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Abstract—We introduce a novel network-adaptive algorithm
that is suitable for alleviating network packet losses for low-
latency interactive communications between a source and a
destination. Our network-adaptive algorithm estimates in real-
time the best parameters of a recently proposed streaming
code that uses forward error correction (FEC) to correct
both arbitrary and burst losses, which cause a crackling noise
and undesirable jitters, respectively in audio. In particular,
the destination estimates appropriate coding parameters based
on its observed packet loss pattern and sends them back to
the source for updating the underlying code. Besides, a new
explicit construction of practical low-latency streaming codes
that achieve the optimal tradeoff between the capability of
correcting arbitrary losses and the capability of correcting burst
losses is used. Simulation evaluations based on statistical losses
and real-world packet loss traces reveal the following: (i) Our
proposed network-adaptive algorithm combined with our optimal
streaming codes can achieve significantly higher performance
compared to uncoded and non-adaptive FEC schemes over UDP
(User Datagram Protocol); (ii) Our explicit streaming codes
can significantly outperform traditional MDS (maximum-distance
separable) streaming schemes when they are used along with our
network-adaptive algorithm. In addition, we study different factors
that can affect the performance of our network-adaptive algorithm.

Index Terms—Forward error correction, streaming codes,
teleconferencing.

I. INTRODUCTION

S EVERAL current and emerging applications over the Inter-
net demand real-time interactive streaming, such as high-

definition video conferencing, augmented/virtual reality and
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online gaming. At the core of these low-latency applications
is the need to deliver packets reliably and with low-latency to
provide the user with the expected functionality and responsive-
ness. Given that the Internet is a packet-switched network, where
reliable packet delivery is not guaranteed, the urge for effective
methods to protect live video communications over the Internet
has never been greater.

At the network layer, packet erasures or losses over the In-
ternet are inevitable. Packets are lost due to unreliable wireless
links or congestion at network bottlenecks. To recover missing
packets introduced by the network layer, two basic methods at
the transport layer have been widely implemented: Automatic
repeat request (ARQ) and forward error correction (FEC).

ARQ is a retransmission-based scheme, where the transmitter
retransmits a packet based on feedback from receiver. If the
communication is between distant users, the extra round-trip
delay incurred by the retransmission maybe intolerable for real-
time streaming applications. Correcting an erasure using ARQ
yields a 3-way delay (forward + backward + forward).

On the other hand, FEC does not require any retransmission.
Instead FEC schemes increase the correlation among the trans-
mitted symbols by sending redundant information. Using this re-
dundant information, erased packets can be reconstructed using
the surviving or correctly received packets. Low-density parity-
check (LDPC) codes [1], [2] and digital fountain codes [3], [4]
are two FEC schemes that are currently used in the DVB-S2 [5]
and DVB-IPTV [6] standards for non-interactive streaming ap-
plications. Besides, there is on-going research on improving
these codes for applications such as scalable video transmis-
sion [7]. These codes operate over. long block lengths, typically
a few thousand symbols.1

Noteworthy caveats of LDPC and fountain codes involve (i)
the need to wait for the arrival of longer block lengths and (ii)
larger computation time to encode and decode these long block
lengths. Thus, LDPC and fountain codes are preferable for appli-
cations in which the delay constraints are not stringent. However,
when the delay constraints are strict and block lengths are short
(e.g., a few hundred symbols) – like in low-latency streaming
applications, LDPC and digital fountain codes become unfit.

1A symbol is an element in the finite field. For example, codes over GF(2m)
can have each symbol taking one of 2m values, and is represented as an m-bit
symbol. A code over GF(256=28) has a symbol of 1 byte.
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Apart from LDPC and digital fountain codes, for inter-
active applications, Reed Solomon (RS) and Random Lin-
ear Convolutional (RLC) codes can be used to recover losses
over shorter block lengths as in [8]–[10]. However, the pat-
tern of erasures (i.e., bursty or arbitrary erasures) play a role
in the efficiency of a coding scheme. For example, to re-
cover burst losses, longer RS codes are required resulting in
higher delay. Meanwhile, RLC codes can have the same cor-
recting capacity of RS codes, but with lower delay to re-
cover bursty erasures than RS codes [11]. To better illustrate
the effect of different loss patterns, bursty losses – usually
induced by network congestion and result in undesirable jit-
ters/pauses in audio, and arbitrary erasures – generated by un-
reliable wireless links – lead to crackling noise. Therefore, op-
timal and fast recovery for all loss types will influence the user
experience.

Interestingly, having a block or convolutional structure by
itself does not yield a minimum recovery delay. Therefore to
achieve lower recovery delay, we require streaming codes (i.e.,
low-latency FEC schemes) that reconstruct earlier lost pack-
ets without waiting to correct all losses. Efforts in design-
ing low-latency FEC schemes that operate over short block
lengths to improve interactive communication include Raptor
codes [12], RaptorQ codes [13], randomized linear codes [14]
and others [4], [15], [16], and many works have used these codes
in video streaming [17], [18].

Surely, the employment of FEC schemes to recover lost voice
packets has lead to the success of Skype [19]. In addition, adap-
tive hybrid NACK/FEC has been deployed in WebRTC to ac-
quire a better trade-off between temporal quality, spatial video
quality and end-to-end delay [16]. However, still FEC is not
optimized for low-latency to recover burst losses.

If we follow existing FEC technologies (e.g., WebRTC [16],
Skype [19], Raptor codes [12], RaptorQ codes [13] and ran-
domized linear codes [14]) and choose the parity frames based
on coding over the past multimedia frames using maximum-
distance separable (MDS) codes, the resulting FEC streaming
code is optimal for correcting arbitrary losses subject to the de-
coding delay dd, but not for bursty losses. This is the research
gap that we target, i.e., deficiency in an optimal FEC streaming
code that can correct both arbitrary and bursty erasures subject
to decoding delay dd.

A. Main Contributions

Extensive research has been conducted to study the abilities
of streaming codes in recovering bursty and arbitrary (isolated)
losses [20], [21]. The authors in [20] and [21] have proposed a
high-complexity construction of a class of FEC streaming codes
that has the following properties:

a) Correct both arbitrary and burst erasures
b) Achieve the optimal trade-off between correcting arbitrary

and burst erasures under a given maximum delay con-
straint

This motivates us to design a low-latency error control scheme
based on low-complexity FEC streaming codes to satisfy Prop-
erties (a) and (b) and implement the design for employment in

Fig. 1. The general framework of FEC to recover dropped packets.

real-world networks. Our real-time error control design has the
following features:

i) A new explicit construction of low-latency streaming
codes achieving a delay-constraint optimal trade-off be-
tween the capability of correcting arbitrary erasures and
the capability of correcting burst erasures.

ii) A network-adaptive algorithm that updates the parameters
of our constructed low-latency streaming codes in real-
time to adapt to varying network conditions.

To evaluate our network-adaptive FEC streaming design, we
conduct extensive simulations and real-world experiments. The
results of our simulations and real-world experiments show that
our network-adaptive scheme perform remarkably better com-
pared to uncoded and non-adaptive FEC schemes over UDP in
terms of reliability. We extend our comparisons to adaptive MDS
streaming codes, and we show that our network-adaptive code
outperforms MDS streaming codes in highlighted scenarios and
performs a lot better in terms of latency. We also discuss factors
that may affect the performance of our scheme.

Note that the maximum delay constraint that appeared in
Property (b) and Property (i) is a suitable delay metric for interac-
tive communication, because any packet recovered beyond a cer-
tain threshold would yield undesirable pauses. On the contrary,
the average delay metric is more relevant for non-interactive
streaming applications such as video streaming, which has been
used in [22]–[25] to study the tradeoff between throughput and
average delay for non-interactive streaming where no packet is
ever discarded. Besides our primary results in [26], we:

a) Add simulation results over Fritchman channel.
b) Express our experimental results in terms of more compre-

hensive metrics including frame loss rate (FLR), coding
rate and Perceptual Evaluation of Speech Quality (PESQ)
score [27].

c) Compare our explicit FEC streaming code along with
our network-adaptive algorithm with state-of-the-art FEC
streaming codes.

II. CONCEPT OF FEC STREAMING CODES

The general framework of FEC streaming code is illustrated
in Fig. 1. The source/sender periodically generates a sequence of
multimedia frames si, where i is the number of the frame. Each
multimedia packet is concatenated with a parity packet pi, and
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Fig. 2. Illustration of burst and arbitrary drops, with packet drops marked by
dark squares.

they are encapsulated in a frame which travels to the destination
with a propagation delay dp.

An alternative approach is to transmit parity information as
separate packets. Our approach has the advantage of not cre-
ating more packets, which lowers overhead for transmission
over Wi-Fi, and also simplifies analysis. In Wi-Fi networks,
each packet requires a preamble (overhead) of 92 or 192 mi-
croseconds (depending on whether we use short or long pream-
ble). For example, 100 B payload on a relatively “slow” speed
of 150 Mbit/s takes only 5.7 microseconds. What that means is
the air-time cost of transmitting two spaced out 100 B packet is
twice as sending one 200 B packet.

In addition, our construction of optimal streaming codes cre-
ates parity packets that does not contain information of the cur-
rent multimedia packet, hence separately transmitting multime-
dia and parity packets will not benefit from time diversity. De-
tails on the construction of optimal streaming codes is given in
Section III. We also show in Section VI-C that sending parity
and multimedia packets separately in our case can degrade the
performance of our algorithm.

The network packets may be dropped by the network. The
drops may be in an arbitrary manner due to unreliable (wireless)
links or in a bursty manner due to network congestion. The
pattern of drops can be arbitrary or bursty in nature, as illustrated
in Fig. 2. The destination aims to recover the multimedia packets
sequentially subject to a decoding delay constraint dd, where lost
multimedia packets can be recovered with the help of subsequent
parity packets. For example, if packets 0 and 1 are dropped as
illustrated in Fig. 1, then the parity packets in packets 2 to 8 may
help recover packet 0 with decoding delay of 8 packets, and the
parity packets in packets 2 to 9 may help recover packet 1 with
the same decoding delay.

We discuss earlier that if we follow existing technologies such
as WebRTC [16] and Skype [19] in choosing the parity packets
based on coding over the past multimedia packets using MDS
codes, the resulting FEC streaming code is optimal for correcting
arbitrary losses subject to the decoding delay dd, but not bursty
losses. In other words, to make it optimal in correcting bursty
losses as well, we would require more time leading to an increase
in decoding delay dd. However, in order to achieve the optimal
tradeoff between the capability of correcting arbitrary losses and
correcting burst losses subject to a decoding delay constraint, we
have to carefully choose the parity packets. The existence of such
optimal parity frames has been recently proved in [20], [21].

III. EXPLICIT CONSTRUCTION OF OPTIMAL STREAMING

CODES OVER GF(256)

For the sake of completeness, we outline the details of our first
explicit construction of optimal streaming codes over GF(256)

TABLE I
SUMMARY OF KEY NOTATIONS USED IN THIS PAPER

when T ≤ 11. Readers who are interested in greater detail may
also refer to [26]. Uninterested readers may take the following
result for granted and skip the remaining part of this section:
“Let F= GF(256). For any T ≤ B ≤ N ≤ 1, a (n, k, T )F -code
that corrects any (B,N)-erasure can be efficiently generated.”

The explicit construction leverages a standard periodic inter-
leaving approach, which constructs streaming codes based on
block codes. The following definitions are standard [20], [21]:

1) An (n, k, T )F block code of lengthnwith k data symbols2

is said to correct any (B,N)-erasure sequence, if every
data symbol can be recovered with a delay of no more
than T symbols. This is possible as long as the number
of erasures is at most N arbitrary erasures or all the era-
sures are consecutive, i.e., bursty, with run length at most
B.

2) A (n, k, T )F streaming code which encodes a continuous
stream of length-k data packets into a continuous stream of
length-n codewords is said to correct any (B,N)-erasure
sequence, if every data packet can be recovered with a
delay of no more than T packets. This is possible as long
as the number of erasures within every sliding window
of size T + 1 sees either at most N arbitrary erasures or
size-B bursty erasures.

3) For any T ≥ B ≥ N ≥ 1, (i) the (T,B,N)-capacity
equals C(T,B,N) as defined in (1), and (ii) a (n, k, T )F -
code that corrects any (B,N)-erasure sequence is said
to be optimal if k

n = C(T,B,N), where k = T −N + 1
and n = k +B.

C(T,B,N) � T −N + 1

T −N +B + 1
(1)

4) Given a (n, k, T )F -block code which corrects any (B,N)-
erasure sequence, we can construct a (n, k, T )F -streaming
code which corrects any (B,N)-erasure sequence.

Hence, the search for an explicit construction of optimal
streaming codes over GF(256) reduces to the search for an ex-
plicit construction of optimal block codes over GF(256). Table I
summarizes our key notations.

Structures of Parity Matrices of Optimal Block Codes: Next,
we state specific structures of the parity matrices of optimal
codes, where an m-row N -diagonal matrix is described as fol-
lows:

2The encoder takes k data symbols and adds parity to produce an n symbol
codeword.
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D
m×(N+m)
N �

⎡
⎢⎢⎢⎢⎣
d
(0)
0 · · · d

(0)
N−1 0 · · · · · · 0

0 d
(1)
0 · · · d

(1)
N−1 0 · · · 0

...
. . .

. . .
. . .

. . .
. . .

...

0 · · · 0 d
(m−1)
0 . . . d

(m−1)
N−1 0

⎤
⎥⎥⎥⎥⎦

where {d(i)� | 0 ≤ i ≤ m− 1, 0 ≤ � ≤ N − 1} assume arbitrary
values.

Lemma 1 ([20]): Fix any T ≥ B ≥ N ≥ 1 and let k � T −
N + 1 and n � k +B. If k ≥ B (i.e., k/n ≥ 1/2), there exists
a P having the form⎡

⎣ D
(B−N)×B
N

0N×(B−N) Pright

V(k−B)×B

⎤
⎦ (2)

such that G = [ Ik P] is the generator matrix of a (n, k, T )-code
that corrects any (B,N)-erasure sequences, where Dm×(N+m)

N

is an m-row N -diagonal matrix, Pright is an N ×N matrix, and
V(k−B)×B is a (k −B)×B parity matrix of a systematic MDS
code. On the other hand, if k < B (i.e., k/n < 1/2), there exists
a P having the form[

Pleft

V
(k−B+N)×(B−k)
left

D
(B−N)×k
k−B+N

0 V
(k−B+N)×(k−B+N)
right

]
(3)

such that G = [ Ik P] is the generator matrix of a (n, k, T )-
code that corrects any (B,N)-erasure sequence, where
D

(B−N)×k
k−B+N is a (B −N)-row (k −B +N)-diagonal matrix,

[V
(k−B+N)×(B−k)
left V

(k−B+N)×(k−B+N)
right ] constitutes the (k −

B +N)×N parity matrix of a systematic MDS code, Pleft is a
(B −N)×(B − k) matrix, and 0 is the (k−B+N)×(B−N)
zero matrix.

Deterministic Construction of Parity Matrices of Optimal
Codes over GF(256): The structures of P in (2) and (3) mo-
tivate us to construct optimal codes over GF(256). Assume F =
GF(256) in the rest of the paper. Suppose we are given a k ×B
matrixVk×B wherek ≥ 1 andB ≥ 1, and letn � k +B. Then,
to construct a parity matrix P ∈ Fk×B if k ≥ B or k < B, we
replace every non-zero (i, j)th element of P in (2) or (3) respec-
tively with the (i, j)th element inVk×B . LetC(Vk×B)denote the
(n, k, T )F -block code with generator matrix G as constructed
earlier. If C(Vk×B) corrects any (B,N)-erasure sequence and
k = T −N + 1, then C(Vk×B) is optimal by Definition 3.

In search of a suitable Vk×B , we define V
(T−N+1)×B
Cauchy =

[vCauchy
ij ]0≤i≤T−N,

0≤j≤B−1
to be a (T −N + 1)×B Cauchy matrix

over GF(256) where vCauchy
ij � (i+ j + k)−1. Similarly, de-

fineV(T−N+1)×B
Vand = [vVand

ij ]0≤i≤T−N,
0≤j≤B−1

to be a (T −N + 1)×B

Vandermonde matrix over GF(256) where vVand
ij � 2i×j . Using

computer search, we obtain the following.
Proposition 2: Let F = GF(256). For any 1 ≤ N ≤ B ≤

T ≤ 11, the (n, k, T )F -block code C(V(T−N+1)×B
Cauchy ) corrects

any (B,N)-erasure if (T,B,N) /∈ {(10, 8, 4), (11, 5, 4)}. In
addition, C(V(T−N+1)×B

Vand ) corrects any (B,N)-erasure if
(T,B,N) ∈ {(10, 8, 4), (11, 5, 4)}.

In view of Proposition 2, define for any 1 ≤ N ≤ B ≤ T ≤
11 the parity matrix of an optimal (n, k, T )F -block code as

V
(T−N+1)×B
optimal

�
{
V

(T−N+1)×B
Cauchy if (T,B,N) /∈ {(10, 8, 4), (11, 5, 4)} ,

V
(T−N+1)×B
Vand otherwise.

Deterministic Construction of Optimal Streaming Codes:
Using Proposition 2 and the definition of V

(T−N+1)×B
optimal ,

we conclude that C(V(T−N+1)×B
optimal ) is an optimal block

code. In addition, by periodically interleaving n instances of
C(V(T−N+1)×B

optimal ), we can construct a (n, k, T )-code with k =
T −N + 1 and n = k +B, which is optimal if T ≤ 11 by
Proposition 2. Interested readers can view an example in [26].
For any 1 ≤ N ≤ B ≤ T ≤ 11, we let CT,B,N denote the opti-
mal (n, k, T )-code that is constructed by interleavingn instances
of C(V(T−N+1)×B

optimal ). The optimal streaming codes CT,B,N are
the building blocks for the network-adaptive streaming scheme
described in the next section.

IV. NETWORK-ADAPTIVE ALGORITHM

A Conservative Algorithm that Estimates Channel Parame-
ters B and N in L Channel Uses: In addition to the explicit
construction of optimal streaming codes, we also present a con-
servative algorithm demonstrated by Algorithm 1. The algorithm
estimates conservative coding parametersB andN inL channel
uses, which is the duration of the algorithm. Conservative in this
context implies coding parameters B andN that do not yield the
lowest rate, where B = N = T and C(T, T, T ) = 1

T+1 . Before
tracking any packet erasures, the algorithm fixes the decoding
delay denoted by T and the duration of the algorithm denoted
by L. Also, initially the channel is assumed to be ideal, i.e., in-
troducing no erasures. Therefore, the algorithm sets the starting
value ofB, N , which are denoted by B̂−1 and N̂−1 respectively,
and Nmax, which is the maximum number of arbitrary erasures,
is set to 0.

Every packet transmitted at channel use i ∈ Z+ is assumed
to either reach the destination in the same channel use or be
erased. In practice, packets that are dropped in the network are
considered erased. Depending on the application, packets re-
ceived out-of-order could either be considered erased or are
reordered at the application layer. In our experiments, we do
not see out-of-order packets detected, hence in our implemen-
tation we considered out-of-order packets to be erased. How-
ever, in practice if we use Real Time Protocol (RTP), then the
receiver will have a reordering buffer that reorders packets re-
ceived out-of-order.

For every non-erased packet received at channel use i ∈
Z+, the algorithm first deduces the erasure pattern eW �
(ej−T , ej−T+1, . . . , ej) ∈ {0, 1}T+1 for each sliding win-
dow W = {j − T, j − T + 1, . . . , j} of size T + 1 such that
j ≤ i, where an element of eW equals 1 if the corresponding
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packet is erased. Let wt(eW) �
∑

�∈W e� and

span(eW) �
{
0 if wt(eW) = 0,

plast − pfirst + 1 otherwise,

be the weight and span of eW respectively, where pfirst and plast

denote respectively the channel use indices of the first and last
non-zero elements in eW . Intuitively speaking, span(eW) is the
minimum length over all intervals that contain the support of eW .
For each deduced erasure pattern eW = (ej−T , ej−T+1, . . . , ej),
the algorithm first calculates wt(eW) and span(eW), and then
assign the values to (B̄j , N̄j , Nmax) according to

B̄j := max{span(eW), B̂j−1},
N̄j := max{wt(eW), N̂j−1}, and

Nmax := max{wt(eW), Nmax}.

Then one of the following updates will occur: (i) B̄j gets as-
signed to B̂j , (ii) N̄j gets assigned to N̂j , or (iii) Nmax gets
assigned to both B̂j and N̂j .

To precisely explain when will each update occur, the esti-
mates B̂j and N̂j will be output according to the following three
mutually exclusive cases:

Case N̄j = 0: In this case,

B̄j = N̄j = wt(eW) = span(eW) = N̂j−1 = B̂j−1 = 0,

which implies that no erasure has yet occurred upon the receipt
of packet j. Then, Algorithm 1 sets N̂j = B̂j = 0, meaning that
the estimates for N and B remain to be 0.

Case N̄j = T + 1: Here all the elements of eW equal 1.
This means that all the packets in the window {j − T, j − T +
1, . . . , j} are erased. In this case, no (n, k, T )F -code can correct
eW . Therefore, Algorithm 1 sets N̂j = N̂j−1 and B̂j = B̂j−1,
i.e., the algorithm keeps the estimates of N and B unchanged.

Case 0 < N̄j �= T + 1: In this case, with the terminology
that εT+1 is a (B,N)-erasure sequence if either span(eW)
≤ B or wt(eW) ≤ N holds, every length-(T + 1) erasure
pattern εT+1 that has happened up to channel use j can
be categorized into the following two types: (i) εT+1 con-
sists of all ones, hence it is uncorrectable, or (ii) εT+1

is simultaneously a (B̄j ,max{N̂j−1, 1})-erasure sequence, a
(max{B̂j−1, N̄j}, N̄j)-erasure sequence, and a (Nmax, Nmax)-
erasure sequence.

By construction, every length-(T + 1) erasure pattern up to
channel use j − 1 can be either Type (i) or is an (B̂j−1, N̂j−1)-
erasure sequence. Therefore, Algorithm 1 calculates the best
estimates for B̂j and N̂j so that the following two conditions
hold:

(I) Every length-(T + 1) erasure pattern up to channel use j
can be classified into either Type (i) or is a (B̂j , N̂j)-
erasure sequence.

(II) The loss in the maximum achievable rate induced by
updating the estimates from (B̂j−1, N̂j−1) to (B̂j , N̂j)
is minimized.

The presence of Condition (II) is essential because it guar-
antees that the algorithm cannot output the trivial estimates
B̂j = N̂j = T that lead to the lowest rate C(T, T, T ) = 1

T+1 .

To get the best estimates of B̂j and N̂j so that Conditions (I)
and (II) hold, Algorithm 1 computes three hypothetic rates based
on the (T,B,N)-capacity as follows:

RB :=

{
0 if B̄j = T + 1,

C(T, B̄j ,max{N̂j−1, 1}) if B̄j < T + 1,

RN := C(T,max{B̄j−1, N̄j}, N̄j)

andRMDS := C(T,Nmax, Nmax)

respectively, where RB denotes the hypothetic maximum
achievable rate if B̂j is assigned the value B̄j followed by
N̂j being assigned the value max{N̂j−1, 1} (note that any
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(B̂j , N̂j−1)-erasure sequence is also a (B̂j ,max{N̂j−1, 1})-
erasure sequence),RN denotes the hypothetic maximum achiev-
able rate if N̂j is assigned the value N̄j followed by B̂j being
assigned the value max{B̂j−1, N̂j} (note that any (B̂j−1, N̂j)-
erasure sequence is also a (max{B̂j−1, N̂j}, N̂j)-erasure se-
quence), and RMDS denotes the hypothetic maximum rate if
both B̂j and N̂j are assigned the same value Nmax. Algorithm 1
sets (B̂j , N̂j) as shown at the end of the pseudocode so that
the resultant maximum achievable rate C(T, B̂j , N̂j) equals
max{RB , RN , RMDS}.

Combining the above three cases, we conclude that for all
0 ≤ i ≤ L− 1, Algorithm 1 generates estimates (B̂i, N̂i) such
that Conditions (I) and (II) hold.

Interleaved Conservative Algorithm Based on Algorithm 1:
By providing conservative estimates for B and N , surely Al-
gorithm 1 yields a code that perfectly corrects all observed
length-(T + 1) correctible erasure sequences. However, obvi-
ously Algorithm 1 generates a sequence of recommended cod-
ing rates that is monotonically decreasing over time. This is one
noticeable concern.

To try to solve this issue, we propose the network-adaptive
algorithm that is based on interleaving Algorithm 1 as follows:
At each channel use � = 0, L, 2L, . . ., an instance of Algo-
rithm 1 denoted by A� is initiated. Each A� lasts for 2L channel
uses, and let (B̂(�)

j , N̂
(�)
j ) denote the corresponding estimates

generated at channel use j. Then at each channel use j, the
network-adaptive algorithm outputs the estimate (B̂

(�)
j , N̂

(�)
j )

provided by A� at channel use j where � is the unique integer
that satisfies �+ L ≤ j < j + 2�.

In simple words, each interleaved Algorithm 1 will run for
2L channel uses where the first L estimates are ignored by the
algorithm and the last L estimates are output by the network-
adaptive algorithm. Our construction guarantees that the coding
rate generated by our network-adaptive algorithm is not always
monotonically decreasing over time. Particularly, if there are no
erasures for consecutive 2L channel uses, the next estimates of
(B,N) would be (0, 0).

V. NETWORK-ADAPTIVE STREAMING SCHEME

After receiving packets at the destination, the receiver can
estimate the values of {(B̂j , N̂j)}j∈Z+

as suggested by the
network-adaptive algorithm described in Section IV. The pa-
rameter estimator at the destination uses the network-adaptive
algorithm to generate the estimates (B̂i, N̂i)when the codeword
transmitted at time i is received by the destination. To minimize
estimation error at the source side induced by obsolete channel
information, the destination feeds back the estimates instanta-
neously every time it receives a packet. This way more erasure
patterns can be corrected at the cost of a small rate loss.

Code Transition: Initially, from channel use 0, the network-
adaptive algorithm outputs (B̂0, N̂0) = (0, 0). This implies that
the source will use the trivial rate-one encoder, and the codeword
transmitted is identical to the original message produced.

Whenever the algorithm provides new estimates for (B,N)
at channel use j denoted by (B̂j , N̂j), the source shifts to the

Fig. 3. Prototype of network-adaptive streaming scheme.

new encoder associated with the code CT,B̂j ,N̂j
(defined at the

end of Section III). To secure a smooth transition from using an
old encoder with parameters (Bold, Nold) to using a new encoder
with parameters (Bnew, Nnew) �= (Bold, Nold), the source has to
shield every transmitted packet by protecting it by either the old
or new encoder.

For a smooth transition, suppose the source wants to shift to a
new encoder associated with CT,Bnew,Nnew starting from channel
use i, it will use both the old and new encoders to encode the
same message into old and new codewords from channel use i to
channel use i+ T . This will have the messages generated before
channel use i+ T protected by the old codewords in CT,Bold,Nold ,
while the messages produced from channel use i + T till the next
encoder transition will be protected by the new codewords in
CT,Bnew,Nnew . During the next encoder transition, the new encoder
will be replaced by another newer encoder and be treated as an
old encoder. This encoder transition procedure repeats guarding
every transmitted packet.

Since every message is protected by either an old encoder
with parameters (Bold, Nold) or a new encoder with parame-
ters (Bnew, Nnew) during the encoder transition, any (Bold, Nold)-
erasure sequence of length-(T + 1) that occurs before the tran-
sition can be corrected by the old encoder and any (Bnew, Nnew)-
erasure sequence of length-(T + 1) that occurs during and after
the transition can be corrected by the new encoder.

Prototype: The prototype of our proposed network-adaptive
streaming scheme is shown in Fig. 3. The parameter estimator
at the destination uses the network-adaptive algorithm to gen-
erate the estimates (B̂i, N̂i) for each i ∈ Z+. An FEC message
generated at the source at each channel use i consists of a data
buffer, an integer specifying the size of the buffer, a sequence
number and the latest available estimates (B̂, N̂) fed back from
the destination. The FEC message is then encoded into an FEC
codeword and transmitted through the erasure channel.

The destination decodes all the messages generated before
channel use i− T for every codeword received at channel use i,
that have not been decoded yet. The relevant decoder can be cho-
sen by the destination based on the coding parameters contained
in all the received codewords up to channel use i. Hence, every
received codeword may result in more than one decoded mes-
sage. For every reconstructed FEC message, the corresponding
data buffer, the size of the buffer and the sequence number are
extracted for further processing at the application.
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It is important to note that our decoding error spread is limited
to our sliding window of T + 1 packets. This is due to finite
encoding memory of T + 1 packets.3

VI. SIMULATION AND EXPERIMENTAL RESULTS

To start with, we first design an implementation of our pro-
posed network-adaptive streaming algorithm. To experiment our
network-adaptive streaming algorithm, we test our algorithm
on a simulated statistical erasure channel and on real-world
channels. We compare our algorithm against both uncoded,
non-adaptive schemes and MDS-adaptive schemes. The perfor-
mance gains are evaluated in terms of frame loss rate (FLR), Per-
ceptual Evaluation of Speech Quality (PESQ) score, and coding
rate. We report that our proposed network-adaptive streaming al-
gorithm outperforms uncoded and non-adaptive schemes in all
contexts. Finally, our network-adaptive algorithm performs ei-
ther better or close compared to MDS-adaptive coding, but with
always higher coding rate and hence lower redundancy. We also
study factors that can potentially affect the performance of our
algorithm, such as network delay.

A. Implementation of Network-Adaptive Streaming Scheme

To explore the potential of our proposed network-adaptive
streaming scheme described in Section V, we implement the pro-
posed scheme for low-latency communication between a source
and a destination in C++ programming language.

We assume that the source transmits a stream of compressed
multimedia frames over the Internet to the destination. By using
a standard video codec or voice codec, each compressed multi-
media frame could be created from the raw data. Next, the com-
pressed multimedia frame, together with the estimated coding
parameters received from the feedback channel, is encapsulated
in an FEC message. The FEC message is further encoded into
an FEC codeword to be encapsulated in a network packet, which
is then forwarded to the destination.

In all our experiments we focus on audio multimedia frames.
This is because in an interactive video-streaming application
such as video conferencing, voice is more delay-sensitive than
video. This paper focuses on applying adaptive FEC schemes
to protect the data with the most stringent delay constraint, i.e.,
voice. Since our application of choice in this paper is lower
bandwidth audio/voice, we do not adopt congestion control in
our experiments. The application of our FEC schemes on video
and its interaction with congestion control schemes are interest-
ing directions left for future research.

Every network packet is either received by the intended desti-
nation or dropped (erased). Each FEC codeword received at the
destination is extracted from every network packet received, and
one or more FEC messages are recovered based on the codeword.
A recovered compressed multimedia frame is extracted from ev-
ery recovered FEC message, and then decompressed using the
video or voice codec back to raw data.

3Our source code studies the effect of finite decoding error since we cannot
decode packets using past packets that were not successfully decoded.

The two interface modules between the streaming code and
the network layer are illustrated in Fig. 3. The first module is
at the source. The interface at the source simultaneously encap-
sulates every FEC codeword into a UDP packet and forwards
every estimated coding parameter obtained from the feedback
channel to the message assembler. The second module is the
interface at the receiver-side that concurrently extracts the code-
word buffer in every network packet to form an FEC codeword
and forwards each estimated coding parameters over UDP to the
feedback channel.

B. Parameters and Error Metrics

We compare the uncoded, non-adaptive, MDS-adaptive cod-
ing scheme FLRs achieved with our network-adaptive stream-
ing scheme, as described in Section V. When comparing non-
adaptive and MDS-adaptive schemes with our network adap-
tive streaming scheme, we choose a delay constraint of T = 10
packets. For non-adaptive schemes, we fix the coding parame-
ters (B,N). To this end, we fix the frame duration and bit rate for
the compressed multimedia frame to be 10 ms and 240 kbit/s re-
spectively, which are practical as existing audio codecs typically
have frame duration 2.5–60 ms and bit rate 6–510 kbit/s [28],
[29].

Consequently, every 300-byte compressed frame is generated
every 10 ms. The 10 ms frame duration and the delay constraint
T must be carefully chosen so that the resultant playback de-
lay T × 10 ms in addition to the propagation delay must be
smaller than the 150 ms delay required by ITU for interactive
applications [30], [31]. To illustrate, if the propagation delay
is 100 ms, then the resultant playback delay must be less than
150 ms − 100 ms = 50 ms, which can be achieved by choosing
suitable T and frame duration such that their product is be-
low 50 ms.

For our experimental purpose, we assume that the propagation
delay is less than 50 ms and choose T = 10 so that the resulting
playback delay T × 10 ms = 100 ms besides the propagation
delay is below 150 ms. In the network-adaptive algorithm de-
scribed in Section IV, we set L = 1000. In other words, each
interleaved Algorithm 1 runs for 2L× 10× 0.001 seconds =
20 seconds where the algorithm ignores the L = 1000 estimates
generated in the first 10 seconds, and the next L = 1000 esti-
mates are produced by the algorithm.

LetM = 360be the number of 10-second sessions throughout
the transmission, involving a total of L×M = 360 000 packets
that last for one hour. In each session, L = 1000 packets are
transmitted from the source to the destination. For simplicity,
let the sequence number of a packet be its channel use index,
starting from 0 and ending at L×M − 1.

During each session m ∈ {1, 2, . . . ,M}, the source trans-
mits packets with sequence number between L(m− 1) and
Lm− 1. For each session m, let εm denote the correspond-
ing FLR achieved by our network-adaptive streaming scheme.
More precisely, L(1− εm) is the number of FEC messages
with sequence number between L(m− 1) and Lm− 1 which
are perfectly recovered by the destination. We will express in
the next two sections our simulation and experimental results
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Fig. 4. Six-state Markov model: Fritchman channel simulated.

respectively in terms of the average FLR defined as
1
M

∑M
m=1 εm and the fraction of low-fidelity sessions with FLR

larger than 10% defined as 1
M

∑M
m=1 1{εm > 0.1}.

C. Simulation Results for a Three-Phase Fritchman Channel

We validate the superiority of our network-adaptive streaming
scheme as described in Section VI-A to non-adaptive streaming
schemes. This is by simulating artificial packet erasures accord-
ing to the Fritchman channel [32], which is a well-known sta-
tistical channel that is useful for approximating packet losses
experienced at the network layer [33].

The Fritchman channel is a (M + 1)-state Markov model
which consists of one good state G and M bad states denoted
by E1, E2, . . ., EM . In the good state G, each channel packet
is lost with probability ε ∈ [0, 1) whereas in the bad state, each
channel packet is lost with probability 1.

If the state at time i is G, then the probability of transitioning
to E1 is α, and the probability of remaining in the same state G
is 1− α at i+ 1. When the state at i is EM , the transition prob-
ability to state G is β, while the probability of staying in EM

is 1− β. If the current state is El for some l ∈ 1, 2, . . .,M − 1,
then the probability of transitioning to El+1 is β, and it will
stay in state El with probability 1− β. In our simulated Fritch-
man channel, we use the six-state Markov chain, where M = 5.
Fig. 4 summarizes the transition probabilities of our simulated
Fritchman channel.

As long as the channel remains in bad states, the channel
behaves as a burst erasure channel. The higher the number of
bad states, the higher the probability of getting bursty erasures.
In contrast, the channel behaves like an i.i.d. erasure channel
when the channel stays in the good state. Hence, we expect to
see more arbitrary erasures in the good state.

In our simulations, we wanted to simulate a dynamic channel,
so we considered the following three-phase Fritchman chan-
nel: The simulation of the Fritchman channel consists of three
phases, whereα, β and ε are fixed during the first quarter and last
quarter of the simulation. While in the middle phase, the proba-
bility of being in the good state G is 1. In other words, there are
no consecutive bad states in the middle phase, implying that the
middle phase introduces fewer burst erasures compared to the
first and last phase.

For the three-phase Fritchman channel with constant parame-
ters (α, β) = (0.005, 0.990), we focus on the case whereT = 10
for all the graphs we show in this section. For the case where

Fig. 5. Empirical burst-length distribution for ε = 0.0001 and 0.001.

Fig. 6. Average FLR obtained from Fritchman channel.

ε = 0.0001, 0.001, the empirical distribution of burst lengths is
shown in Fig. 5. We exhibit a bimodal distribution with clusters
at burst lengths 1 and 5.

FLRs and Coding Rates: We plot in Fig. 6 the average FLRs
against the varying parameter ε for the uncoded scheme, the
network-adaptive streaming scheme, and the best non-adaptive
(fixed-rate) streaming code CT,B,N . The coding rate of the best
non-adaptive (fixed-rate) streaming code does not exceed the
average coding rate of the adaptive scheme. We achieve this
by getting the corresponding value/s of (B,N) to the average
coding rate of our network adaptive streaming code. Several
values of (B,N) can correspond to the same coding rate. To
choose the best non-adaptive streaming code, we try running all
the corresponding fixed values of (B,N) on the same packet
loss trace file and choose the (B,N) parameters resulting in the
least averaged FLR over all the sessions.

The correspondent coding rates for each ε are plotted in
Fig. 7, where the coding rate for the no-coding scheme is al-
ways one and thus not plotted. Figs. 6 and 7 show that com-
pared to non-adaptive (fixed-rate) schemes, our adaptive scheme
achieves approximately 10× lower FLRs and slightly higher
coding rates across all values of ε between 0.0001 and 0.001.
The gain of the adaptive scheme compared to fixed-rate codes
is attributed to the significantly improved estimation of instan-
taneous channel conditions, and hence instantaneous change in
coding parameters.

We also show in Fig. 8 the variation of average FLRs for
our adaptive streaming scheme and uncoded scheme across the
360 sessions, each lasting for 10 seconds, for ε = 0.0001. It
can be seen from Fig. 8 that our adaptive scheme achieves less
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Fig. 7. Average coding rate obtained from Fritchman channel.

Fig. 8. Average FLRs for adaptive FEC over time for ε = 0.0001.

Fig. 9. FEC redundancy over time for ε = 0.0001.

than half of the no-coding scheme loss rate for all sessions. In
addition, we display the variation of the FEC redundancy (i.e.,
one minus coding rate) for our adaptive scheme in Fig. 9, which
demonstrates how quickly it reacts to erasures, especially at the
transition between the first and middle phases and the transition
between the middle and last phases.

Our simulation results reveal that our adaptive code adapts sig-
nificantly better than the other state-of-the-art strategies when
channel dynamics occur. Since a feedback packet is sent in-
stantaneously when every packet is successfully received as de-
scribed earlier, the estimation error of the coding parameters due
to channel dynamics is minimized.

The reason why our adaptive scheme significantly outper-
forms non-adaptive ones can be explained with the help of

Fig. 10. Packet losses recovered by different schemes.

Fig. 11. Average FLR obtained from Fritchman channel not encapsulating and
encapsulating the multimedia and parity packets together.

Fig. 10. Suppose 11 out of 40 of the network packets are dropped
as shown in Fig. 10. Our adaptive coding scheme updates the
code in this order: C10,1,1 and C10,5,2 before transmitting pack-
ets 4 and 18 respectively. Therefore, the subsequent five packets
losses are all recovered by C10,5,2 as shown in Fig. 10, whereas
the fixed-rate code C10,4,4 can only recover one packet.

To test if the performance of our algorithm will be affected
when the parity and multimedia packets are transmitted sepa-
rately, we perform three different experiments where we encap-
sulate and not encapsulate multimedia and parity packets and
sent them over Fritchman channel. When we transmit the multi-
media and parity packets separately, for each multimedia packet
we transmit the parity packet consecutively. We generate an era-
sure pattern for 720 000 packets, instead of 360 000 according to
the aforementioned Fritchman channel, for the multimedia and
parity packets.

In Fig. 11, we show the results of three experiments, where we
test our algorithm using (i) the erasure pattern for 722 000 pack-
ets with parity and multimedia packets sent separately, (ii) the
multimedia packet erasures only (even indexed erasures) on en-
capsulated packet, to ensure that any differences in performance
is not due to different erasures observed by multimedia packet,
(iii) the first 360 000 erasures from the pattern, which is follow-
ing Fritchman channel erasures, on encapsulated packet, to ade-
quately assess the performance difference on a Fritchman chan-
nel. These experiments are labeled “Not encapsulated,” “Encap-
sulated but following only multimedia erasures” and “Encapsu-
lated” respectively in Fig. 11.

We observe in Fig. 11, that sending multimedia and parity
packets separately degraded the algorithm’s performance. One
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Fig. 12. Example showing when will separately sending multimedia and parity
packets cause decoding error.

possible reason for that is demonstrated in Fig. 12. We have a
packet loss at index 1 and 4, and using (n, k) = (3, 2) where
the parity is constructed using ck = ak−2 + bk−1. If we were
to encapsulate the data and parity packets, we will be able to
recover the lost packets at index 1 using c2 and c3, for example.
However, when we transmit the data and parity packets sepa-
rately, the packet with index 1 is lost and cannot be recovered
using c2, as c2 has index 4. Following the multimedia packet
erasures or the Fritchman channel erasures did not affect the
performance greatly, which greatly emphasizes that not encap-
sulating the multimedia and parity packet is the main reason
for the performance degradation. Indeed, our conclusion is only
based on our experiments and our reasoning is giving only one
example, therefore, we are not claiming that our conclusion gen-
eralizes for settings different that our experiments.

PESQ Scores: Earlier, we presented our simulation results
in terms of FLRs for compressed multimedia frames where
the duration and bit rate for each compressed frame are
10 ms and 240 kbit/s respectively. Next, we use the commonly
adopted wideband PESQ score [27] for uncompressed multi-
media (WAV) files to demonstrate the advantage in perceptual
quality of using our network-adaptive streaming scheme over
uncoded and non-adaptive streaming codes.

We first choose a one-hour uncompressed speech file with
sampling frequency of 16 000 Hz and sample size of 16 bits
and use the constant-bitrate (CBR) WMAv2 codec to gener-
ate compressed multimedia data with sampling frequency of
16 000 Hz and bit rate of 240 kbit/s. This is considerably high
bit-rate to ensure any degradations comes from loss rather than
compression. Then, we use the network-adaptive, uncoded and
best non-adaptive scheme to transmit the compressed multime-
dia through the three-phase Fritchman channel as described in
the previous subsection. Whenever a 300-byte compressed mul-
timedia frame cannot be recovered by the destination, the lost
frame is replaced with a 300-byte all-zero frame. The schematic
diagram for the codec operations is shown in Fig. 13.

For each 10-second session, a PESQ score is computed be-
tween the original uncompressed WAV audio and the recovered
WAV audio for all the schemes. Each PESQ score ranges from 1
– 5 where a higher score means a better speech quality [27]. We

plot in Fig. 14 the average simulated PESQ scores overM = 360
sessions for our network-adaptive streaming scheme, the un-
coded scheme and the best non-adaptive streaming code CT,B,N

whose coding rate does not exceed the average coding rate of
the network-adaptive scheme.

We can see from Fig. 14 that our adaptive streaming scheme
achieves a significantly higher average PESQ score than un-
coded and non-adaptive streaming schemes. However, the av-
erage PESQ score over 360 sessions may not be an indicator
for the performance of our network-adaptive streaming code in
affected sessions, where it suffers from higher loss rates. Hence,
in Fig. 15, we plot the average PESQ scores of only affected ses-
sions in uncoded scheme by varying ε comparing non-adaptive
scheme, uncoded scheme with our network adaptive scheme.
Affected sessions are where the PESQ score is below 3.8, if we
were using uncoded schemes. In other words, we are comparing
different coding schemes only in catastrophic situations.

In Fig. 15, we can see that in catastrophic situations, probably
where the burst length is high, the performance of non-adaptive
and uncoded coding scheme is almost the same. This is due to
using a small value of B, while the burst distribution is mainly
at 1 and 5 as shown in Fig. 5. However, our network adaptive
scheme is better than uncoded and non-adaptive coding schemes,
which shows that our network-adaptive algorithm is capable of
detecting erasure patterns and correcting them by choosing ap-
propriate coding parameters (B,N).

We plot in Fig. 16 the cumulative distribution function (CDF)
of PESQ score (i.e., the fraction of the 360 sessions whose scores
are less than a certain PESQ score) for each of the following
schemes when ε = 0.0001: Our adaptive streaming scheme, the
best non-adaptive streaming code and the uncoded scheme. It
can be seen from Fig. 16 that our adaptive scheme provides the
best user experience compared to the uncoded and non-adaptive
schemes. If the PESQ score of a session is lower than 3.8, many
users will be dissatisfied by the unclear speech, and we will call
such a session a low-satisfaction session. Fig. 17 shows that our
adaptive streaming scheme has 0 sessions with low-satisfaction
sessions compared to the uncoded and non-adaptive schemes,
which have above 32% low-satisfaction sessions.

Optimal Streaming Codes vs. MDS-Based Streaming Codes:
In order to demonstrate the advantage of using our constructed
streaming codes described in Section III over traditional MDS-
based codes, we consider the following MDS-adaptive stream-
ing scheme: Instead of outputting the coding parameters (B̂, N̂)
for an optimal block code which corrects a length-B̂ burst
erasure and N̂ arbitrary erasures, the adaptive algorithm out-
puts a single coding parameter N of an MDS code which cor-
rects only N arbitrary erasures such that the resultant coding
rate C(T,N,N) = T−N+1

T+1 satisfies

C(T,N,N) ≤ C(T, B̂, N̂) ≤ C(T,N − 1, N − 1),

meaning that the resultant coding rate is the largest possible
rate achieved by an MDS code that is less than C(T, B̂, N̂) �

T−N̂+1
T−N̂+B̂+1

.
We plot in Fig. 6 the FLRs achieved by the MDS-adaptive

streaming scheme against ε for the MDS-adaptive streaming
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Fig. 13. Codec operations.

Fig. 14. Average PESQ score obtained from Fritchman channel simulation.

Fig. 15. Average PESQ score of affected sessions obtained from Fritchman
channel simulation.

Fig. 16. The CDF of simulated PESQ score for adaptive FEC, MDS-adaptive
FEC and non-adaptive FEC for ε = 0.0001.

Fig. 17. Low-satisfaction fraction obtained from Fritchman channel
simulation.

scheme, and plot in Fig. 7 their corresponding coding rates.
Figs. 6 and 7 show that compared to the MDS-adaptive scheme,
our adaptive scheme achieves approximately 8× lower FLR and
higher coding rate across all values of ε between 0.0001 and
0.001.

Fig. 14 shows that our optimal adaptive scheme achieves a
higher PESQ score over MDS-adaptive schemes. As mentioned
earlier, the average PESQ score for affected sessions gives a
better indication of the performance of our scheme in worse en-
vironments, and our adaptive scheme has a 20% improvement
in PESQ score compared to adaptive MDS-streaming code in
affected sessions as shown in Fig. 15. Also, the number of af-
fected sessions is far lower using our adaptive scheme compared
to MDS-code as per Fig. 17. This is also illustrated in the CDF
plot in Fig. 16 that shows our adaptive network scheme having
higher fraction of sessions with higher PESQ scores.

It is possible that our-adaptive network scheme chooses an
MDS code if it is optimum. The superiority of our adaptive
scheme to the MDS-adaptive scheme is because the fraction of
non-MDS codes chosen by our adaptive algorithm is approxi-
mately 40% or more for all ε ∈ [0.0001, 0.001]. This implies that
the optimal streaming codes chosen by our adaptive scheme are
non-MDS more than 40% of the time. Consequently, the stream-
ing codes chosen by the MDS-adaptive streaming scheme are
inferior to those chosen by our adaptive scheme.

On another level, the MDS scheme can definitely achieve
the same level of protection as our network adaptive scheme,
but at the cost of higher decoding delay dd. For example, for
ε = 0.0001− 0.001, our network adaptive scheme can achieve
similar FLRs (within 10%) if T was set to 4. Therefore, our
network adaptive scheme can recover packets with a lower delay
compared to MDS-based schemes.
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D. Experimental Results for a Wi-Fi Network

In our real-world experiment, the source and the destination
are connected over the same Wi-Fi network whose capacity is ap-
proximately 30 Mbit/s. To simulate cross traffic any user would
experience while sharing the same Wi-Fi network, we introduce
UDP cross traffic using Iperf. We call the UDP cross traffic of-
fered load, whose throughput is fixed at the beginning of the
experiment and kept unchanged during the experiment.

To simulate the packet losses experienced during the real-
world experiments, we record packet loss traces. These traces
are used to compare the performance of our adaptive streaming
with the best non-adaptive (fixed rate) streaming code CT,B,N

whose coding rate does not exceed the average coding rate of
the adaptive scheme.

FLRs and Coding Rates: The average FLRs for our network-
adaptive streaming scheme as described in Section VI-A and
the uncoded scheme are plotted against the ratio of the of-
fered load occupied by Iperf traffic in Fig. 18(a). Also, the av-
erage FLR for the best non-adaptive streaming code CT,B,N

with parameters (B,N) is plotted in Fig. 18(a). Fig. 18(a) and
Fig. 18(c) show that our adaptive streaming scheme achieves
significantly lower average FLRs and higher average coding
rate than non-adaptive streaming codes in all offered loads. The
gain of the adaptive scheme compared to fixed-rate codes is
attributed to the significantly improved estimation of instanta-
neous channel conditions. In real-world networks, errors occur
in bursty manner, meaning that most of the time the networks
are free of error. Fixed-rate codes compared with adaptive codes
use a larger overhead to transmit the same amount of data be-
cause it cannot adapt to a higher coding rate when the channel is
error-free.

For interactive audio, low-fidelity sessions lead to unclear
speech or even call termination which directly affects user ex-
perience. Fig. 18(b) shows that our adaptive streaming scheme
provides a substantially better audio quality than the uncoded
and non-adaptive streaming scheme.

For the case where the offered load equals 40% of the ca-
pacity, we display the empirical distribution of burst lengths in
Fig. 19. We observe a mean of burst lengths of 4.32 and standard
deviation of 6.64. We also show in Fig. 20 the variation of av-
erage FLRs for our adaptive streaming scheme and UDP across
the 360 sessions. It can be seen from Fig. 20 that for more than
quarter of the sessions that experience packet loss, our adaptive
scheme achieves less than half of the no-coding loss rate. In ad-
dition, we display the variation of the FEC redundancy (i.e., one
minus coding rate) for our adaptive scheme in Fig. 21, which
demonstrates how quickly it reacts to erasures.

PESQ Scores: Previously, we presented our experimental re-
sults in terms of FLRs for compressed multimedia frames where
the duration and bit rate for each compressed frame are 10 ms
and 240 kbit/s respectively. Next, we follow the audio and codec
settings as described in Section VI-C (cf. Fig. 13) and use
the network-adaptive, uncoded or best non-adaptive scheme to
transmit the compressed multimedia through the Wi-Fi network
subject to Iperf UDP cross traffic as described in the previous
subsection.

Fig. 18. Experimental results for different streaming schemes interfered by
Iperf cross traffic.

Fig. 19. Empirical burst-length distribution for 40%-capacity offered load.
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Fig. 20. Average FLRs for adaptive FEC over time for 40%-capacity offered
load.

Fig. 21. FEC redundancy for 40%-capacity offered load.

Fig. 22. Average PESQ score subject to Iperf traffic.

For each 10-second session, a PESQ score is computed be-
tween the original uncompressed WAV audio and the recovered
WAV audio for our all schemes. The average PESQ scores over
360 sessions for our network-adaptive streaming scheme is plot-
ted against the percentage of the network capacity occupied by
Iperf traffic in Fig. 22.

In addition, we use the recorded packet loss traces to simulate
the average PESQ scores for the uncoded scheme and the best
non-adaptive streaming code CT,B,N whose coding rate does not
exceed the average coding rate of the network-adaptive scheme.
The average PESQ scores for the uncoded scheme and the best
non-adaptive streaming code with parameters (B,N) are also
plotted in Fig. 22.

We can see from Fig. 22 that our adaptive streaming scheme
achieves a higher average PESQ score than uncoded and non-
adaptive streaming schemes. In addition, Fig. 23 shows that

Fig. 23. Low-satisfaction fraction subject to Iperf traffic.

Fig. 24. Average PESQ of affected sessions subject to Iperf traffic.

Fig. 25. The CDF of PESQ score for adaptive FEC, MDS-adaptive FEC and
non-adaptive FEC for 40%-capacity offered load.

our adaptive streaming scheme significantly reduces the frac-
tion of low-satisfaction sessions (with PESQ score lower than
3.8) compared to the uncoded and non-adaptive schemes. As
we mentioned earlier, the average of PESQ scores of affected
sessions may better show the enhancement in the performance
in extreme situations, hence Fig. 24 shows the average PESQ
scores of affected sessions is higher for our scheme compared
to uncoded and non-adaptive streaming schemes.

We plot in Fig. 25 the CDF of PESQ score (i.e., the fraction of
the 360 sessions whose scores are less than a certain PESQ score)
for each of the following schemes under 40%-capacity offered
load: Our adaptive streaming scheme, the best non-adaptive
streaming code and the uncoded scheme. It can be seen from
Fig. 25 that our adaptive scheme provides the best user experi-
ence compared to the uncoded and non-adaptive schemes.
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Fig. 26. Fraction of time when non-MDS codes are used.

TABLE II
PERFORMANCE OF DIFFERENT STREAMING STRATEGIES FOR 30%-CAPACITY

OFFERED LOAD

Optimal Streaming Codes vs. MDS-Based Streaming Codes:
We plot in Fig. 18(a), 18(b), 22, 23 and 25 the respective average
FLR, low-fidelity fraction, average PESQ score, low-satisfaction
fraction and the PESQ CDF under 40%-capacity offered load for
the MDS-adaptive streaming scheme as described in Section VI-
C, which show that our network-adaptive scheme is marginally
better than the MDS-adaptive scheme. This can be explained
by Fig. 26 which shows that the fraction of non-MDS codes
chosen by the adaptive algorithm used by our adaptive scheme
is less than 25% for all offered loads, implying that the optimal
streaming codes chosen by our adaptive scheme are non-MDS
less than 25% of the time.

Since it is unclear from Fig. 18(a), 18(b), 22 and 23 that
our network-adaptive streaming scheme can significantly out-
perform the MDS-adaptive streaming scheme in real-world net-
works, we use the recorded packet loss traces obtained from a
repeated experiment with 30%-capacity offered load to compare
the network-adaptive streaming scheme with the MDS-adaptive
streaming scheme for T = 10. Table II(a) shows that although
the two schemes have similar rates, the network-adaptive stream-
ing scheme achieves around 80% of the average FLR and 80% of

the low-fidelity sessions achieved by the MDS-adaptive stream-
ing scheme, which implies that our constructed optimal stream-
ing codes outperforms traditional MDS-based streaming codes
in real-world networks.

The reduction in FLR is not surprising because our optimal
streaming codes treat burst erasures and arbitrary erasures differ-
ently while MDS-based codes do not differentiate them. Even if
T slightly deviates from 10, our experimental results displayed
in Tables II(b) and II(c) show that the network-adaptive stream-
ing scheme compared with the MDS-adaptive streaming scheme
can achieve a considerable reduction in FLR. In particular, for
T = 11, although the two adaptive schemes have similar rates,
the network-adaptive streaming scheme achieves around 50% of
the average FLR and 75% of the low-fidelity sessions achieved
by the MDS-adaptive streaming scheme.

In our setting, due to the 150 ms one-way delay constraint and
the standard 10 ms frame duration assumption, restricting T ≤
11 is a reasonable assumption. The search for efficient streaming
codes over GF(256) or other practical fields for T > 11 is an
interesting direction for future research.

E. Influencing Factors

Network Delay: In the Section VI-C and VI-D, we demon-
strated results of the performance of our algorithm in Fritch-
man channel and Wi-Fi settings; however, the erasure pattern is
not the only factor affecting the performance of our algorithm.
Having a network delay, indeed, delays the feedback of new es-
timates of coding parameters to the sender, and hence delays
the transitioning to new better coding parameters. Nevertheless,
since our network-adaptive algorithm estimates the coding pa-
rameters based on the past window of L packets, where L is
large compared to that transmitted during a round trip time, we
are not expecting a delay in feedback to effect our performance
significantly. We study the affect of this network delay on the
three-phase Fritchman channel and Wi-Fi settings that we stud-
ied in Section VI-C and VI-D.

We used the traffic control tc in linux to configure the kernel
delay over the local interface where we launch the sender and
receiver. Simulating the Fritchman channel and Wi-Fi network,
we vary the delay from 10–50 ms. We stop at 50 ms, since this
is the assumed maximum delay allowed for T = 10 as stated
earlier in Section VI-B. In Fig. 27, we plot the rate of change
in FLR with respect to the FLR with delay 0 ms vs. the delay
in ms. We observe that in the three-phase Fritchman channel with
ε = 0.0001 and in the Wi-Fi network with 40% offered load, the
rate of change in FLR was increasing as the delay increases.
However, the effect of delay is less obvious in the Fritchman
channel.

Although the performance of our algorithm degrades with in-
crease in network delay, our performance continues to be better
than using the best-fixed (B,N) code. In Table III, we com-
pare the average FLR using the best-fixed (B,N) code and our
network-adaptive code for the Fritchman channel and Wi-Fi en-
vironments under different delays.

Dynamic Environments: In Fig. 27, we observe that in the
three-phase Fritchman channel with ε = 0.0001, the rate of
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Fig. 27. Rate of change in average FLR vs. network delay.

TABLE III
AVERAGE FLR OF BEST-FIXED (B,N) AND OUR NETWORK-ADAPTIVE

SCHEME ACROSS DIFFERENT DELAYS FOR WI-FI NETWORK WITH

40%-CAPACITY OFFERED LOAD AND THREE-PHASE FRITCHMAN

CHANNEL WITH ε = 0.0001

change in FLR with respect to the FLR with delay 0 ms reached
1.4% at delay 50 ms. This change is not significant compared to
28.4% reached in the Wi-Fi network when the offered load was
40%.

The difference between the Wi-Fi network and Fritchman
channel is due to the difference in the number of transitions
in the coding parameters that has to be made in one hour. In the
Wi-Fi network, our algorithm decides 294 transitions compared
to the 165 transitions to be made by the Fritchman channel.

There are also differences in burst erasures observed as shown
in Fig. 5 and Fig. 19. Hence, not only is the number of transitions
different, but also the distribution of coding parameters used is
different.

It is important to note that while transitioning to new coding
parameters, we send only T + 1 packets encoded using two dif-
ferent coding parameters. This helps to guard these packets by
the old and new encoder. In a highly dynamic network environ-
ment, we only double the bandwidth for T + 1 packets and only
during transitions, e.g., for 294 times in Wi-Fi network environ-
ment with 40% offered load, i.e., 294× (T + 1)(= 11) = 3234
additional packets are transmitted, which is an additional 0.9%
of the number of packets that is to be transmitted. Therefore, our
network-adaptive algorithm is not inducing significant overhead
during transitions.

To try decreasing the number of transitions, we can increase
the estimation window size L, based on which we interleave

Algorithm 1 as described in Section IV, from 1000 to 2000. In-
tuitively, this would decrease the number of transitions, but will
increase the average FEC redundancy. The question is: will this
increase in FEC redundancy outperform the decrease in redun-
dancy due to fewer transitions? After attempting the experiment,
we observe the number of transitions decreased from 294 to 142,
however, the total amount of data transmitted increased by 20%.
Hence, decreasing number of transitions does not necessarily
result in a decrease in total redundancy, since FEC redundancy
increases.

Lossy Feedback Channel: As observed in Fig. 27, we may
think that a lossy feedback channel may also defer the transi-
tions to new coding parameters at the sender, which will lead
to a degraded performance. However, this may occur to a lower
extent. A lossy feedback channel may/may not delay the update
of the new coding parameters, because it depends on whether
we get a loss during a transition in the coding parameters or
not. Since the number of transitions is lower compared to the
feedback responses sent, the probability of losing the feedback
response that has new coding parameters is low. Also, if we do
lose a transitioning feedback packet, the receiver will continue
sending the feedback response over the channel again. Basically,
to get a degraded behavior we need to have lost feedback pack-
ets every transition to see a significant change in performance.
This was unlikely to occur in our experiments, hence, we did
not observe a change in the loss rate of recovered packets.

We performed experiments by introducing losses to the feed-
back channel using the three-phase Fritchman channel varying
ε = 0.0001 to 0.001. In addition, in the Wi-Fi network setting,
we did the same by introducing losses to the feedback channel
using the same erasure pattern for the forward channel. For both
the experiments, we observe no change in FLR. Hence, we con-
cluded that having a lossy feedback channel does not affect the
performance of our algorithm in our performed experiments.

VII. CONCLUSION AND FUTURE WORK

In this paper, we design a network-adaptive FEC stream-
ing scheme. Our scheme (i) estimates the coding parameters of
streaming codes using a network-adaptive algorithm to correct
both burst and arbitrary network packet losses, and (ii) explicitly
construct low-latency optimal streaming codes over GF(256) for
T ≤ 11.
O(T 3) is the time complexity defining the computation bot-

tleneck of our network-adaptive streaming scheme. This upper
bound bottleneck is due to the complexity of decoding a length-
(T + 1) block code using Gauss-Jordan elimination [34]. To
be explicit, the computation bottleneck of our network-adaptive
streaming scheme is close to O(D3) where D is the average
number of packets lost in a sliding window of T + 1 packets.
Therefore, the bottleneck is due to the average complexity of
decoding the lost packets in a sliding window of size T + 1
packets4

In simulated and real-world experiments, our results reveal
that our network adaptive streaming scheme significantly

4Using Gauss-Jordan elimination method would resolve D unknowns in D
linearly independent equations with a complexity of O(D3).
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outperforms non-adaptive and uncoded ones in terms of FLRs
and PESQ scores. We also highlight the advantage of using our
network adaptive scheme compared to MDS-adaptive schemes.
Additionally, we feature factors that affect the performance of
our scheme in our experiments positively, such as encapsulating
parity and multimedia frames, and negatively, such as network
delay.

There are several interesting directions for future investiga-
tion, such as (i) finding the largest T such that optimal streaming
codes exist over GF(256) remains open, (ii) obtaining theoreti-
cal performance bounds for our streaming codes over GF(256)
under well-known Markov models, (iii) exploring the interplay
between our adaptive streaming scheme, which adjusts the cod-
ing rate in real time and existing congestion control algorithms
that adjust the sizes of streaming messages in real time. (iv)
Also, machine learning techniques could be used to develop
new network-adaptive algorithm, such as [35] to mitigate the
delay effect on the performance.
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