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Abstract—This paper considers multiplexing two sequences
of messages with two different decoding delays over a packet
erasure channel. In each time slot, the source constructs a packet
based on the current and previous messages and transmits the
packet, which may be erased when the packet travels from the
source to the destination. The destination must perfectly recover
every source message in the first sequence subject to a decoding
delay Tv and every source message in the second sequence subject
to a shorter decoding delay Tu ≤ Tv. We assume that the channel
loss model introduces a burst erasure of a fixed length B on
the discrete timeline. Under this channel loss assumption, the
capacity region for the case where Tv ≤ Tu + B was previously
solved. In this paper, we fully characterize the capacity region
for the remaining case Tv > Tu +B.

I. INTRODUCTION

Video streaming applications including video conferencing,
virtual reality (VR) and online gaming are expected to dom-
inate 82 percent of the Internet traffic by 2022, up from 75
percent in 2017 [1]. Due to the growing demand in video
streaming applications, we are motivated to find effective
error correction strategies for low-latency communications.
Two main error control schemes have been implemented at the
data link layer and the transport layer to alleviate the effect
of packet losses on applications that are run over the Internet:
Automatic repeat request (ARQ) and forward error correction
(FEC). FEC is preferred over ARQ when retransmitting lost
packets is costly. For example, retransmitting a Voice-over-
IP (VoIP) packet incurs an extra round-trip delay which will
result in an overall three-way delay (forward + backward +
forward) that may exceed the 150 ms delay recommended
by International Telecommunication Union [2]. Given the fact
that the three-way propagation delay is at least 200 ms for
communication between two diametrically opposite points on
the earth’s circumference [3], FEC has a clear advantage over
ARQ for long-distance low-latency communication.

This paper studies low-latency FEC schemes implemented
at the transport layer, where a source packet is either received
by the destination without error or dropped by the network
(possibly due to unreliable links or network congestion). Since
packet erasures often occur in a bursty rather than sparse
manner [4,5], we model the connection between the source
and the destination as a packet erasure channel that introduces
burst erasures. In order to capture the streaming nature of

messages and the low-latency requirements, we assume that a
source message is encoded into a channel packet in every time
slot and a decoding delay constraint T is imposed on every
message. If the destination cannot decode a message within T
time slots from the time when the message is generated,
the message is considered lost. Characterizing the maximum
achievable rates for statistical models that generate burst
erasures such as the well-known Gilbert-Elliott (GE) channel
[6,7] and the Fritchman channel [8] seems intractable due to
the delay constraint and the fact that those statistical models
are not memoryless. Therefore, Martinian and Sundberg [9]
have instead characterized the capacity, i.e., maximum coding
rate, for a simpler deterministic model where a burst erasure
of length B is introduced on the discrete timeline and every
message must be perfectly recovered at the destination with
a decoding delay of T time slots. They proposed a streaming
code that not only achieves the capacity T

T+B for the determin-
istic model, but also can significantly outperform traditional
FEC schemes for the GE channel. Various generalizations of
the packet erasure model and the streaming codes in [9] have
been proposed in [10]–[14].

Note that an application may consist of multiple types of
data streams (video, audio, text, etc.), and also within a single
data stream such as video there are different subsets of data
that have different delivery deadlines. Moreover, multiplexing
streams of different types has been implemented in the QUIC
transport protocol for reducing the latency of Google Search
and YouTube [15]. Therefore, Badr et al. [16] extended the
study of single-stream codes in [9] and initiated the study of
streaming codes which multiplex a stream of urgent messages
with a stringent delay constraint and a stream of less-urgent
messages with a less stringent delay constraint. Simulation
results in [16, Sec. VIII] demonstrate that using multiplexed
streaming codes can significantly outperform concatenating
multiple single-stream codes for the GE channel. In [16], every
urgent message and every less-urgent message generated in a
time slot have to be decoded within Tu and Tv time slots
respectively from the time when the messages are generated
where Tu ≤ Tv. Similar to the single-stream case, we assume
that the channel introduces a burst erasure of length B on
the discrete timeline and define the capacity region to be the
set of rate pairs (Rv, Ru) which are supported by streaming

3082978-1-5386-9291-2/19/$31.00 ©2019 IEEE ISIT 2019



codes that correct any length-B burst erasure where Rv and Ru

denote the rates of the less-urgent stream and urgent stream
respectively. For the case Tu ≤ Tv ≤ Tu + B, systematic
streaming codes have been proposed in [16] to achieve the
capacity region. However, it is unclear whether the capacity
region can be achieved by the multiplexed streaming codes
proposed in [16] in general. Therefore, we are motivated to
characterize the capacity region in the remaining cases.

The rest of the paper is organized as follows. The notation
in this paper is explained in the next section. Section III
presents the formulation of multiplexed streaming codes for
the deterministic erasure model and narrows our focus to the
only open case Tv > Tu + B. Section IV formally defines
the capacity region. Section V presents our main result — the
capacity region for the open case. Section VI provides a proof
sketch for the achievability part. Section VII concludes this
paper.

II. NOTATION

We use 1{E} to denote the indicator function of an event E .
The sets of non-negative integers and non-negative real num-
bers are denoted by Z+ and R+ respectively. All the elements
of any matrix considered in this paper are taken from a
common finite field F. The set of k-dimensional row vectors
over F is denoted by Fk, and the set of k × n matrices over
F is denoted by Fk×n. A row vector in Fk is denoted by
a , [a0 a1 . . . ak−1]. The k-dimensional identity matrix is
denoted by Ik and the L × B all-zero matrix is denoted by
0L×B . We call a matrix VL×B an L × B parity matrix of a
systematic maximum-distance separable (MDS) (L + B,L)-
code if any L columns of [IL VL×B ] ∈ FL×(L+B) are
independent. A systematic MDS (L+B,L)-code always exists
as long as |F| ≥ L + B [17].

III. MULTIPLEXED STREAMING CODES FOR CHANNELS
WITH BURST ERASURES

The source wants to simultaneously send a sequence of
length-ku packets u∞ , {ui}∞i=0 with decoding delay Tu

and a sequence of length-kv packets v∞ , {vi}∞i=0 with
decoding delay Tv ≥ Tu to the destination, where ku and
kv denote the sizes of each urgent packet ui and each less-
urgent packet vi respectively. Each ui is an element in Fku

and each vi is an element in Fkv where F is some finite field.
In each time slot i ∈ Z+, the source packets vi and ui are
encoded into a length-n packet xi ∈ Fn to be transmitted to
the destination through an erasure channel, and the destination
receives yi ∈ Fn∪{∗} where yi equals either xi or the erasure
symbol ‘∗’. The fractions ku/n and kv/n specify the rates of
the urgent and less-urgent streams respectively. The urgent and
less-urgent streams are subject to the delay constraints of Tu

and Tv time slots respectively, meaning that the destination
must produce an estimate of ui, denoted by ûi, upon receiving
yi+Tu

and produce an estimate of vi, denoted by v̂i, upon
receiving yi+Tv . We assume that the channel introduces a burst
erasure of length B on the discrete timeline as in [16].

We assume without loss of generality (wlog) that Tv ≥
B or otherwise a burst erasure of length B starting from
time i would prevent the destination to recover ui and vi

by time i + Tv. If the channel is noiseless where B = 0,
no coding is needed to asymptotically achieve all the rate
pairs (kv/n, ku/n) on the boundary of the capacity region
that satisfy ku/n+kv/n = 1. Therefore, we assume wlog that
B ≥ 1. For the case Tu < B, it can be observed that a burst
erasure of length B starting from time i would prevent the
destination to recover ui by time i+Tu. Consequently, no rate
pair (kv/n, ku/n) with ku/n > 0 is achievable, which implies
that the capacity region reduces to the interval [0,C(Tv, B)]
on the horizontal axis where

C(T,B) ,
T

T + B
(1)

is the capacity achieved by streaming codes with delay T that
correct any length-B burst erasure [9, Th. 1 and Th. 2] (see
also [14, Sec. III-C]). Since the case Tu < B degenerates
the multiplexing problem to the previously known single-
stream problem described above, and we assume wlog that
Tu ≥ B. For the case Tu = Tv, since the urgent and less-
urgent source packets can be viewed as single-stream source
packets with delay Tu, any rate pair (kv/n, ku/n) must satisfy
ku/n + kv/n ≤ C(Tu, B) (recall that the capacity of the
single-stream problem equals C(T,B) by [9]). In addition,
the boundary of the capacity region ku/n+ kv/n = C(Tu, B)
can be asymptotically achieved by partitioning each source
packet of an optimal code with rate C(Tu, B) into an urgent
source packet and a less-urgent source packet. Consequently,
the case Tu = Tv degenerates the multiplexing problem to a
single-stream problem described above, and we assume wlog
that Tv > Tu. Summarizing the aforementioned assumptions,
we assume in the rest of the paper that

Tv > Tu ≥ B ≥ 1. (2)

Any condition that does not satisfy (2) leads to the aforemen-
tioned known results. For the special case where

1 ≤ B ≤ Tu < Tv ≤ Tu + B, (3)

systematic streaming codes have been proposed in [16] to
achieve the capacity region, which is the set of rate pairs
(Rv, Ru) satisfying

(
1 + Tu+B−Tv

Tu

)
Rv + Ru

C(Tu,B) ≤ 1 and
Rv +Ru ≤ C(Tv, B) as illustrated in Figure 1(a). In addition,
other systematic streaming codes have been proposed in [16]
to achieve two different rate regions for the cases Tu + B <
Tv < Tu + 2B and Tv ≥ Tu + 2B respectively, denoted
by R{Tu+B<Tv<Tu+2B} and R{Tv≥Tu+2B} respectively. In
particular, if only systematic streaming codes are allowed,
R{Tv≥Tu+2B} was shown in [16] to be the largest.

IV. CAPACITY REGION

Since (2) is assumed and the capacity region for case (3)
was proved in [16], this paper solves the only remaining case

Tv > Tu + B. (4)

3083



�୳

�୴Cሺ�୴, �ሻ

Cሺ�୳, �ሻ�୴ − ��୴ + �

��୴ + �
(a) Case Tu < Tv ≤ Tu +B

�୳

�୴Cሺ�୴, �ሻ

Cሺ�୳, �ሻ�୳�୴ + �

�୴ − �୳�୴ + �
(b) Case Tv > Tu +B

Fig. 1. Capacity region

Before presenting the main result of this paper, we formally
define multiplexed streaming codes and the capacity region.

Definition 1: An (n, kv, ku, Tv, Tu)F-streaming code con-
sists of

1) A sequence of length-kv less-urgent source packets v∞.
2) A sequence of length-ku urgent source packets u∞.
3) An encoder fi : Fku+kv × . . .× Fku+kv → Fn for each

i ∈ Z+ where xi = fi((u0,v0), (u1,v1), . . . , (ui,vi)).
4) A decoder ϕ

(v)
i+Tv

: Fn ∪ {∗} × . . . × Fn ∪ {∗} → Fkv

for each i ∈ Z+ where v̂i = ϕ
(v)
i+Tv

(y0,y1, . . . ,yi+Tv
).

5) A decoder ϕ
(u)
i+Tu

: Fn ∪ {∗} × . . . × Fn ∪ {∗} → Fku

for each i ∈ Z+ where ûi = ϕ
(u)
i+Tu

(y0,y1, . . . ,yi+Tu
).

In addition, the code is said to be systematic if xi = [vi ui ai]
for some ai ∈ Fn−kv−ku at each time i ∈ Z+.

Definition 2: An erasure sequence is a binary sequence
e , {ei}∞i=0 where ei = 1{erasure occurs at time i}. If∑∞

i=0 ei = B with all the 1’s occupying consecutive positions,
e is also called a B-erasure sequence. The set of B-erasure
sequences is denoted by ΩB . Similarly, for any n ≥ B, a
length-n binary sequence denoted by en , {ei}n−1i=0 is called
a B-erasure sequence if en satisfies

∑n−1
i=0 ei = B with all

the 1’s occupying consecutive positions. The set of length-n
B-erasure sequences is denoted by Ωn

B .
Definition 3: The mapping gn : Fn×{0, 1} → Fn ∪ {∗} of

the erasure channel is defined as

gn(x, e) =

{
x if e = 0,
∗ if e = 1.

(5)

For any erasure sequence e and any (n, kv, ku, Tv, Tu)F-
streaming code, yi =gn(xi, ei) holds for each i ∈ Z+.

Definition 4: An (n, kv, ku, Tv, Tu)F-streaming code is said
to correct a B-erasure sequence e if [ûi v̂i] = [ui vi] holds
for all i ∈ Z+ and all [ui vi] ∈ Fku+kv , where ûi and v̂i are
determined by {(u`,v`, e`)}i`=0 due to Definitions 1 and 3.

Definition 5: A rate pair (Rv, Ru) ∈ R2
+ is said to be

(Tv, Tu, B)-achievable if there exists an (n, kv, ku, Tv, Tu)F-
streaming code which corrects any B-erasure sequence such
that kv

n ≥ Rv and ku

n ≥ Ru.

The following corollary is a direct consequence of Defi-
nition 5 and the existing single-stream result [9, Th. 2] (see
also [14, Th. 1])) stated as follows: Suppose T ≥ B ≥ 1.
Then, there exists a streaming code with rate C(T,B) which
guarantees the recovery of every streaming message with
delay T when the channel is subject to any length-B burst
erasure on the discrete timeline.

Corollary 1 ( [9, Th. 2]): The rate pairs (C(Tv, B), 0) and
(0,C(Tu, B)) are (Tv, Tu, B)-achievable.

Definition 6: Fix any (Tv, Tu, B) that satisfies (2). The
(Tv, Tu, B)-capacity region, denoted by CTv,Tu,B , is the clo-
sure of the set of (Tv, Tu, B)-achievable rate pairs.

The following convexity statement regarding CTv,Tu,B will
help us simplify the achievability proof of our main result.

Corollary 2 ( [18, Appendix A]): For any (Tv, Tu, B) that
satisfies (2), CTv,Tu,B is convex.

V. MAIN RESULT

The following theorem is the main result of this paper,
which states the capacity region in terms of the single-stream
capacity function C(·, ·) as defined in (1).

Theorem 1: Fix any (Tv, Tu, B) satisfying (2) and (4). Let

R{Tv>Tu+B},

{
(Rv, Ru)∈R2

+

∣∣∣∣Rv + Ru

C(Tu,B) ≤ 1,

Rv +Ru ≤ C(Tv, B)

}
which is as illustrated in Figure 1(b). Then,

CTv,Tu,B = R{Tv>Tu+B}.

The complete proof of Theorem 1 is contained in [18].
The key step in the achievability proof is achieving the non-
trivial corner point of the capacity region through using a
multiplexed streaming code constructed by superimposing two
single-stream codes, and a proof sketch is provided in the next
section. The key step in the converse proof is obtaining the
genie-aided outer bound Rv+ Ru

C(Tu,B) ≤ 1 when the channel is
subject to a periodic erasure pattern where each period consists
of a length-B burst erasure followed by a length-Tu noiseless
duration. The main challenge is to provide the genie the least
amount of information so that both streams can be perfectly
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recovered at the destination. The converse proof is omitted due
to space limitation.

Remark 1: Consider the case Tv ≥ Tu + 2B. It was
shown in [16, Th. 1] that systematic streaming codes
achieves R{Tv>Tu+B}. Therefore, systematic streaming codes
are sufficient to achieve the capacity region by Theorem 1.

Remark 2: Consider the case Tu + B < Tv < Tu + 2B.
The systematic streaming codes proposed in [16, Th. 1]
cannot achieve the non-trivial corner point

(
Tv−Tu

Tv+B , Tu

Tv+B

)
of

CTv,Tu,B . On the other hand, our achievability proof proposes
a non-systematic streaming code that achieve the non-trivial
corner point. It remains open whether systematic streaming
codes are sufficient to achieve the capacity region.

VI. ACHIEVABILITY PROOF OF MAIN RESULT

The achievability proof of Theorem 1 consists of two steps.
The first step involves constructing a multiplexed block code
which corrects any B-erasure sequence. The second step
involves constructing a multiplexed streaming code which
corrects any B-erasure sequence by periodically interleaving
the multiplexed block code. The formal definitions and ex-
isting results related to multiplexed block codes and periodic
interleaving are presented as follows.

Definition 7: An (n, kv, ku, Tv, Tu)F-block code consists of

1) A vector of kv less-urgent source symbols in F denoted
by ~v ,

[
v[0] v[1] . . . v[kv − 1]

]
.

2) A vector of ku urgent source symbols in F denoted by
~u ,

[
u[0] u[1] . . . u[ku − 1]

]
.

3) A generator matrix G ∈ F(kv+ku)×n. The codeword is
generated according to

[
x[0] . . . x[n− 1]] = [~v ~u

]
G.

4) A decoder ϕ
(v)
i+Tv

: F ∪ {∗} × . . . × F ∪ {∗} → F for
each i ∈ {0, 1, . . . , kv − 1} where

v̂[i] = ϕ
(v)
i+Tv

(y[0], y[1], . . . , y[min{i + Tv, n− 1}]).

5) A decoder ϕ
(u)
i+Tu

: F ∪ {∗} × . . . × F ∪ {∗} → F for
each i ∈ {0, 1, . . . , ku − 1} where

û[i]=ϕ
(u)
i+Tu

(y[0], y[1], . . . , y[min{i + Tu, n− 1}]).

The following definition concerns the error-correcting capa-
bility of a block code.

Definition 8: An (n, kv, ku, Tv, Tu)F-block code is said to
correct a B-erasure sequence en ∈ Ωn

B if the following
holds: Let y[i] = g1(x[i], ei) be the symbol received by
the destination at time i for each i ∈ {0, 1, . . . , n − 1}
where g1 is defined in (5). Then, v̂[i] = v[i] holds for all
i ∈ {0, 1, . . . , kv − 1} and all v[i] ∈ F, and û[i] = u[i] holds
for all i ∈ {0, 1, . . . , ku − 1} and all u[i] ∈ F, where v̂[i] and
û[i] are determined by {(u[`], v[`], e`)}i`=0 due to Definition 7.

The following lemma implies that constructing a streaming
code which corrects any length-B burst erasure is not more
difficult than constructing a block code which corrects any
length-B burst erasure. The proof follows the standard argu-
ment of interleaving a block code into a streaming code by
means of periodic interleaving [19] (see also [9, Sec. IV-A]).

Lemma 3 ( [18, Lemma 3]): Given an (n, kv, ku, Tv, Tu)F-
block code which corrects any B-erasure sequence, we can
construct an (n, kv, ku, Tv, Tu)F-streaming code which cor-
rects any B-erasure sequence.

Example 1: Suppose we are given a (5, 2, 1, 3, 2)F-block
code which corrects any length-2 busrt erasure with gener-

ator matrix G =

 1 0 0 1 0
0 1 0 0 1
0 0 1 1 1

. Let {vi}i∈Z+
and

{ui}i∈Z+
be the messages of the less-urgent and urgent

streams respectively where vi =
[
vi[0] vi[1]

]
∈ F2 and

ui = ui[0] ∈ F. From time i−2 to i+4, the symbols yielded by
the (5, 2, 1, 3, 2)F-streaming code constructed by interleaving
the block code according to Lemma 3 are shown in Table I.
The symbols in Table I which are highlighted in the same
color diagonally (in ↘ direction) are encoded using the same
(5, 2, 1, 3, 2)F-block code. Given the fact that the block code
corrects any length-2 burst erasure, we can see from Table I
that

[
vi[0] vi[1]

]
and ui[0] can be perfectly recovered by time

i+3 and time i+2 respectively as long as the erasure sequence
is taken from Ω5

2. �

Lemma 3 reduces the problem of finding streaming codes
which correct any B-erasure sequence to the problem of
finding block codes which correct any B-erasure sequence.
We will construct high-rate block codes by superimposing the
codewords of two single-stream block codes, and therefore we
need the following definition of a single-stream block code.

Definition 9: An (n, k, T )F-block code is an (n, k, 0, T, 0)F-
block code and is said to correct a B-erasure sequence en if
the equivalent (n, k, 0, T, 0)F-block code corrects en.

By Definition 9, an (n, k, T )F-block code ignores the urgent
stream of messages by setting the message size for the urgent
stream to zero. The following lemma is a restatement of an
existing construction [9, Sec. III] (see also [14, Sec. III]) of an
(n, k, T )F-block code with rate k/n = C(T,B) which corrects
any length-B burst erasure.

Lemma 4: Suppose T ≥ B ≥ 1 and let k , T and n , k+
B. Fix any F with |F| ≥ T and let P denote the parity matrix
of a systematic MDS (T, T − B)-code. Then, the (n, k, T )F-
block code with rate k/n = C(T,B) and generator matrix

G ,

[
IT

IB
P

]
corrects any length-B burst erasure.

Achievability proof of Theorem 1: Our goal is to
show that CTv,Tu,B ⊇ R{Tv>Tu+B}. By Corollary 2, it
suffices to show that the four corner points of R{Tv>Tu+B}
are (Tv, Tu, B)-achievable. Since the corner points (0, 0),
(C(Tv, B), 0) and (0,C(Tu, B)) are (Tv, Tu, B)-achievable by
Corollary 1, it suffices to show that the remaining corner
point

(
Tv−Tu

Tv+B , Tu

Tv+B

)
is (Tv, Tu, B)-achievable. To this end,

we let kv , Tv − Tu > 0, ku , Tu and n , Tv + B,
and will construct an (n, kv, ku, Tv, Tu)F-block code which
corrects any length-B burst erasure. Fix any F with |F| ≥
max{Tu, Tv − Tu}. Let V and U be the parity matrices of a
systematic MDS (Tv−Tu, Tv−Tu−B)-code and a systematic
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Time

i− 2 i− 1 i i + 1 i + 2 i + 3 i + 4

0 vi−2[0] vi−1[0] vi[0] vi+1[0] vi+2[0] vi+3[0] vi+4[0]
1 vi−2[1] vi−1[1] vi[1] vi+1[1] vi+2[1] vi+3[1] vi+4[1]
2 ui−2[0] ui−1[0] ui[0] ui+1[0] ui+2[0] ui+3[0] ui+4[0]

3
. . . . . . . . . vi−2[0] + ui[0] vi−1[0] + ui+1[0] vi[0] + ui+2[0]

. . .

4
. . . . . . . . . . . . vi−1[1] + ui[0] vi[1] + ui+1[0] vi+1[1] + ui+2[0]

TABLE I
SYMBOLS YIELDED BY A (5, 2, 1, 3, 2)F-STREAMING CODE THROUGH INTERLEAVING A (5, 2, 1, 3, 2)F-BLOCK CODE.

MDS (Tu, Tu −B)-code respectively, and let

G ,


ITv−Tu

IB

V
0(Tv−Tu)×B

0Tu×(Tv−Tu)
IB

0(Tu−B)×B
0B×(Tu−B) IB

ITu−B U


be the generator matrix of the (n, kv, ku, Tv, Tu)F-block code.
The intuition behind the construction of G is to superim-
pose the codeword generated from the less-urgent symbols

~xv , ~v

[
ITv−Tu

IB
V

]
and the codeword generated from

the urgent symbols ~xu , ~u

[
ITu

IB
U

]
such that the two

streams interfere with each other in the resultant codeword
at B consecutive positions. Since both codewords ~xv and ~xu

correct any length-B burst erasure by Lemma 4, we claim that
the superimposed codeword

[~v ~u]G =

[
−−−− ~xv −−−− 0(Tv−Tu)×B

]
+[

0Tu×(Tv−Tu) −−−− ~xu −−−−
]

also corrects any length-B burst erasure, where the last B
symbols of ~xv interfere with the first B symbols of ~xu. A
rigorous proof of the claim is contained in [18, Sec. III-B]. In
other words, the (n, kv, ku, Tv, Tu)F-block code with generator
matrix G corrects any length-B burst erasure, which together
with Lemma 3 implies that

(
Tv−Tu

Tv+B , Tu

Tv+B

)
is (Tv, Tu, B)-

achievable (cf. Definition 5).

VII. CONCLUDING REMARKS

The capacity region has been shown for case (4) under
assumption (2), which together with the existing results stated
in Section III implies the full characterization of the capacity
region for all (Tv, Tu, B). It remains open whether systematic
streaming codes are capacity-achieving when Tu +B < Tv <
Tu + 2B. Theorem 1 is readily generalized to the following
deterministic model that generates multiple burst erasures as
explained in [16, Remark 1]: The channel introduces multiple
burst erasures on the discrete timeline where the length of
each burst does not exceed B and the length of the guard
space between two adjacent bursts is at least Tv. Future work
may generalize the capacity region to the erasure model which
introduces both burst and arbitrary erasures [14,20].
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