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Abstract— This paper considers multiplexing two sequences of
messages with two different decoding delays over a packet erasure
channel. In each time slot, the source constructs a packet based
on the current and previous messages and transmits the packet,
which may be erased when the packet travels from the source
to the destination. The destination must perfectly recover every
source message in the first sequence subject to a decoding delay
Tv and every source message in the second sequence subject
to a shorter decoding delay Tu ≤ Tv. We assume that the
channel loss model introduces a burst erasure of a fixed length
B on the discrete timeline. Under this channel loss assumption,
the capacity region for the case where Tv ≤ Tu+B was previously
solved. In this paper, we fully characterize the capacity region for
the remaining case Tv > Tu+B. The key step in the achievability
proof is achieving the non-trivial corner point of the capacity
region through using a multiplexed streaming code constructed
by superimposing two single-stream codes. The main idea in the
converse proof is obtaining a genie-aided bound when the channel
is subject to a periodic erasure pattern where each period consists
of a length-B burst erasure followed by a length-Tu noiseless
duration.

Index Terms— Burst erasures, capacity region, different decod-
ing delays, forward error correction (FEC), low-latency, multi-
plexing, packet erasure channel, streaming codes.

I. INTRODUCTION

V IDEO streaming applications including video conferenc-
ing, virtual reality (VR) and online gaming are expected

to dominate 82 percent of the Internet traffic by 2022, up from
75 percent in 2017 [1]. Since the user experience for a video
streaming application is directly impacted by the latency and
reliability supported by the underlying connection, we are
motivated to find effective error correction strategies for
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general low-latency applications over the Internet including
video streaming.

Two main error control schemes have been implemented
at the data link layer and the transport layer to alleviate the
effect of packet losses on applications that are run over the
Internet: Automatic repeat request (ARQ) and forward error
correction (FEC). In order to implement error correction for
low-latency applications, FEC is preferred over ARQ when
retransmitting lost packets is costly. Consider the example of
remotely controlling a critical device over the Tactile Inter-
net [2] where a sensor wants to communicate with an actuator
in real time through a control server with round-trip latency
less than 1 ms as illustrated in [3, Fig. 3]. The latency goals for
processing delay at the terminals, transmission delay over the
air interfaces between the terminals and the control server and
data processing delay at the control server are 0.3 ms, 0.2 ms
and 0.5 ms respectively. If an ARQ scheme is used for error
control, then retransmissions compete for the precious time
resources with data computation at the terminals and the con-
trol server. The advantage of FEC over ARQ is most obvious
when retransmitting lost packets directly affects the quality
of service. For example, retransmitting a Voice-over-IP (VoIP)
packet incurs an extra round-trip delay (backward + forward)
which will result in an overall three-way delay (forward +
backward + forward) that may exceed the 150 ms delay
recommended by International Telecommunication Union [4]
(see [5] for an overview of the ubiquitous H.264/AVC video
coding standard). Given the fact that the three-way propagation
delay (forward + backward + forward) is at least 200 ms for
communication between two diametrically opposite points on
the earth’s circumference [6], FEC has a clear advantage over
ARQ for long-distance low-latency communication.

This paper focuses on low-latency FEC schemes imple-
mented at the transport layer, where a source packet is
either received by the destination without error or dropped
by the network (possibly due to unreliable links or network
congestion). In other words, a source packet is either perfectly
recovered by the destination or completely erased. Since
packet erasures often occur in a bursty rather than sparse
manner [7], [8], we model the connection between the source
and the destination as a packet erasure channel that introduces
burst erasures. In order to capture the nature of streaming
messages and the low-latency requirements, we assume that a
source message is generated in every time slot and a decoding
delay constraint T is imposed on every message, where

0018-9448 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of Toronto. Downloaded on May 19,2021 at 07:29:57 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-8762-5294
https://orcid.org/0000-0002-2331-8965
https://orcid.org/0000-0003-2404-0974
https://orcid.org/0000-0001-9413-7240


4008 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 7, JULY 2020

each message is encoded into a channel packet before being
transmitted through the erasure channel. If the destination
cannot decode a message within T time slots from the time
when the message is generated, the message is considered lost.
Ideally, we would like to characterize the maximum achievable
rates for statistical models that generate burst erasures such
as the well-known Gilbert-Elliott channel [9], [10] and its
generalization the Fritchman channel [11]. However, such
characterizations seem intractable due to the decoding delay
constraint and the fact that statistical models that generate
burst erasures are not memoryless. Therefore, Martinian and
Sundberg [12] have instead fully characterized the capacity,
i.e., maximum coding rate, for a simpler deterministic model
where a burst erasure of length B is introduced on the discrete
timeline and every message has to be perfectly recovered at
the destination with a decoding delay of T time slots. They
proposed a streaming code that not only achieves the capac-
ity T

T+B for the deterministic model, but also can significantly
outperform traditional FEC schemes for the Gilbert-Elliott
channel. Various generalizations of the packet erasure model
and the streaming codes studied in [12] have been proposed
in [13]–[17].

Note that an Internet application may consist of multiple
types of data streams (video, audio, text, etc.), and also
within a single data stream such as video there are different
subsets of data that have different delivery deadlines. Indeed,
multiplexing streams of different latency constraints has been
implemented in the QUIC transport protocol to reduce latency
of Google Search responses and reduce rebuffer rates of
YouTube playbacks [18]. Therefore, Badr et al. [19] extended
the study of single-stream codes in [12] and initiated the
study of streaming codes which multiplex a stream of urgent
messages with a stringent delay constraint and a stream of
less-urgent messages with a less stringent delay constraint.
Simulation results in [19, Sec. VIII] demonstrate that using
multiplexed streaming codes can significantly outperform con-
catenating multiple single-stream codes for the Gilbert-Elliott
channel. In the multiplexed streaming model studied in [19],
every urgent message has to be decoded within Tu time slots
from the time when the urgent message is generated, and
every less-urgent message has to be decoded within Tv time
slots from the time when the less-urgent message is generated.
It is assumed that Tu ≤ Tv, consistent with the notion that
the urgent messages have to be decoded with less decoding
delay than the less-urgent messages. Similar to the single-
stream case, we assume that the channel introduces a burst
erasure of length B on the discrete timeline and define the
capacity region to be the set of rate pairs (Rv, Ru) which are
supported by streaming codes that correct any length-B burst
erasure where Rv and Ru denote the rates of the less-urgent
stream and urgent stream respectively. For the case Tu ≤ Tv ≤
Tu+B, systematic streaming codes have been proposed in [19]
to achieve the capacity region. However, for the remaining
non-trivial case Tv > Tu+B, it is unclear whether the capacity
region can be achieved by the multiplexed streaming codes
proposed in [19]. Therefore, we are motivated to investigate
the capacity region for the case Tv > Tu + B.

A. System Model

In order to describe the existing results for the packet-
erasure channel model, we would like to briefly describe the
channel model. A formal description will appear later in the
paper. The channel consists of a source and a destination.
In each time slot, the source generates a collection of ku urgent
symbols and a collection of kv less-urgent symbols. Then,
the source encodes the ku + kv symbols into a collection of n
symbols followed by transmitting the n symbols through the
channel. The collection of n symbols transmitted in a time
slot are either received perfectly by the destination or erased
(lost). The fractions ku/n and kv/n specify the rates of the
urgent and less-urgent streams respectively. We call the ku

symbols chosen by the source, the kv symbols chosen by the
source, the n symbols transmitted by the source and the n
symbols received by the destination the urgent source packet,
the less-urgent source packet, the transmitted packet and the
received packet respectively. We assume that every urgent
source packet generated in a time slot must be decoded with
delay Tu, i.e., within the future Tu time slots, and every less-
urgent source packet generated in a time slot must be decoded
with delay Tv where

Tv ≥ Tu. (1)

In order to capture the packet loss behavior over the Internet,
we consider the simple scenario where the channel introduces
on the discrete timeline a burst erasure of length B. We assume
without loss of generality (wlog) that

Tv ≥ B, (2)

or otherwise a burst erasure of length B starting from a certain
time slot would prevent the destination from timely recovering
(within Tv time slots) both the urgent and less-urgent source
packets generated in the same time slot. If the channel is
noiseless where B = 0, no coding is needed to asymptotically
achieve all the rate pairs (kv/n, ku/n) on the boundary of
the capacity region that satisfy ku/n + kv/n = 1. Therefore,
we assume wlog that

B ≥ 1. (3)

B. Existing Results

For the case Tu < B under the assumption Tv ≥ B ≥ 1
implied by (2) and (3), it can be observed that a burst erasure
of length B starting from a certain time slot would prevent
the destination from timely recovering (within Tu time slots)
the urgent source packet transmitted in the same time slot.
Consequently, no rate pair (kv/n, ku/n) with ku/n > 0
is achievable, which implies that the capacity region (cf.
Figure 1) reduces to the interval [0, C(Tv, B)] on the horizontal
axis where

C(T, B) � T

T + B
(4)

denotes the maximum coding rate of streaming codes with
delay T that correct any length-B burst erasure [12, Th. 1 and
Th. 2] (see also [17, Sec. III-C]). Since the case Tu < B
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Fig. 1. Capacity region.

degenerates the multiplexing problem to the previously known
single-stream problem as described above, we assume wlog
that

Tu ≥ B. (5)

For the case Tu = Tv, since the urgent and less-urgent
source packets can be viewed as single-stream source pack-
ets with delay Tu, any rate pair (kv/n, ku/n) must satisfy
ku/n + kv/n ≤ C(Tu, B) (recall that the capacity of the
single-stream problem equals C(T, B) by [12]). In addition,
the boundary of the capacity region ku/n+ kv/n = C(Tu, B)
can be asymptotically achieved by partitioning each source
packet of an optimal code with rate C(Tu, B) into an urgent
source packet and a less-urgent source packet. Consequently,
the case Tu = Tv degenerates the multiplexing problem to
a single-stream problem described above. Therefore, in view
of (1), we assume wlog that

Tv > Tu. (6)

Summarizing the assumptions (3), (5) and (6), we assume in
the rest of the paper that

Tv > Tu ≥ B ≥ 1. (7)

Any condition that does not satisfy (7) leads to known results
as explained in this and the previous subsections.

For the special case where

1 ≤ B ≤ Tu < Tv ≤ Tu + B, (8)

systematic streaming codes have been proposed in [19] to
achieve the capacity region, which is the set of rate pairs

(Rv, Ru) satisfying(
1 +

Tu + B − Tv

Tu

)
Rv +

Ru

C(Tu, B)
≤ 1

and

Rv + Ru ≤ C(Tv, B) (9)

as illustrated in Figure 1(a). In addition, other systematic
streaming codes have been proposed in [19] to achieve two
different rate regions for the cases Tu+B < Tv < Tu+2B and
Tv ≥ Tu + 2B respectively, denoted by R{Tu+B<Tv<Tu+2B}
and R{Tv≥Tu+2B} respectively. In particular, if only system-
atic streaming codes are allowed, R{Tv≥Tu+2B} was shown
in [19] to be the largest.

C. Main Contribution

Under the assumption (7), the capacity region for case (8)
was proved in [19]. This paper solves the only remaining case

Tv > Tu + B (10)

and characterize the capacity region to be the set of rate pairs
(Rv, Ru) satisfying (9) and

Rv +
Ru

C(Tu, B)
≤ 1 (11)

as illustrated in Figure 1(b).
In order to prove the achievability, we propose a non-

systematic streaming code that achieves the non-trivial corner
point

(
Tv−Tu
Tv+B , Tu

Tv+B

)
. The proposed multiplexed streaming

code is constructed by superimposing two single-stream codes
with respective rates Tv−Tu

Tv−Tu+B and Tu
Tu+B and respective

delays Tv − Tu and Tu.
In order to prove the converse, we first prove a genie-aided

outer bound when the channel is subject to a periodic erasure
pattern where each period consists of a length-B burst erasure
followed by a length-Tu noiseless duration. The genie provides
the least amount of information to the destination so that both
the urgent and less-urgent streams can be perfectly recovered
at the destination. Then, we average the genie-aided bound
over all offsets of the periodic erasure pattern and combine
the averaged genie-aided bound with the existing trivial bound
Rv + Ru ≤ C(Tv, B), resulting an outer bound with four
corner points as shown in Figure 1(b). In particular, for the
case Tv ≥ Tu + 2B, the converse proof combined with the
result in [19] as described at the end of Section I-B implies
that systematic streaming codes alone are sufficient to achieve
the capacity region.

D. Paper Outline

This paper is organized as follows. The notation in this
paper is explained in the next subsection. Section II presents
the formulation of multiplexed streaming codes for the packet
erasure channel and states the main result — the capacity
region for the case Tv > Tu + B. Section III contains the
achievability proof of the main result which involves the
construction of a multiplexed streaming code that achieves
the non-trivial corner point of the capacity region. Section IV
presents the converse proof of the main result which involves
obtaining a genie-aided bound. Section V concludes this paper.
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E. Notation

The sets of natural numbers, integers, non-negative integers,
and non-negative real numbers are denoted by N, Z, Z+ and
R+ respectively. All the elements of any matrix considered in
this paper are taken from a common finite field F, where 0
and 1 denote the additive identity and the multiplicative
identity respectively. The set of k-dimensional row vectors
over F is denoted by F

k, and the set of k × n matrices over
F is denoted by F

k×n. A row vector in F
k is denoted by

a � [a0 a1 . . . ak−1] where a� denotes the (� + 1)th element
of a. The k-dimensional identity matrix is denoted by Ik and
the L×B all-zero matrix is denoted by 0L×B. An L×B parity
matrix of a systematic maximum-distance separable (MDS)
(L + B, L)-code is denoted by VL×B , which possesses the
property that any L columns of [IL VL×B] ∈ F

L×(L+B)

are independent. It is well known that a systematic MDS
(L + B, L)-code always exists as long as |F| ≥ L + B [20].
We will take all logarithms to base 2 throughout this paper. For
any discrete random tuple (X, Y, Z), we let H(X |Z) denote
the entropy of X given Z , and let I(X ; Y |Z) denote the
mutual information between X and Y given Z .

II. MULTIPLEXED STREAMING CODES FOR CHANNELS

WITH BURST ERASURES

A. Problem Formulation

The source wants to simultaneously send a sequence of
length-ku packets u∞ � {ui}∞i=0 with decoding delay Tu

and a sequence of length-kv packets v∞ � {vi}∞i=0 with
decoding delay Tv to the destination, where Tv ≥ Tu and
ku and kv denote the sizes of each urgent packet ui and
each less-urgent packet vi respectively. Each ui is an element
in F

ku and each vi is an element in F
kv where F is some

finite field. In each time slot i ∈ Z+, the source packets vi

and ui are encoded into a length-n packet xi ∈ F
n to be

transmitted to the destination through an erasure channel, and
the destination receives yi ∈ F

n ∪ {∗} where the received
packet yi equals either the transmitted packet xi or the erasure
symbol ‘∗’. The urgent and less-urgent streams are subject to
the delay constraints of Tu and Tv time slots respectively,
meaning that the destination must produce an estimate of ui,
denoted by ûi, upon receiving yi+Tu and produce an estimate
of vi, denoted by v̂i, upon receiving yi+Tv . As mentioned in
Section I-A, we assume that the channel introduces a burst
erasure of length B. Recall that we assume (7) wlog.

B. Standard Definitions

Definition 1: An (n, kv, ku, Tv, Tu)F-streaming code con-
sists of the following:

1) A sequence of less-urgent source packets v∞ where
vi ∈ F

kv .
2) A sequence of urgent source packets u∞ where

ui ∈ F
ku .

3) An encoder fi : F
ku+kv × . . . × F

ku+kv︸ ︷︷ ︸
i+1 times

→ F
n for each

i ∈ Z+, where fi is used by the source at time i to
encode ui and vi such that

xi = fi((u0,v0), (u1,v1), . . . , (ui,vi)).

4) A decoding function

ϕ
(v)
i+Tv

: F
n ∪ {∗} × . . . × F

n ∪ {∗}︸ ︷︷ ︸
i+Tv+1 times

→ F
kv

for each i ∈ Z+, where ϕ
(v)
i+Tv

is used by the destination
at time i + Tv to estimate vi such that

v̂i = ϕ
(v)
i+Tv

(y0,y1, . . . ,yi+Tv ). (12)

5) A decoding function

ϕ
(u)
i+Tu

: F
n ∪ {∗} × . . . × F

n ∪ {∗}︸ ︷︷ ︸
i+Tu+1 times

→ F
ku

for each i ∈ Z+, where ϕ
(u)
i+Tu

is used by the destination
at time i + Tu to estimate ui according to

ûi = ϕ
(u)
i+Tu

(y0,y1, . . . ,yi+Tu ). (13)

In addition, the code is said to be systematic if xi = [vi ui ai]
for some ai ∈ F

n−kv−ku at each time i ∈ Z+.
The formal definition of a length-B burst erasure is given

below.
Definition 2: An erasure sequence is a binary sequence

denoted by e � {ei}∞i=0 where

ei = 1{erasure occurs at time i}.
If
∑∞

i=0 ei = B holds with all the 1’s occupying consecu-
tive positions, e is called a B-erasure sequence. The set of
B-erasure sequences is denoted by ΩB . Similarly, for any
n ≥ B, a length-n binary sequence denoted by en � {ei}n−1

i=0

is called a B-erasure sequence if en satisfies
∑n−1

i=0 ei = B
with all the 1’s occupying consecutive positions. The set of
length-n B-erasure sequences is denoted by Ωn

B .
Definition 3: The mapping gn : F

n ×{0, 1} → F
n ∪{∗} of

the erasure channel is defined as

gn(x, e) =

{
x if e = 0,

∗ if e = 1.
(14)

For any erasure sequence e and any (n, kv, ku, Tv, Tu)F-
streaming code, the following input-output relation holds for
the erasure channel for each i ∈ Z+:

yi = gn(xi, ei). (15)

Definition 4: An (n, kv, ku, Tv, Tu)F-streaming code is said
to correct a B-erasure sequence e ∈ ΩB if the following holds:
For all i ∈ Z+ and all [ui vi] ∈ F

ku+kv , we have

[ûi v̂i] = [ui vi]

where

ûi = ϕ
(u)
i+Tu

(
gn(x0, e0), . . . , gn(xi+Tu , ei+Tu)

)
and

v̂i = ϕ
(v)
i+Tv

(
gn(x0, e0), . . . , gn(xi+Tv , ei+Tv)

)
due to (13), (12) and (15).

The following corollary is a direct consequence of Def-
inition 1 and Definition 4, and its proof is relegated to
Appendix A.
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Corollary 1: Suppose an (n, kv, ku, Tv, Tu)F-streaming
code that corrects any B-erasure sequence exists. Then for
each q ∈ N, we can construct a (qn, qkv, qku, Tv, Tu)F-
streaming code that corrects any B-erasure sequence.

Definition 5: A rate pair (Rv, Ru) ∈ R
2
+ is said to be

(Tv, Tu, B)-achievable if there exists an (n, kv, ku, Tv, Tu)F-
streaming code which corrects any B-erasure sequence such
that kv

n ≥ Rv and ku
n ≥ Ru.

The corollary below is a direct consequence of Definition 5
and the following existing single-stream result [12, Th. 2]
(see also [17, Th. 1])): Suppose T ≥ B ≥ 1. Then, there
exists a streaming code with rate C(T, B) which guarantees
the recovery of every streaming message with delay T when
the channel is subject to any length-B burst erasure on the
discrete timeline.

Corollary 2 [12, Th. 2]: The rate pairs (C(Tv, B), 0) and
(0, C(Tu, B)) are (Tv, Tu, B)-achievable.

Definition 6: Fix any (Tv, Tu, B) that satisfies (7). The
(Tv, Tu, B)-achievable rate region, denoted by CTv,Tu,B , is the
closure of the set of (Tv, Tu, B)-achievable rate pairs.

The following convexity statement regarding CTv,Tu,B will
help us simplify the achievability proof of our main result. The
proof is standard and is therefore relegated to Appendix B.

Corollary 3: For any (Tv, Tu, B) that satisfies (7), the rate
region CTv,Tu,B is convex.

C. Main Result

The following theorem is the main result of this paper,
which states the capacity region in terms of the single-stream
capacity function C(·, ·) as defined in (4).

Theorem 1: Fix any (Tv, Tu, B) that satisfies (7) and (10).
Define

R{Tv>Tu+B} �
{

(Rv, Ru)
∈ R

2
+

∣∣∣∣∣ Rv + Ru
C(Tu,B) ≤ 1,

Rv +Ru ≤ C(Tv, B)

}
(16)

as illustrated in Figure 1(b). Then,

CTv,Tu,B = R{Tv>Tu+B}.

Remark 1: Consider the special case where Tv ≥ Tu +2B.
It has been shown in [19, Th. 1] that systematic streaming
codes (cf. Definition 1) achieve R{Tv>Tu+B}. Therefore,
it follows from Theorem 1 that systematic streaming codes
are sufficient to achieve the capacity region.

Remark 2: Consider the special case where Tu + B <
Tv < Tu + 2B. The systematic streaming codes proposed
in [19, Th. 1] cannot achieve the non-trivial corner point(

Tv−Tu
Tv+B , Tu

Tv+B

)
of the capacity region CTv,Tu,B . On the other

hand, our achievability proof presented in Section III proposes
a non-systematic streaming code that achieves the non-trivial
corner point. It remains open whether systematic streaming
codes are sufficient to achieve the capacity region.

III. ACHIEVABILITY PROOF OF MAIN RESULT

The achievability proof of Theorem 1 consists of two steps.
The first step involves constructing a multiplexed block code
which corrects any B-erasure sequence. The second step
involves constructing a multiplexed streaming code which

corrects any B-erasure sequence by periodically interleaving
the multiplexed block code. The formal definitions and exist-
ing results related to multiplexed block codes and periodic
interleaving are presented in the following subsection.

A. Preliminaries

Definition 7: An (n, kv, ku, Tv, Tu)F-block code consists of
the following:

1) A vector of kv less-urgent source symbols in F denoted
by �v �

[
v[0] v[1] . . . v[kv − 1]

]
.

2) A vector of ku urgent source symbols in F denoted by
�u �

[
u[0] u[1] . . . u[ku − 1]

]
.

3) A generator matrix G ∈ F
(kv+ku)×n. The codeword is

generated according to[
x[0] x[1] . . . x[n − 1]] = [�v �u

]
G.

4) A decoding function

ϕ
(v)
i+Tv

: F ∪ {∗} × . . . × F ∪ {∗}︸ ︷︷ ︸
min{i+Tv+1,n} times

→ F

for each i ∈ {0, 1, . . . , kv − 1}, where ϕ
(v)
i+Tv

is used by
the destination at time i + Tv to estimate v[i] according
to

v̂[i] = ϕ
(v)
i+Tv

(y[0], y[1], . . . , y[min{i + Tv, n − 1}]).
5) A decoding function

ϕ
(u)
i+Tu

: F ∪ {∗} × . . . × F ∪ {∗}︸ ︷︷ ︸
min{i+Tu+1,n} times

→ F

for each i ∈ {0, 1, . . . , ku − 1}, where ϕ
(u)
i+Tu

is used by
the destination at time i+ Tu to estimate u[i] according
to

û[i] = ϕ
(u)
i+Tu

(y[0], y[1], . . . , y[min{i + Tu, n − 1}]).
The following definition concerns the error-correcting capa-

bility of a block code.
Definition 8: An (n, kv, ku, Tv, Tu)F-block code is said to

correct a B-erasure sequence en ∈ Ωn
B if the following

holds: Let y[i] = g1(x[i], ei) be the symbol received by
the destination at time i for each i ∈ {0, 1, . . . , n − 1}
where g1 is defined in (14). Then, v̂[i] = v[i] holds for all
i ∈ {0, 1, . . . , kv − 1} and all v[i] ∈ F, and û[i] = u[i] holds
for all i ∈ {0, 1, . . . , ku − 1} and all u[i] ∈ F, where v̂[i] and
û[i] are as defined in Definition 7.

The following lemma implies that constructing a streaming
code which corrects any length-B burst erasure is not more
difficult than constructing a block code which corrects any
length-B burst erasure. The proof of the following lemma
is deferred to Appendix C because it follows the standard
argument of interleaving a block code into a streaming code by
means of periodic interleaving [21] (see also [12, Sec. IV-A]).

Lemma 4: Given an (n, kv, ku, Tv, Tu)F-block code
which corrects any B-erasure sequence, we can construct
an (n, kv, ku, Tv, Tu)F-streaming code which corrects any
B-erasure sequence.
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TABLE I

SYMBOLS YIELDED BY A (5, 2, 1, 3, 2)F-STREAMING CODE THROUGH INTERLEAVING A (5, 2, 1, 3, 2)F-BLOCK CODE

Example 1: Suppose we are given a (5, 2, 1, 3, 2)F-block
code which corrects any length-2 burst erasure with generator
matrix

G =

⎡
⎣ 1 0 0 1 0

0 1 0 0 1
0 0 1 1 1

⎤
⎦ .

Let {vi}i∈Z+ and {ui}i∈Z+ be the messages of the less-
urgent stream and urgent stream respectively where vi =[
vi[0] vi[1]

] ∈ F
2 and ui = ui[0] ∈ F. From time i − 2

to i + 4, the symbols yielded by the (5, 2, 1, 3, 2)F-streaming
code constructed by interleaving the block code according to
Lemma 4 are shown in Table I. The symbols in Table I which
are highlighted in the same color diagonally (in ↘ direction)
are the components of the same codeword with generator
matrix G. Given the fact that the (5, 2, 1, 3, 2)F-block code
corrects any length-2 burst erasure, we can see from Table I
that

[
vi[0] vi[1]

]
and ui[0] can be perfectly recovered by time

i+3 and time i+2 respectively as long as the erasure sequence
is taken from Ω5

2 (cf. Definition 2).
Lemma 4 reduces the problem of finding high-rate stream-

ing codes which correct any B-erasure sequence to the
problem of finding high-rate block codes which correct any
B-erasure sequence. We will construct high-rate block codes
by superimposing the codewords of two single-stream block
codes, and therefore we need the following definition of a
single-stream block code.

Definition 9: An (n, k, 0, T, 0)F-block code is also called an
(n, k, T )F-block code. The (n, k, T )F-block code is said to cor-
rect a B-erasure sequence en if the equivalent (n, k, 0, T, 0)F-
block code corrects en.

By Definition 9, an (n, k, T )F-block code ignores the urgent
stream of messages by letting the message size for the urgent
stream be zero. The following lemma is a restatement of an
existing construction [12, Th. 2] (see also [17, Remark 3])
of an (n, k, T )F-block code with rate k/n = C(T, B) which
corrects any length-B burst erasure.

Lemma 5: Suppose T ≥ B ≥ 1 and let k � T and n �
k + B. Fix any F with |F| ≥ T such that a systematic MDS
(T, T −B)-code always exists. Let P denote the parity matrix
of the MDS code such that the generator matrix of the MDS
code equals [IT−B P]. Then, the (n, k, T )F-block code with

rate k/n = C(T, B) and generator matrix G defined as

G �
[

IB 0B×(T−B) IB

0(T−B)×B IT−B P

]
corrects any length-B burst erasure.

B. Achievability Proof of Theorem 1

Fix any (Tv, Tu, B) that satisfies (7) and (10). Our goal is
to show that CTv,Tu,B ⊇ R{Tv>Tu+B} where R{Tv>Tu+B} is
defined in (16) and illustrated in Figure 1(b). By Corollary 3,
it suffices to show that the four corner points of R{Tv>Tu+B}
are (Tv, Tu, B)-achievable. Since the corner points (0, 0),
(C(Tv, B), 0) and (0, C(Tu, B)) are (Tv, Tu, B)-achievable by
Corollary 2, it suffices to show that the remaining corner point(

Tv−Tu
Tv+B , Tu

Tv+B

)
is (Tv, Tu, B)-achievable. To this end, we let

kv � Tv−Tu > 0, ku � Tu and n � Tv+B, and will construct
an (n, kv, ku, Tv, Tu)F-block code which corrects any length-
B burst erasure, which together with Lemma 4 will imply that(

Tv−Tu
Tv+B , Tu

Tv+B

)
is (Tv, Tu, B)-achievable. The construction of

the (n, kv, ku, Tv, Tu)F-block code is described as follows.
Fix any F with |F| ≥ max{Tu, Tv − Tu}. The vectors of
less-urgent source symbols and urgent source symbols are
denoted by �v = [v[0] v[1] . . . v[Tv − Tu − 1]] and �u =
[u[0] u[1] . . . u[Tu − 1]] respectively. Let V and U be the
parity matrices of a systematic MDS (Tv −Tu, Tv −Tu −B)-
code and a systematic MDS (Tu, Tu − B)-code respectively,
and let

G �

⎡
⎢⎢⎣ ITv−Tu

IB

V 0(Tv−Tu)×B

0Tu×(Tv−Tu) IB

0(Tu−B)×B
0B×(Tu−B) IB

ITu−B U

⎤
⎥⎥⎦

(17)

be the generator matrix of the (n, kv, ku, Tv, Tu)F-block code.
The intuition behind the construction of G is to superimpose
the codeword generated from the less-urgent symbols

[x(v)[0] x(v)[1] . . . x(v)[Tv − Tu + B − 1]]

� �v

[
ITv−Tu

IB

V

]
(18)
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and the codeword generated from the urgent symbols

[x(u)[0] x(u)[1] . . . x(u)[Tu + B − 1]]

� �u

[
ITu

IB

U

]
(19)

such that the two streams interfere with each other in the resul-
tant codeword at B consecutive positions. Applying Lemma 5
to (18) and (19), we obtain the following two properties for
the less-urgent symbols and urgent symbols respectively for
each en ∈ Ωn

B :

(i) For each i ∈ {0, 1, . . . , Tv−Tu−1}, v[i] can be perfectly
recovered from the following set of packets that are not
erased by the length-B burst erasure specified by en:{

x(v)[�] | 0 ≤ � ≤ min{i + Tv, Tv − Tu + B − 1}, e� = 0
}

.

(ii) For each i ∈ {0, 1, . . . , Tu − 1}, u[i] can be perfectly
recovered from the non-erased packets{

x(u)[�]
∣∣∣ 0 ≤ � ≤ min{i + Tu, Tu + B − 1}, e� = 0

}
.

Combining (17), (18) and (19), we conclude that
[x[0] x[1] . . . x[n− 1]] satisfies (20), shown at the bottom of
the page, where the last B symbols of the less-urgent stream
codeword denoted by x(v)[Tv−Tu], . . . , x(v)[Tv−Tu +B−1]
interfere with the first B symbols of the urgent stream
codeword denoted by x(u)[0], . . . , x(u)[B − 1]. In order
to show that the (n, kv, ku, Tv, Tu)F-block code defined
by (17) corrects any length-B burst erasure, we fix an
arbitrary en ∈ Ωn

B and would like to show the following two
properties:

(I) For each i ∈ {0, 1, . . . , Tv − Tu − 1}, suppose the less-
urgent symbol v[i] is generated at time i. Then, v[i] can
be perfectly recovered with delay Tv by time i+Tv from
the following set of packets that are not erased by the
length-B burst erasure specified by en:

{x[�]| � ∈ {0, 1, . . . , min{i + Tv, n − 1}}, e� = 0} .

(21)

(II) For each i ∈ {0, 1, . . . , Tu − 1}, suppose the urgent
symbol u[i] is generated at time Tv − Tu + i. Then,
u[i] can be perfectly recovered with delay Tu by time
(Tv −Tu + i) + Tu = i + Tv from the set of non-erased
packets as stated in (21).

We will show Properties (I) and (II) in each of the following
two cases:

Case { i ∈ {0, 1, . . . , Tv − Tu − 1}| ei = 1} = ∅:

By the hypothesis, �v can be perfectly recovered by time Tv−
Tu − 1 and hence Property (I) holds. It remains to prove
Property (II). To this end, we first observe from (20) that

x(v)[Tv − Tu], x(v)[Tv − Tu + 1], . . . , x(v)[Tv − Tu + B − 1]
can be perfectly recovered by time Tv − Tu − 1 because they
are functions of �v by (18). Therefore, it follows from (20)
and (19) that the destination can construct{

x(u)[�]
∣∣∣ 0 ≤ � ≤ min{i + Tu, Tu + B − 1}, e� = 0

}
by time i + Tv for each i ∈ {0, 1, . . . , Tu − 1}, which implies
from the fact en ∈ Ωn

B and Property (ii) that the destination
can perfectly recover x(u)[i] by time i + Tv for each i ∈
{0, 1, . . . , Tu − 1}, and hence Property (II) holds.

Case { i ∈ {0, 1, . . . , Tv − Tu − 1}| ei = 1} �= ∅:
In view of the hypothesis and (20) and using the fact

en ∈ Ωn
B , we conclude that the destination receives x(u)[i] at

time Tv−Tu + i for each i ∈ {B, B +1, . . . , Tu +B−1} and
hence Property (II) holds. It remains to prove Property (I).
To this end, we first observe from Property (II) that the
destination can perfectly recover x(u)[i] = u[i] by time i+Tv

for each i ∈ {0, 1, . . . , Tu−1}. Therefore, it follows from (20)
that the destination can construct{

x(v)[�]
∣∣∣ 0 ≤ � ∈ min{i + Tv, Tv − Tu + B − 1}, e� = 0

}
by time i + Tv for each i ∈ {0, 1, . . . , Tv − Tu + B − 1},
which implies from the fact en ∈ Ωn

B and Property (i) that
the destination can perfectly recover x(v)[i] by time i+Tv for
each i ∈ {0, 1, . . . , Tv−Tu−1}, and hence Property (I) holds.

Combining the above two cases, we conclude the Properties
(I) and (II) hold for all en ∈ Ωn

B , which implies that
the (n, kv, ku, Tv, Tu)F-block code defined by (17) corrects
any length-B burst erasure, which together with Lemma 4
implies that

(
Tv−Tu
Tv+B , Tu

Tv+B

)
is (Tv, Tu, B)-achievable (cf.

Definition 5).

IV. CONVERSE PROOF OF MAIN RESULT

Our goal is to show that CTv,Tu,B ⊆ R{Tv>Tu+B}. Equiv-
alently, we would like to show that (9) and (11) hold. To
this end, we let (Rv, Ru) be a rate pair in CTv,Tu,B . Fix
an arbitrary δ > 0. By Definition 5 and Definition 6, there
exists an (n, kv, ku, Tv, Tu)F-streaming code which corrects
any B-erasure sequence such that

kv

n
≥ Rv − δ (22)

and
ku

n
≥ Ru − δ. (23)

A. Sum-Rate Bound (9)

By Definition 1, the (n, kv, ku, Tv, Tu)F-streaming code can
be viewed as an (n, kv + ku, 0, Tv, 0)F-streaming code which
corrects any B-erasure sequence. Consequently, the sum-rate

[x[0] x[1] . . . x[n − 1]] =⎡
⎣ x(v)[0] . . . x(v)[Tv − Tu − 1]

x(v)[Tv − Tu]
+

x(u)[0]
. . .

x(v)[Tv − Tu + B − 1]
+

x(u)[B − 1]
x(u)[B] . . . x(u)[Tu + B − 1]

⎤
⎦ (20)
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Fig. 2. The periodic erasure sequence ε(0) .

for the (n, kv, ku, Tv, Tu)F-streaming codes must not exceed
the single-stream capacity C(Tv, B) (cf. Section I-B), which
implies that

kv + ku

n
≤ C(Tv, B). (24)

Combining (24), (22) and (23), we have

Ru + Rv ≤ C(Tv, B) + 2δ,

which then implies (9) by taking the limit δ → 0.

B. Genie-Aided Bound (11)

Given the (n, kv, ku, Tv, Tu)F-streaming code that cor-
rects any B-erasure sequence and satisfies (22) and (23),
we use Corollary 1 to construct for each q ∈ N

a (qn, qkv, qku, Tv, Tu)F-streaming code that corrects any
B-erasure sequence and satisfies (22) and (23). Fix any
q ∈ N. In order to develop a genie-aided bound associated
with the (qn, qkv, qku, Tv, Tu)F-streaming code, we let u0

and v0 be the urgent and less-urgent source packets which
are uniformly distributed on F

qku and F
qkv respectively, and

assume that {(ui,vi)}i∈Z+ are independent and identically
distributed (i.i.d.). The genie-aided bound associated with the
(qn, qkv, qku, Tv, Tu)F-streaming code is obtained by consid-
ering the following set of periodic erasure patterns: Define

nu � Tu + B

and construct for each Δ ∈ {0, 1, . . . , Tu + B − 1} a periodic
erasure pattern ε(Δ) = {ε(Δ)

i }∞i=0 as

ε
(Δ)
i �

⎧⎨
⎩

1 if i−Δ ∈ {κnu, κnu +1, . . . , κnu +B−1} for
some κ ∈ Z,

0 otherwise.

(25)

In other words, we construct ε(Δ) by offsetting the periodic
erasure sequence ε(0) by Δ time slots to the right, where
ε(0) is illustrated in Figure 2. By construction, each ε(Δ)

has a period of nu time slots and each period consists of
an initial length-B burst erasure followed by a length-Tu

noiseless duration. Fix an erasure pattern ε(Δ), and we will
obtain a corresponding genie-aided bound associated with the
(qn, qkv, qku, Tv, Tu)F-streaming code in the following. Let

βm = H
(
xm

∣∣u∞, {x�}m−1
�=0

)
(26)

be the conditional entropy of xm conditioned on
(u∞, {x�}m−1

�=0 ) for each m ∈ {0, 1, . . . , qnu − 1}, which
specifies the approximate number of bits required to
construct xm based on the knowledge of (u∞, {x�}m−1

�=0 ).
Suppose we use a standard arithmetic code [22, Ch. 13.3]
to compress xm conditioned on each outcome assumed by
(u∞, {x�}m−1

�=0 ) for each m ∈ {0, 1, . . . , qnu − 1}, and let

X̂m be the noiseless compressed version of xm accessible to
the genie that satisfies the equality

H
(
xm

∣∣u∞, {x�}m−1
�=0 , X̂m

)
= 0 (27)

and the inequality (cf. [22, Ch. 13.3])

H(X̂m) ≤ H
(
xm

∣∣u∞, {x�}m−1
�=0

)
+ 2

= βm + 2 (28)

where the last equality is due to (26). According to the
design of the arithmetic code, the random variable X̂m is
constructed by first generating {u�}m

�=0 and {x�}m−1
�=0 fol-

lowed by generating X̂m based on the conditional distribution
pX̂m|{u�}m

�=0,{x�}m−1
�=0

. Note that for the special case where the
(qn, qkv, qku, Tv, Tu)F-streaming code is systematic, it can be
seen that {x�}m−1

�=0 contains {v�}m−1
�=0 and hence setting X̂m

equal to vm suffices to yield (27) and (28). However, for the
general case where the streaming code can be non-systematic,
the arithmetic coding argument is needed for obtaining (27)
and (28). In order to obtain the genie-aided bound correspond-
ing to the fixed q, the fixed (qn, qkv, qku, Tv, Tu)F-streaming
code and the fixed ε(Δ), we suppose the genie provides the
destination with {X̂m |m ∈ AΔ} where

AΔ �
{
i ∈ Z+

∣∣ε(Δ)
i = 1

}
(29)

denotes the set of time indices at which the transmitted packets
are erased according to ε(Δ). To simplify notation, we let
Ac

Δ � Z+ \ AΔ. Then we claim that every urgent source
packet and every less-urgent source packet can be recovered
when the erasure sequence is ε(Δ) (cf. (25)). To prove the
claim, we consider the following chain of inequalities:

H
({(ui,vi)}qnu−Tu−Tv−1

i=0

∣∣{xm : Ac
Δ ∩ [0, q nu − 1]},

{X̂m : m ∈ AΔ ∩ [0, qnu − 1]})
≤ H

({xi}qnu−Tu−1
i=0

∣∣{xm : Ac
Δ ∩ [0, q nu − 1]},

{X̂m : m ∈ AΔ ∩ [0, qnu − 1]}) (30)

=
qnu−Tu−1∑

i=0

H
(
xi

∣∣{x�}i−1
�=0, {xm : m ∈ Ac

Δ ∩ [i, q nu − 1]},

{X̂m : m ∈ AΔ ∩ [0, qnu − 1]})
≤

qnu−Tu−1∑
i=0

H
(
xi

∣∣{x�}i−1
�=0, {xm : m ∈ Ac

Δ ∩ [i, i + Tu]},

{X̂m : m ∈ AΔ ∩ [0, qnu − 1]})
=

qnu−Tu−1∑
i=0

H
(
xi

∣∣{(x�,u�)}i−1
�=0, {xm :m ∈ Ac

Δ ∩ [i, i + Tu]},

{X̂m : m ∈ AΔ ∩ [0, qnu − 1]}) (31)

≤
qnu−Tu−1∑

i=0

1{ε(Δ)
i = 1}×H

(
xi

∣∣{u�}i
�=0, {x�}i−1

�=0, X̂i

)
(32)

= 0 (33)

where

• (30) is due to that fact that {(ui,vi)}qnu−Tu−Tv−1
i=0 is a

function of {xi}qnu−Tu−1
i=0 .
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• (31) is due to the fact that {u�}i
�=0 is a function of

({x�}i−1
�=0, {xm : m ∈ Ac

Δ∩ [i, i+Tu]}), which is a direct
consequence of the fact that the (qn, qkv, qku, Tv, Tu)F-
streaming code corrects any B-erasure sequence.

• (32) is due to the definition of AΔ in (29).
• (33) is due to (27).

Equation (33) implies that the urgent and less-urgent source
packets generated before time qnu − Tu − Tv − 1 can be
recovered by the destination by time qnu + 1 if the erasure
sequence is ε(Δ) and the genie provides the destination with
the side information {X̂m : m ∈ AΔ∩[0, qnu−1]}. Therefore,
it follows from (33) and (28) that

q(ku + kv)(qnu − Tu − Tv)

= H
({(ui,vi)}qnu−Tu−Tv−1

i=0

)
≤ H

({xm : Ac
Δ ∩ [0, q nu − 1]},

{X̂m : m ∈ AΔ ∩ [0, qnu − 1]})
≤ H

({xm : Ac
Δ ∩ [0, q nu − 1]})

+ H
({X̂m : m ∈ AΔ ∩ [0, qnu − 1]})

≤
∑

m∈Ac
Δ∩[0,qnu−1]

H(xm) +
∑

m∈AΔ∩[0,qnu−1]

(βm + 2). (34)

Taking average on both sides of (34) over Δ ∈ {0, 1, . . . , Tu+
B − 1}, we obtain

q(ku + kv)(qnu − Tu − Tv)

≤ 1
Tu + B

Tu+B−1∑
Δ=0

( ∑
m∈Ac

Δ∩[0,qnu−1]

H(xm) +
∑

m∈AΔ∩[0,qnu−1]

(βm + 2)
)
,

which together with the definition of AΔ in (29) implies that

q(ku + kv)(qnu − Tu − Tv)

≤ Tu

Tu + B

qnu−1∑
m=0

H(xm) +
B

Tu + B

qnu−1∑
m=0

(βm + 2). (35)

Since H(xm) ≤ qn for each m by construction and

qnu−1∑
m=0

βm = H
({x�}qnu−1

�=0

∣∣u∞)
≤ H

({v�}qnu−1
�=0

)
≤ q2 nukv

due to (26) and the fact that {x�}qnu−1
�=0 is a function of

{u�,v�}qnu−1
�=0 , it follows from (35) that

q(ku + kv)(qnu − Tu − Tv)

≤ q2 nnuTu

Tu + B
+

q2 nukvB

Tu + B
+

2qnuB

Tu + B
. (36)

Dividing both sides of (36) by q2nnu, we obtain(
ku + kv

n

)(
1 − Tu + Tv

qnu

)
≤ Tu

Tu + B
+

B

Tu + B
× kv

n
+

2B

qn(Tu + B)
,

which together with the fact nu = Tu + B implies that(
1 − Tu + Tv

qnu

)
ku

n
+
(

Tu

nu
− Tu + Tv

qnu

)
kv

n
≤ Tu

nu
+

2B

qnnu
.

(37)

Combining (37), the definition of C(·, ·) in (4), (22) and (23),
we obtain(

1 − Tu + Tv

qnu

)
(Ru − δ) +

(
C(Tu, B) − Tu + Tv

qnu

)
(Rv − δ)

≤ C(Tu, B) +
2B

qnnu
. (38)

Taking the limit q → ∞ followed by letting δ → 0 on both
sides of (38), we obtain (11).

V. CONCLUDING REMARKS

We have investigated streaming codes that multiplex an
urgent stream of messages with delay constraint Tu and a
less-urgent stream of messages with delay constraint Tv over
the deterministic burst-erasure model where Tv ≥ Tu. The
capacity region has been proved for the case Tv > Tu + B
under assumption 7, which together with the existing results
described in Section I-B implies the full characterization of
the capacity region for all parameters of (Tv, Tu, B). The
capacity regions for the case Tu < Tv ≤ Tu + B and the
case Tv > Tu + B are shown in Figure 1(a) and Figure 1(b)
respectively. While systematic streaming codes alone achieve
the capacity region for the case Tu < Tv ≤ Tu + B and
the case Tv ≥ Tu + 2B by [19, Th. 3] and Remark 2
respectively, it remains open whether systematic streaming
codes are sufficient to achieve the capacity region for the case
Tu + B < Tv < Tu + 2B.

The main result in this paper, i.e., Theorem 1, is readily
generalized to the following deterministic model that generates
multiple burst erasures as explained in [23, Remark 1] (see
also [19, Sec. II]): The channel introduces multiple burst
erasures on the discrete timeline where the length of each
burst does not exceed B and the length of the guard space
between two adjacent bursts is at least Tv. Future work
may generalize the main result to the erasure model which
introduces both burst and arbitrary erasures as investigated
in [24] and [17].

APPENDIX A
PROOF OF COROLLARY 1

Fix an (n, kv, ku, Tv, Tu)F-streaming code that corrects
any B-erasure sequence and fix any q ∈ N. Construct q
instances of the (n, kv, ku, Tv, Tu)F-streaming code. Recalling
Definition 1, we concatenate the length-n transmitted packets
generated at time i by the q instances of the streaming code
and construct at time i a length-(qn) transmitted packet for
each i ∈ Z+. Due to Definition 1 and Definition 4, the con-
catenated code associated with the sequence of length-(qn)
transmitted packets can be viewed as a (qn, qkv, qku, Tv, Tu)F-
streaming code which corrects any B-erasure sequence.
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APPENDIX B
PROOF OF COROLLARY 3

By Definition 5 and Definition 6, it suffices to prove the fol-
lowing: For any (n(0), k

(0)
v , k

(0)
u , Tv, Tu)F-streaming code and

any (n(1), k
(1)
v , k

(1)
u , Tv, Tu)F-streaming code which correct

any B-erasure sequence, there exists an (n, kv, ku, Tv, Tu)F-
streaming code which corrects any B-erasure sequence where

kv

n
=

k
(0)
v

2n(0)
+

k
(1)
v

2n(1)
(39)

and

ku

n
=

k
(0)
u

2n(0)
+

k
(1)
u

2n(1)
. (40)

In order to show (39) and (40), we concatenate n(1) instances
of the length-n(0) transmitted packet generated at time i and
n(0) instances of the length-n(1) transmitted packet generated
at time i and form at time i a new length-(2n(0)n(1)) trans-
mitted packet for each i ∈ Z+. By construction, the concate-
nated code associated with the sequence of length-(2n(0)n(1))
transmitted packets can be viewed as a (n, kv, ku, Tv, Tu)F-
streaming code which corrects any B-erasure sequence where
n = 2n(0)n(1), kv = n(1)k

(0)
v + n(0)k

(1)
v and ku = n(1)k

(0)
u +

n(0)k
(1)
u . In particular, the concatenated code satisfies (39)

and (40).

APPENDIX C
PROOF OF LEMMA 4

Suppose we are given an (n, kv, ku, Tv, Tu)F-block code
which corrects any B-erasure sequence, and let G ∈
F

(kv+ku)×n be the generator matrix. By Definition 7, the block
code has the following properties:

(i) The length of the block code is n.
(ii) From time 0 to n − 1, the symbols[

x[0] x[1] · · · x[n − 1]
]

=
[
�v �u

]
G

are transmitted.
(iii) Upon receiving[

y[0] . . . y[min{� + Tv, n − 1}]] =[
g1(x[0],e0) . . . g1(x[min{�+Tv,n−1}],emin{�+Tv,n−1})

]
,

the destination can perfectly recover v[�] by time
min{� + Tv, n − 1} for each � ∈ {0, 1, . . . , kv − 1}
as long as en ∈ Ωn

B .
(iv) Upon receiving[

y[0] . . . y[min{� + Tu, n − 1}]] =[
g1(x[0],e0) . . . g1(x[min{�+Tu,n−1}],emin{�+Tu,n−1})

]
,

the destination can perfectly recover u[�] by time
min{� + Tu, n − 1} for each � ∈ {0, 1, . . . , k − 1} as
long as en ∈ Ωn

B .

In order to construct (n, kv, ku, Tv, Tu)F-streaming code
(cf. Definition 1) which corrects any length-B burst erasure,
we first let {vi}∞i=0 denote a sequence of length-kv less-urgent
packets and let {ui}∞i=0 denote a sequence of length-ku urgent

packets, and let vi[�] and ui[�] denote the (�+1)th element of
vi and ui respectively such that

vi � [vi[0] vi[1] · · · vi[kv − 1]] (41)

and

ui � [ui[0] ui[1] · · · ui[ku − 1]] (42)

for all i ∈ Z+. Using the convention that
[
uj vj

]
�

01×(kv+ku) for any j < 0, we construct[
xi[0] xi+1[1] · · · xi+n−1[n − 1]

]
�
[
�vi �ui

]
G (43)

for each i ∈ {−n + 1,−n + 2, . . .} where �vi and �ui are
respectively defined as

�vi �
[
vi[0] vi+1[1] . . . vi+kv−1[kv − 1]

]
and

�ui �
[
ui+kv [0] vi+kv+1[1] . . . vi+kv+ku−1[ku − 1]

]
and G is the generator matrix of the (n, kv, ku, Tv, Tu)F-
block code which corrects any length-B burst erasure. In other
words, we are coding {[vi ui] : i ∈ Z+} diagonally as
illustrated in Table I where xm[�] denotes the symbol �
transmitted at time m. At each time i ∈ Z+, the source
transmits

xi �
[
xi[0] xi[1] · · · xi[n − 1]

]
. (44)

Based on the (n, kv, ku, Tv, Tu)F-block code which satisfies
Properties (i) to (iv) as stated at the beginning of this proof,
we have constructed an (n, kv, ku, Tv, Tu)F-streaming code
where vi, ui and xi satisfy (41), (42), (43) and (44). It remains
to show that the (n, kv, ku, Tv, Tu)F-streaming code corrects
any length-B burst erasure. To this end, we fix any i ∈ Z+

and any e ∈ ΩB , and would like to show that the destination
can perfectly recover vi =

[
vi[0] vi[1] · · · vi[kv − 1]

]
based

on

[y0 y1 . . . yi+Tv ]
= [gn(x0, e0) gn(x1, e1) . . . gn(xi+Tv , ei+Tv)], (45)

and can perfectly recover ui =
[
ui[0] ui[1] · · · ui[ku − 1]

]
based on

[y0 y1 . . . yi+Tu ]
= [gn(x0, e0) gn(x1, e1) . . . gn(xi+Tu , ei+Tu)], (46)

According to (44), for each i ∈ {−n+1,−n+2, . . .}, the sym-
bols in

[
xi[0] xi+1[1] · · · xi+n−1[n − 1]

]
are transmitted

between time i to i + n − 1. Therefore, it follows from (43),
Property (iii) and (45) that for each i ∈ Z+ and each � ∈
{0, 1, . . . , kv − 1}, the destination can perfectly recover vi[�]
by time i+Tv based on [y0 y1 . . . yi+Tv ]. Similarly, it follows
from (43), Property (iv) and (46) that for each i ∈ Z+ and each
� ∈ {0, 1, . . . , ku − 1}, the destination can perfectly recover
ui[�] by time i+Tu based on [y0 y1 . . . yi+Tu ]. Consequently,
for any i ∈ Z+ and any e ∈ ΩB , the destination can perfectly
recover vi[�] by time i + Tv for each � ∈ {0, 1, . . . , kv − 1}
and perfectly recover ui[�] by time i + Tu for each � ∈
{0, 1, . . . , ku − 1}, which then implies by Definition 5 that
the (n, kv, ku, Tv, Tu)F-streaming code corrects any B-erasure
sequence.
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