 1/2,
12/23 ≈ 1/2, 12/22 ≈ 1/2 and 1/2 respectively. The
corresponding statistics of the burst length are plotted in
Figure 3(b), which shows that the burst histogram follows a
negative binomial distribution of M − 1 = 3 failures with a
success probability of β = 0.6. As shown in Figure 3(a),
our random code outperforms all the other codes over the
4-state Fritchman channel for 0.003 ≤ ε ≤ 0.01. For ε ≤
0.002, the Martinian-Sundberg code performs the best, which

indicates that the loss probability is dominated by burst rather
than arbitrary errors. When ε approaches one, the random
MDS code performs the best because the loss probability is
dominated by arbitrary rather than burst errors. Our random
code, the Martinian-Sundberg code and the random MDS code
collectively achieve the best performance as ε varies between 0
and 1, which is consistent with the fact that they belong
to the class of optimal convolutional codes in the sense of
Definition 11.

X. CONCLUDING REMARKS

In this paper, we study streaming codes over a packet
erasure channel whose erasure pattern in every sliding window
of size W ≥ T + 1 is either a burst erasure of maximum
length B or multiple arbitrary erasures of maximum total
count N . Under a fixed tolerable delay constraint T for each
transmitted packet, we have shown in Section II-C the exis-
tence of convolutional codes that achieve the maximum rate of
communication over the erasure channel. In addition, we have
characterized in Section VII the maximum achievable rate for
convolutional codes with given column distance, column span
and decoding delay. In our simulation, our proposed code
outperforms all existing practical codes for various packet
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erasure probabilities over some instances of the GE channel
and the Fritchman channel.

Throughout this paper, we have assumed that W ≥ T + 1
and (5) hold (cf. Section I-B) and showed that the maxi-
mum achievable rate for streaming codes is C(W,T ,B,N) =

T −N+1
T +B−N+1 . For the case where W < T + 1 and (5) hold,
it was shown in [11, Th. 1] that the maximum achievable rate
C(W,T ,B,N) is bounded as

C(W,T ,B,N) ≤ W − N

W + B − N
. (62)

On the other hand, it follows from Theorem 1 that

C(W,W−1,B,N) = W − N

W + B − N
. (63)

Since C(W,T ,B,N) ≥ C(W,W−1,B,N) due to the assumption that
W < T + 1, it follows from (63) that

C(W,T ,B,N) ≥ W − N

W + B − N
. (64)

Combining (62) and (64), we have C(W,T ,B,N) = W−N
W+B−N for

the case where W < T + 1 and (5) hold.

APPENDIX A
PROOF OF LEMMA 1

Suppose we are given a (W, B, N)-achievable (n, k, T )F-
block code, and let G = [ Ik P] ∈ F

k×n be the generator
matrix. By Definition 8, the (n, k, T )F-block code has the
following properties:

(i) The length of the block code is n.
(ii) From time 0 to k − 1, the source symbols

[x[0] x[1] · · · x[k − 1]] = [s[0] s[1] · · · s[k − 1]]
are transmitted.

(iii) From time k to n − 1, the parity-check symbols

[x[k] x[k+1] · · · x[n−1]]=[s[0] s[1] · · · s[k−1]] P

are transmitted.
(iv) Upon receiving

[y[0] y[1] . . . y[i + T ]]
= [g1(x[0], e0) g1(x[1], e1) . . . g1(x[i + T ], ei+T )],

the destination can perfectly recover s[i ] by time i + T
for each i ∈ {0, 1, . . . , k −1} as long as e∞ ∈ �∞

(W,B,N).
In order to construct an (n, k, n−1, T )F-convolutional code,

we first let {si }∞i=0 denote a sequence of length-k packets and
let si [ j ] denote the ( j + 1)th element of si such that

si � [si [0] si [1] · · · si [k − 1]] (65)

for all i ∈ Z+. Using the convention that s j � 01×k for any
j < 0, we construct[
xi [0] xi+1[1] · · · xi+n−1[n − 1]]

�
[
si [0] si+1[1] · · · si+k−1[k − 1]]G (66)

for each i ∈ {−n + 1,−n + 2, . . .} where G is the generator
matrix of the (W, B, N)-achievable (n, k, T )F-block code.
In other words, we are coding si diagonally as illustrated
in Table I. At each time i ∈ Z+, the source transmits

xi �
[
xi [0] xi [1] · · · xi [n − 1]]. (67)

In order to express xi in the form of (9), we let gi, j be the
entry situated in row i and column j of G such that

G = [
gi, j

]
0≤i≤k−1,
0≤ j≤n−1

and define Gconv
� as in (18) for each � ∈ {0, 1, . . . , n −1} such

that

G = [ Ik P] =
n−1∑
�=0

Gconv
� .

Following (67), we consider

xi =
n−1∑
�=0

[
si−�[0] si−1−�[1] · · · si−k+1−�[k − 1]]

×
⎡
⎢⎣ 0k×�

g0,�
...

gk−1,�

0k×(n−�−1)

⎤
⎥⎦ (68)

=
n−1∑
�=0

k−1∑
j=0

[
01×� si−�[ j ] g j,� 01×(n−�−1)

]

=
n−1∑
�=0

si−� Gconv
� (69)

for each i ∈ Z+, where

• (68) is due to (66) and (67).
• (69) is due to (65) and (18) under our convention that

st = 01×k for all t < 0.

Based on the (W, B, N)-achievable (n, k, T )F-block code
which satisfies Properties (i) to (iv) as stated at the beginning
of this proof, we construct an (n, k, n − 1, T )F-convolutional
code whose encoding function at time i is specified by (69),
where xi and si satisfy (67) and (65) respectively. Our goal is
to show that the convolutional code is (W, B, N)-achievable.
To this end, we fix any i ∈ Z+ and any e∞ ∈ �∞

(W,B,N), and
would like to show that the destination can perfectly recover
si = [

si [0] si [1] · · · si [k − 1]] based on

[y0 y1 . . . yi+T ]
= [gn(x0, e0) gn(x1, e1) . . . gn(xi+T , ei+T )]. (70)

According to (67), for each i ∈ {−n + 1,−n + 2, . . .},
the symbols in

[
xi [0] xi+1[1] · · · xi+n−1[n − 1]] are trans-

mitted between time i to time i + n − 1. Therefore, it follows
from (66), Property (iv) and (70) that for each i ∈ Z+
and each � ∈ {0, 1, . . . , k − 1}, the destination can perfectly
recover si [�] by time i + T based on [yi yi+1 . . . yi+T ],
which implies that the destination can perfectly recover si

time i + T based on [y0 y1 . . . yi+T ]. Consequently, for
any i ∈ Z+ and any e∞ ∈ �∞

(W,B,N), the destination can
perfectly recover si by time i + T , which implies that the
(n, k, n − 1, T )F-convolutional code is (W, B, N)-achievable.
In addition, using (65), (66) and (67), we obtain (19).

APPENDIX B
PROOF OF LEMMA 2

Let G = [g0 g1 . . . gn−1] ∈ F
k×n be a matrix that

satisfies (23) for each i ∈ {0, 1, . . . , k − 1} and each
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maximal (T + 1, B, N)-erasure pattern εT +1 ∈ �T+1
B,N .

First, we would like to construct an (n, k, T )F-block code
with generator matrix G that is (T + 1, B, N)-achievable
(cf. Definition 8), and this lemma will then follow because
any (T + 1, B, N)-achievable (n, k, T )F-block code is also
an (W, B, N)-achievable (n, k, T )F-block code due to the
assumption that W ≥ T +1. Since the encoding strategy of an
(n, k, T )F-block code with generator matrix G is completely
determined by (15), it suffices to show the existence of
{ϕi+T }k−1

i=0 such that

s[i ] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ϕi+T (g1(x[0], e0), . . . , g1(x[i + T ], ei+T ))

if 0 ≤ i ≤ B − N,

ϕi+T (g1(x[0], e0), . . . , g1(x[n], en))

if B − N + 1 ≤ i ≤ k − 1

(71)

holds for any (T + 1, B, N)-erasure sequence e∞ ∈
�∞
(T+1,B,N). Recognizing the fact due to (15), (16) and (17)

that

[g1(x[0], e0) g1(x[1], e1) . . . g1(x[n − 1], en−1)] Een

= [x[0] x[1] . . . x[n − 1]] Een

= [s[0] s[1] . . . s[k − 1]] G Een , (72)

we fix an arbitrary (T + 1, B, N)-erasure sequence e∞ ∈
�∞
(T+1,B,N) and would like to show that

u(k)i ∈

⎧⎪⎨
⎪⎩

space
( [

g0 · · · gi+T
]

Eei+T +1

)
if 0 ≤ i ≤ B − N ,

space
( [

g0 · · · gn−1
]

Een

)
if B − N + 1

≤ i ≤ k − 1
(73)

for each i , which together with (72) would then imply the
existence of {ϕi+T }k−1

i=0 that satisfy (71) for each i . We will
show (73) by induction on i = 0, 1, . . . , k −1. For i = 0, (73)
follows directly from (23) by setting εT +1 = eT+1. Suppose
(73) holds for each i = 0, 1, . . . , j for some j < k − 1. Then,
showing (73) for i∗ = j + 1 is equivalent to showing

u(k)i∗ ∈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

space
(

I(k)k−i∗
[
g0 · · · gi∗+T

]
Eei∗+T +1

)
if 0 ≤ i∗ ≤ B − N,

space
(

I(k)k−i∗
[
g0 · · · gn−1

]
Een

)
if B − N + 1 ≤ i∗ ≤ k − 1,

which is a direct consequence of (23). By mathematical
induction, we have proved that (73) holds for each i =
0, 1, . . . , k − 1.
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