Ivory: Learning Network Adaptive Streaming Codes

Salma Emara*, Fei WangT, Isidor Kaplani, Baochun Lif
Department of Electrical & Computer Engineering
University of Toronto
*salma@ece.utoronto.ca, Tsilviafey.wang@utoronto.ca, iisidor.kaplan@utoronto.ca, §bli @ece.toronto.edu

Abstract—With the growing interest in web services during the
current COVID-19 outbreak, the demand for high-quality low-
latency interactive applications has never been more apparent.
Yet, packet losses are inevitable over the Internet, since it is
based on UDP. In this paper, we propose Ivory, a new real-
world system framework designed to support network adaptive
error control in real-time communications, such as VoIP, using
a recently proposed low-latency streaming code. We design and
implement our prototype over UDP that can correct or retransmit
lost packets conditional on network conditions and application
requirements.

To maintain the highest quality, Ivory attempts to correct
as many lost packets as possible on-the-fly, yet incurring the
smallest footprint in terms of coding overhead over the network.
To achieve such an objective, Ivory uses a deep reinforcement
learning agent to estimate the best coding parameters in real-
time based on observed network states and experience learned.
It learns offline the best coding parameters to use based on
previously observed loss patterns and takes into account the
round-trip time observed to decide on the optimum decoding
delay for a low-latency application. Our extensive array of
experiments shows that Ivory achieves a better trade-off between
recovering packets and using lower redundancy than the state-
of-the-art network adaptive streaming codes algorithms.

I. INTRODUCTION

With the current COVID-19 outbreak worldwide and in
a “new normal” world, the usage of low-latency interactive
applications has been a daily routine. In particular, with
the move of academic conferences, graduation ceremonies,
corporate all-hands meetings, and online gaming to online
conferencing platforms, there exists an urgent demand for a
high-quality low latency interactive applications to offer an
online experience that resembles in-person meetings.

Naturally, quality of a video or audio conference depends on
two main factors: packet losses and latencies. Packet erasure
(loss) is inevitable at the network layer for an end-to-end
communication over the Internet. Two main implemented
approaches to control end-to-end errors introduced by the
network layer include: Automatic repeat request (ARQ) and
forward error correction (FEC). Both methods work on recov-
ering lost data packets due to unreliable links or congested net-
works. Nevertheless, using ARQ for real-time applications is
not appropriate, since the time for retransmitting a packet may
go beyond tolerable. Specifically, the process of retransmitting
a lost packet requires 3 x the one-way delay (2 x the one-
way delay to transmit and acknowledge its loss, then another
one-way delay to retransmit). This 3-way delay aggregate is

978-1-6654-6824-4/22/$31.00 ©2022 IEEE

required to be below 150 ms to meet the requirement by ITU
for interactive applications [1]. Since the minimum possible
aggregate delay between two diametrically opposite points on
the globe is at least 200 ms [2], it is possible to have two
distant nodes with one-way delay greater than 50 ms. In this
case, ARQ is impractical to use.

On the other hand, FEC schemes are applicable to low-
latency communications between global users, since no re-
transmissions are required. FEC adds redundant information
to help recover lost packets at the receiver. For interactive
applications, block and convolutional codes, such as Reed-
Solomon (RS) and Random Linear Convolutional (RLC)
codes, respectively can be used to recover packets quickly as
in [3]-[6].

One class of FEC schemes is streaming codes (e.g., low-
latency FEC schemes), which is a class of decoding delay-
constrained codes that are able to reconstruct earlier lost pack-
ets without waiting to correct all the losses. Raptor codes [7],
RaptorQ codes [8], randomized linear codes [9] and others
[10], [4] are all examples of streaming codes.

However, low-latency FEC schemes suffer from high
bandwidth-overhead due to the transmission of redundant
information. For example, Google’s first attempt with XOR-
based FEC in QUIC [11], which is a fast transport layer pro-
tocol for applications requiring speedy service, demonstrates
that the advantages of having retransmissions outweigh the
advantages of using FEC since less redundancy is added to
the link. However, for time-sensitive applications, such as
audio-streaming conferences, we believe that low-latency FEC
schemes is still required. The issue that recurs is the coding
overhead.

To the best of our knowledge, [12], [13] represented the
most recent work in the direction of deploying FEC schemes
for interactive applications, such as VoIP. To get the best of
both worlds, [12], [13] proposed a new low-latency stream-
ing code that (i) corrects both arbitrary and bursty erasures
subject to a “fixed” decoding delay, which is the maximum
time required to recover a lost packet and (ii) adapts the
coding parameters on-the-fly to increase or decrease redundant
information. However, the heuristic in [12], [13] assumes that
high loss rate is due to unreliable networks and may therefore
inefficiently use scarce bandwidth resources by introducing
more redundant packets than necessary to correct lost packets.

Given the trade-off between quickly recovering lost packets
at the receiver and efficiently using the network bandwidth, in
this paper, we propose Ivory, a real-world system design and

implementation prototype designed for low-latency conferenc-
ing applications that can be used to better support interactive
applications. Ivory uses the state-of-the-art low-latency stream-
ing code at its core for delivering interactive audio packets over
network links. It adapts the coding parameters in real-time to
achieve (i) acceptable quality (ii) while minimizing the coding
overhead and retransmissions incurred on the network and (iii)
bounding the decoding delay.

In order to determine the choices of coding parameters and
adapt to time-varying network environments, Ivory utilizes a
deep reinforcement learning agent to choose the best coding
parameters for the low-latency streaming code in [12], [13],
with both offline and online learning. The deep reinforcement
learning agent in Ivory is designed to make significant im-
provements over existing heuristics in [12], [13], by taking
into account the history of loss patterns beyond a small ob-
servation window as well as observed round-trip time (RTT).
Existing heuristics in [12], [13] ignored the observed RTT
and increased the network overhead by adding redundancy,
leading to decreased goodput, which is the delivery rate of
useful information on a communication link.

Our proposal has three main contributions. First, Ivory
is designed to outperform the heuristic in [13] using deep
reinforcement learning. Its performance is evaluated using
an array of performance metrics, including loss rates after
packet recovery, coding overhead incurred, and Perceptual
Evaluation of Speech Quality (PESQ) score, which evaluates
the quality of speech after recovery. Second, as an online
learning algorithm, Ivory is designed to continue exploring
and learning more about the network environment it is acting
upon.

Lastly, we perform an extensive set of experiments using
a real-world implementation prototype we developed that
transmits audio packets between two nodes to compare Ivory
to the state-of-the-art adaptive error control algorithms in [12],
[13]. Our results show that Ivory outperforms state-of-the-art
algorithms in terms of reducing loss rate to have an acceptable
speech quality using lower redundancy compared to heuristics
in [12], [13]. Ivory is always capable of meeting deadlines of
low-latency audio application by recovering packets quickly.
While heuristics in [12], [13] show less to no resilience to
changes in RTT, Ivory exhibits an improved audio speech
quality by reducing percentage of low speech quality intervals
from 2%, which is incurred while using heuristics, to almost
0%.

II. PRELIMINARIES: LOW-LATENCY STREAMING CODES

In Ivory, we utilize the low-latency streaming code proposed
in [12], [13] to protect against packet losses in audio streams
while maintaining low latencies. With this streaming code,
illustrated in Fig. 1, a source generates an audio frame denoted
by s[i] every t,, seconds, where i is the sequence number of the
frame. For simplicity, we assume that every source packet s[i]
has the same size of k£ symbols. The encoder concatenates the
source packet s[i] with the parity-check packet pli], forming
the network packet with size of n symbols. The network packet

TABLE I

DEFINITIONS OF KEY NOTATIONS.
Notation Definition
T decoding delay constraint
B maximum run length of recoverable burst erasures
N maximum number of recoverable arbitrary erasures
n codeword size
k raw data size
span(eyy) span of the 150 and last packet lost in a sliding window
wt(ew) number of packets lost in a sliding window
C(T, B, N) coding rate %

travels to the destination with a propagation delay d,,. Packets
traveling over the Internet may be lost due to several reasons,
which lead to different loss patterns. For example, congestion
can lead to bursty loss patterns while unreliable wireless links
can lead to arbitrary loss patterns. The difference between
bursty and arbitrary losses is illustrated in Fig. 2.

0 ty 2t, Tty (T, (T+2)t, (T+3)t, (T+4).t,

Time
----------- s[T] | |s[T+1]| [s[T+2]| |s[T+3]| |s[T+4]

Encoder
s[0] s[1] sl2] | ..., s[T] | |s[T+1]| [s[T+2]| |s[T+3]| |s[T+4]
Network PO [1] | pl2] plT | |pT+1]| [p[T+2]] [p[T+3]| |p[T+4]

Channel ¢ A ~
Propagation | \of || Spf | [S | ... s[T] | |s[T+1]| |s[T+2]
Delay (d)

P J/ploN] |7p0N| [7p2N pT+1]] [p[T+2]

Decoder

p[T]
8[0] | | S[11 || Sl2]

Fig. 1. The general framework of FEC streaming codes to recover lost packets.

Decoding Delay (d d)

Bursty | RN [T [T[T [TT]

Erasures
potery TR T | T I D [[[[
Erasures

Fig. 2. An illustration of the difference between bursty and arbitrary erasures,
with packet losses marked in dark color.

At the destination, the decoder aims to use the parity-check
packets out of the received network packets to reconstruct lost
packets. The decoder tolerates a maximum decoding delay
of T' packets, which is equal to 7" x ¢, seconds, where %,
is the interarrival time between packets. In other words, the
maximum decoding delay of one packet is 1" x t,. Therefore,
T should be carefully chosen so that the resultant playback
delay and propagation delay = T' x t, + d,, is less than 150
ms — as required by ITU for interactive applications [1].

In the low-latency streaming code we utilized, parity-check
packets are generated in a way to recover older packets with
sooner deadlines than later source packets. This is not the
case with conventional FEC codes such as the Reed-Solomon
code, where the recovery of all source packets occurs simulta-
neously [2]. For example, in Fig. 1, s[0] can be recovered after

o TR <~ T s

Fig. 3. An example of a window of 11 packets that can be encoded using
(T,B,N) = (11,8,1) or (11,6,6) or (11,8, 6) to recover the losses.

10

receiving s[T]+p[T] and s[1] can be recovered after receiving
[T + 1] + p[T + 1], where both s[0] and s[1] were recovered
within the same decoding delay dg =T X t,.

In the low-latency streaming code we utilize, the maximum
value of T is 11 packets, and coding parameters (B, N) satisfy
the condition 7' > B > N > 1. The power of this code lies in
the fact that it can correct both length-B burst packet losses
and N arbitrary packet losses, with a maximum decoding
delay of T x t, seconds. Hence, (B, N) are to be carefully
chosen according to network observations.

The coding rate % of this low-latency streaming code is
C(T, B, N) in Eqn. (1), and the redundancy is 1 — %, where
k is the size of raw data and n is the codeword size.

o, B Nys L N1 (1)

T—-N+B+1

The sliding windows are represented as W = {j—T,j—T+
1,...,7} of size T+1 such that j < 4, where 7 is the sequence
number of the packet. For each sliding window, the packet
loss pattern ey = (€j—71,€j—741,---,€;) € {0,1}7F1, and
an element of ey equals 1 if and only if the corresponding
packet is lost. Let wt(ey) = 3,y €, and

0 if Wt(@w) =0,
Plast — Pfirst + 1 Otherwise,

span(eyy) = {

be the weight and span of ey, respectively, where pg¢ and
Prast denote respectively the indices of the first and last non-
zero elements in eyy. In Table I, we summarize the definitions
of key notations used in this manuscript.

To illustrate, Fig. 3 shows a window of 11 packets, where
dark packets are lost. It has a packet loss pattern with
wt(ey) = 6 and span(eyy) = 8. If T = 11, these source
packets can be encoded at the decoder using (B,N) =
(8,1) or (6,6) or (8,6).

III. WHY REINFORCEMENT LEARNING?

In a nutshell, Ivory uses a deep reinforcement learning
(DRL) [14] agent to make strategic decisions on the coding
parameters (T, B, N) of the low-latency streaming code. In the
midst of a large body of existing works on the use of DRL to
solve a wide variety of engineering problems in networking,
the questions that may naturally arise are: Is it yet another
piece of work that uses DRL? Why are we using DRL to
adapt coding parameters?

A. Issues with Existing Heuristics

Authors in [12], [13] design a heuristic algorithm that
estimates the values of (B, N), which we refer to as the
heuristic. Based on the observed loss patterns, the receiver

W 12% Loss rate

W 12% Loss rate M 12% Loss rate
10% Loss rate

10% Loss rate 10% Loss rate

0.008

IS

2 0.006
2 0.45
S 0.004

Average FEC redundancy
Average PESQ Score
©

N

0.002

0 7. 04 4

Ivory MDS Ivory MDs Ivory MDS
(a) The average loss (b) The average FEC (c) The average
rate of Ivory and redundancy of Ivory PESQ score of Ivory
MDS and MDS and MDS

Fig. 4. Average loss rate, FEC redundancy and PESQ score of Ivory and
MDS in 10% and 12% loss rate environments

runs the heuristic and sends recommendations to the sender on
values of (B, N) used to encode source packets. The heuristic
proposed in [12], [13] can have B > N; however, they also
show similar behavior to maximum-distance separable MDS-
adaptive streaming code, which assigns B and N to the same
value of the maximum observed span(ey,). MDS codes are
used by Skype [15].

The heuristic and MDS show high recovery ratios of lost
packets, which is the ratio of packets recovered to the packets
lost. However, there is always a trade-off between the
packet recovery ratio, redundancy added and one-way
delay observed. An algorithm will have to add more redun-
dant information to gain a lower loss rate. We observe that
the heuristic and MDS exhibit low loss rates at the cost of
high redundancy. High redundancy decreases goodput, and
if the bandwidth was limited, it will backfire and reduce
the quality of the interactive application. Another trade-off is
between recovery packets and maximum decoding delay. The
more redundant information the network adaptive streaming
code can add, the higher the one-way delay will be, since
T > B > N > 1. For example, to recover 6 packets in a
sliding window, you need at least 1" to be 6.

For example, in audio conferencing applications, the accept-
able packet loss rate is between 3% and 5% [16]. Hence, fixing
the rules as in [12], [13] to correct the maximum number of
losses may not be optimal as it will sacrifice on the delay
observed and overuse bandwidth with added redundancy.

To demonstrate the importance of having a flexible trade-
off between redundancy and recovery ratio, we test /vory and
MDS from [12], [13] over a loss pattern generated with 10%
and 12% loss rates. We use PESQ score [17]: a metric that
ranges between 1 — 5, where a higher score means a better
speech quality, to observe the effect of packet losses on audio
packets. In Fig. 4, we observe the loss rate, average FEC
redundancy and PESQ score for an audio call that lasted
10 minutes over 10% and 12% loss rates. In Fig. 4a, Ivory
shows a higher loss rate than MDS; however, in Fig. 4b, MDS
exhibits 5% to 20% higher redundancy than Ivory for 1%
higher PESQ score for MDS in Fig. 4c for Ivory and MDS.
Average PESQ scores for both Ivory and MDS are higher
than the acceptable value for speech(3.6). Indeed, the efficient
bandwidth utilization of Ivory is saving bandwidth for other
flows sharing the same link.

Apart from fixing rules of heuristics to correct packet
erasures, the heuristic and MDS algorithms in [12], [13]
do not take the RTT into consideration. Taking RTT into
consideration is important to know how much time it takes
for the feedback to reach the sender to update its coding
parameters. This helps because if, for example, RTT was large,
we know that it would take time between sending feedback
to the sender and updating the coding parameters. During this
time, the behavior of the network may change enough that the
new values of (B, N) that the sender started to use are out-
dated. A smarter algorithm should take RTT into consideration
to ensure that their estimated values of (B, N) are not out-
dated.

B. How DRL mitigates issues with existing heuristics?

Learning-based network adaptive algorithms have a great
potential to adapt themselves to different conditions without
the need to be hand-tuned or manually changed for each envi-
ronment. Therefore, the fixed set of rules or assumptions that
previous heuristic algorithms incorporated could be completely
replaced with a model that learns from experience rather than
assumptions. It would take a model a few hours to train, but
many hours to hand-tune rule-based heuristics.

Out of (i) supervised, (ii) unsupervised and (iii) reinforce-
ment learning, the former two consider instant reward, as
opposed to reinforcement learning that is sequential and far-
sighted considering long-term rewards. We model network
adaptive error control as a sequential-decision making process
that learns a policy by adjusting its actions to achieve optimal
rewards over the long-term future.

Furthermore, since DRL models do not require labeled data,
it can adapt online as it observes new network states. They,
indeed, can change any learned assumptions in their deep
neural network. Online learning will help in unlearning bad
actions that were good in previously observed environments.

IV. DESIGN ITERATIONS

Training a model using DRL is rarely straightforward as
it consists of many design parameters such as the action and
state space, the reward function, the neural network model and
the DRL algorithm. This paper takes a practical approach and
makes our design decisions based on hands-on experiences
learned from actual experiments. We share the insights we
gained from extensive experimentation to achieve the best
performing model and supply sufficient reasoning.

A. Training framework

Since our design iterations are empirical and require un-
derstanding of our framework, we first describe our training
framework. Fig. 5 shows our training and testing framework.
Our implementation of our testbed incorporates a sender that
sends encoded audio frames to the receiver over User Data-
gram Protocol (UDP). The DRL agent resides on the receiver,
and based on observations, the agent provides feedback to
the sender on the recommended coding parameters. As audio

is notably more loss-and delay-sensitive in interactive video-
streaming applications such as video conferencing, we carry
out our experiments on audio multimedia frames.

During the training process, the sender starts by sending
audio packets at size of 300 bytes and interarrival time of
10 ms, which is 240 kbit/s. These numbers are practical since
existing audio codecs such as Opus audio codec have a frame
duration range of 2.5 — 60 ms and bit rate range of 6 — 510
kbit/s [18]. Since our DRL agent has the action space of
MDS-adaptive streaming code, which is (B, N) = (i,4) for
all distinct integers ¢, where 0 < ¢ < T = 10, only during
training, we fix the value of T' to 10 packets. This is to ensure
regardless of the RTT or loss patterns observed, the DRL agent
can choose from a wide variety of the coding parameters
(B,N) of the FEC streaming code. T' will only be varied
during testing and online learning phase, as they will depend
on RTT measured. Recommendations of (B,N) are sent
from the receiver to sender. The sender is responsible for (i)
updating the coding parameters according to recommendations
from the receiver and (ii) encoding packets using the MDS
FEC streaming code in [12], [13].

The receiver decodes the received packets as per the (B, N)
values with which the packet was encoded. The encoder at the
sender and decoder at the receiver were implemented in C++
programming language, but since there is a lack of packages
for implementing sophisticated machine learning models in
C++, we implemented our agent in Python using PyTorch on
the receiver.

Communication between the decoder and the DRL agent
happens at local ports over Transmission Control Protocol
(TCP). The decoder measures observed loss patterns and sends
these measurements to the agent. The agent runs the DRL
algorithm to train a model that recommends (B, N) values to
the sender.

To have all our training and testing environments emulate
real-world networks, we run the sender and receiver either
locally (simulating different RTT using tc in linux) or on two
distant devices, and simulate different loss patterns between
the two nodes according to pre-generated loss traces. We
design a testbed that helps in running several network adaptive
error control algorithms such as MDS in [12], [13], and several
versions of our agent on the same network conditions for
accurate and reproducible evaluations.

We generated different loss patterns. The first is by setting
the bottleneck bandwidth between the two devices to 960
kbit/s. We run different calls between the two devices, which is
part of the UDP cross-traffic, where each call has a throughput
of 240 kbit/s. Call requests are modeled using Poisson distri-
bution, which implies exponentially distributed call interarrival
times of a mean of 3 minutes. The service time is exponentially
distributed with a mean of 5 minutes. The call request rate
is varied between 1 — 5 calls/s. We change the call request
rate every u seconds by {+0.2, —0.2} to help vary the loss
patterns experienced. We save the loss patterns experienced in
trace files to test and compare different algorithms over the
same setup. Such trace file generates a wide variety of loss

Sender Encoded Receiver
. Audio Frames
Audio frames T
= - D-«- B_e8.og
Feedback
(T, B, N)
KEY

[]in C++ [in Python —>In UDP—In TCP

Fig. 5. Training and testing framework

ratios over windows of 1000 packets. With no coding, packet
loss ratio varies between 5% to 95%. We use two different p
values {1,20}.

Another set of 10 different loss patterns is generated ran-
domly, where erasures are independent and identically dis-
tributed. We vary the probability of an erasure in each pattern
by having different loss rates. Loss rates vary from 2% — 20%.

In another setup, we connect the source and destination
over the same Wi-Fi network with an average capacity of 30
Mbit/s subject to UDP cross traffic offered load of 40% -
constant 12 Mbit/s. Since the bandwidth of the Wi-Fi network
is fluctuating greatly, we can observe losses with an offered
load of 40%.

B. System Design: Iterations

Our exploration of designing the DRL agent began with a
first cut, which may help us identify weak and strong spots
and locate potential areas for improvement. Our first cut used
Cross-entropy method as the DRL algorithm to train Ivory.

To be able to represent the environment, we choose the
following as the state space of the DRL agent:

1) Ly,qte: the ratio of packets lost to packets transmitted;

2) span(ew)maz (0 < span(ew)mar < 10): maximum
span of erasures in any sliding window of 11 packets
observed in a step;

3) wt(ew)maz (0 < Wt(ew)maz < 10): maximum number
of arbitrary erasures observed in any sliding window of
11 packets observed in a step;

4) 1-C(T,B,N) (0 < 1—C(T,B,N) < ¥): average
redundancy, where C(T', B, N) = £ is the coding rate
in a step as defined earlier;

5) Qops (0 < Qops < 1): ratio of packets recovered from

lost packets in a step.

Given that span(ey)mar and wt(ew)mas are not in the
same range as Lyq, 1 — C(T,B,N) and Q.ps, We nor-
malize the input state space by dividing span(eyy)maq. and
wt(ew)maa by 10, to ensure the initial neural network em-
phasizes on all elements of the state space equally.

We choose the time of the step in an episode to be double
the time taken for the recommended (B, N) to be observed on
an encoded packet at the receiver, i.e., 2XRTT. In the first half
of the step, the agent observes the effect of the previous step,
and in the second half, the effect of the newly used (B, N) in
the step is detected.

Fundamentally, to solve an RL problem, the task has to be
modeled as a Markov Decision Process (MDP) [14]. Since

different network environments may not exhibit the Markov
property, we need a way to retain state information over time to
model our problem as MDP. The usage of a recurrent structure
in our neural network will mitigate the issue as discussed
in the literature [19]. At any point in time, the DRL agent
does not exactly know the loss rate, pattern and round-trip
time. Therefore, aggregating observations over past steps in a
recurrent neural network will help model our problem as an
MDP. Ivory uses a long short-term memory (LSTM) network
with 64 hidden units and 2 hidden layers to help model the
network adaptive error control problem as an MDP.

Our episode is an aggregation of decisions taken over a
sequence of 1000 packets. To represent the virtue of decisions
to the agent, we use the reward function in Eqn. 2, where
Qepisode 1S the ratio of recovered packets throughout the
episode, 1 — C(T, B, N) is the average redundancy observed
in the episode, and « is a constant to vary the significance of
redundancy. Intermediate steps obtain 0 reward, except for the
last step’s reward in Eqn. 2.

r= erisode X (]- —a X (]- - C(T7B7N))) (2’)

1) Effect of loss pattern in training process: Initially, we
train two models using Cross-entropy method with o« = 0.4.
The batch size is set to 16 episodes, and we train over the
elite/top 75th percentile episodes according to the Cross-
entropy method [20]. We train each model over different loss
patterns generated from different 1 = {1,20}. Fig. 6 shows
the results of this training experiment. In Fig. 6a, we observe a
quicker convergence with ;1 = 1 compared to 1 = 20 in terms
of cross-entropy loss. Also, in terms of reward, we observe a
more stable reward per episode and convergence towards the
end in Fig. 6b.

Having a small ;¢ made the request rate of calls change
quickly and hence smoothing the effect of high fluctuations
of request rates on loss rates. This resulted in a much slower
change in Frame Loss Rate (FLR) of no coding observed in
Fig. 6¢c compared to the much steeper changes in FLR in
Fig. 6d.

We found that whenever the loss pattern increased suddenly,
the ratio of recovered packets decreased in both Fig. 6¢ and
Fig. 6d. In other words, with higher fluctuations as in Fig. 6d,
we could see slower convergence in p = 20, as compared to
lower fluctuations in Fig. 6¢c, where we see faster convergence.
In a nutshell, changes in loss patterns observed yield different
convergence properties. Hence, to have a stable performance,
training on a loss pattern that changes steadily (not suddenly)
is important.

2) Effect of a: One of the most beneficial ideas in DRL
is that it learns a policy according to the observed states and
rewards. Whenever the reward function changes to favor one
metric, the policy changes. This is the benefit of the « in
Eqn. 2. With changes in «, we can emphasize or de-emphasize
the importance of saving bandwidth or using less parity.

To better understand the effect of « in the reward function
in Eqn. 2, we fix 4 = 1 and change « € {0.4,0.6,0.8,1}.
In Fig. 7, we show the test results of the 4 different models

Cross-entropy loss

0 10 50 60 70 0 200 400 600 800 1000

K
Iteration number Episode number
(a) Cross-entropy loss vs. itera-

tion number of models trained
over 1 = 1 and p = 20.

(b) The rewards vs. episode num-
ber of models trained over p = 1
and pu = 20

— p=20
---- No coding

Average FLR
2

Average FLR

3 200 400 600 800 1000 [200 400 600 800 1000
Episode number Episode number

(c) The average FLR vs. episode
number as we train a model over
=1

Fig. 6. Comparing two models trained using 4 = 1 and g = 20 using
Cross-entropy method

(d) The average FLR vs. episode
number as we train a model over
w=20

°

7 . LY
W g

U
Vi

Average FLR
S
2

Lok
o

Average redundancy
°
S

0 200 400 600 800 1000 0 200 400 600 800 1000
Episode number Episode number

(a) The average FLR vs. episode
number for different o values

(b) The average redundancy vs.
episode number for different o val-
ues

Fig. 7. Comparing the training process of 4 different models trained using
different o € {0.4,0.6,0.8,1}

trained with different values of «. Fig. 7a and 7b show the
average FLR and FEC redundancy per episode as we test the
models over loss pattern with © = 1. We observe that the
model trained with a = 0.8 is more adaptive to changes in
loss patterns. For example, at around episode number 500 in
Fig. 6¢, the no coding losses start to decrease gradually, and
the redundancy with o = 0.8 starts to decrease too.

When a = 0.4, the average redundancy over an episode
did not fluctuate, which shows that this model decided that
the optimum behavior is to be conservative and always chose
(B,N) = (10,10) to correct all possible losses. However, a
higher value of a = 1 yields a model with lower attention
to recovering losses and more regard to redundancy as seen
in around episode 500, where the redundancy chosen by the
model trained with av = 0.8 is higher than the model trained
with a = 1.

3) Effect of history length: In Fig. 8, we study the effect of
the history length of the state space fed to the neural network.
This study focuses on convergence properties and performance
of the agent when a bigger state space is fed to the neural
network. In this experiment, we set o = 0.8 to be able to

—— No Coding
---- History length = 1

Average FLR
Average FLR

02 0.2

-~ History length = 4 ¥

0 100 200 300 400 500 600 700 0
Episode number

100 200 300 400 500 600 700
Episode number

(a) The average FLR vs. episode
number for history length of 4

(b) The average FLR vs. episode
number for history length of 1

25

—— History length = 1
---- History length = 4

Cross-entropy loss

Average redundancy

°

—— History length = 1
-~ History length = 4

2

0 100 200 300 400 500 600 700 0 10 20 30 40
Episode number Iteration number

(c) The average redundancy vs.
episode number

Fig. 8. Experimental results showing the effect of history length on the
adaptivity and convergence of a model

(d) The cross-entropy loss vs. itera-
tion number

observe changes in redundancy with changes in loss rates.
We train the agent using Cross-entropy method over the loss
pattern generated with ;o = 1. We observe the offline training
properties of the agents with history length of 1 and 4 in Fig. 8.

In Fig. 8d, we observe the convergence of the model having
history length of 4 was faster. The rewards of both the models
converged to the same number, but the model with history
length of 4 reaches the maximum reward faster. Fig. 8a and
Fig. 8b show the changes in average loss rate as the models
with history length of 4 and 1 train respectively. We observe
the model with history length of 4 has a quicker increasing
gap between the no coding average FLR and the agent’s FLR.

In terms of adapting the redundancy with time, Fig. 8c
shows that the model trained with history length of 4 adapts
faster to changes in loss patterns. We observe that just before
episode 300, the average packet loss rate decreased from 0.80
to 0.36 and the redundancy of that model decreased a lot to
adapt to this change; however, the model with history length
of 1 took almost triple the time to drop its redundancy. We see
the same adaptive behavior for the model with history length
of 4 at episode 450.

4) Effect of the value of T — maximum decoding delay:
During the deployment stage, Ivory requires to know the
RTT and based on it choose the value of 7' to be able to
meet the requirement of 150ms one-way delay for interactive
applications [1].

Ivory in the first step would choose no coding parameters
until it measures the RTT. According to the RTT and the packet
interarrival time, it chooses a value of T between 1 and 10.
T is calculated as T = 20-BIL where ¢, is the packet
interarrival time. The result T is rounded down to the nearest
whole number between 1 and 10.

If T is chosen to be below 10, and Ivory decides on
action (B,N) > (T,T), then we would clip it to be the

maximum value of B and N allowed, i.e. (B,N) = (T,T).
This is because Ivory is trained on the whole action space
of (B,N) = (i,¢) for all distinct integers ¢ where 0 < i <
T = 10. This would indeed sacrifice loss rate for decreased
decoding delay.

5) Online training phase: During the online learning phase,
we continue running the Cross-entropy method algorithm on
observed episodes. However, the main difference between
offline and online learning is the change in the value of T
The main issue with this is that if 7' was chosen at the
beginning of the connection to be smaller than 10, and we
cap all actions of the agent to be (B,N) < (7,T), then
when continuing online training, our policy would be drifting
to choose between (0,0) < (B, N) < (T,T). This will be an
issue if we start another connection that handles a higher value
of the previously chosen T'. For this reason, online learning is
considered mainly beneficial only if it starts initially from the
offline trained model.

Another benefit of starting a connection from the offline-
trained model is that during online training, overfitting may
occur. Recall that during offline learning, the model is trained
over a wide variety of loss patterns and RTTs. Overfitting
the model to one environment will result in a model that is
behaving well to a particular environment and not others. This
is why in online learning, we start our online training from
the offline-trained model.

To ensure Ivory does not behave poorly initially when it
experiences a newly observed environment, we use a decaying
ratio of MDS actions. These actions are considered guidance
actions if Ivory is not performing well. Otherwise when
Ivory observes improved rewards, dependence on MDS actions
decrease. Alg. 1 summarizes our online learning algorithm.

Algorithm 1 Online training of Ivory

1: procedure Deploylvory

2: Use the pre-trained network parameters

3 Initialize € < 0.5

4 for all batches do

5: for all steps € episodes € batch do

6: With probability ¢, take MDS action

7 Otherwise take pre-trained network action
8 Decay €

9

Train the pre-trained model and/or the CEM en-
semble model on 75% elite episodes every 16 episodes

V. PERFORMANCE EVALUATIONS

1) Offline Training of Ivory: To evaluate Ivory’s perfor-
mance, we use our testbed explained in Sec. IV-A. Ivory used
in this section is trained on random loss rates bounded between
2% and 20%, similar to real world loss rates. As we train Ivory,
we vary the RTT every episode between 10ms and 50ms. Each
episode runs over a different RTT and a different loss rate that
are changed using tc in Linux kernel.

In Fig. 9, we show the training curves for Ivory. Ivory
is trained over an erasure pattern that changes the loss rate

a=04 a=0.8
0.0 -- a=0.4smoothed — a=0.8smoothed
0.8 1 } i‘? %
iy, ;.‘s")\q, s ‘”’i‘v‘f"- *""-c‘ ﬂ.‘iﬁ!"

07 AT VR
° |
2 06
[0
o

0.4

0.3

0.2

0 100 200 300 400 500 600 700 800 900
Episode number
(a) The reward value vs. episode number
a=04 a=0.8
- a=0.4smoothed — a=0.8 smoothed

. 07
% 0.6
g 0.5
g 0.5 |
o 04
w
w 03
Q
g 0.3
:?’ 0.2

0.1

0 100 200 300 400 500 600 700 800 900

Episode number

(b) The average redundancy vs. episode number

a=0.4 a=0.8
- a=0.4 smoothed — a = 0.8 smoothed

Average FLR

0 100 200 300 400 500 600 700 800 900
Episode number

(c) The average loss rate vs. episode number

Fig. 9. Comparing Ivory training process over o = 0.4, 0.8 over the bounded
erasure pattern

every episode (i.e. 1000 packets). In Fig. 9a, we show the
reward value vs. episode number. As discussed earlier, the
model trained with a = 0.4 will show higher reward, since
it penalizes less the redundancy factor in the reward function
compared to o = 0.8. This also explains the low average
FLR and low average FEC redundancy of the model trained
using a = 0.8 in Fig. 9cand 9b, compared to the model using
o =04

2) Varying a: After offline training, we test Ivory on differ-
ent loss patterns. We evaluate Ivory trained using o = 0.4, 0.8
and MDS over 10 min call periods in Fig. 10. Each call
experiences different loss rate varying from 2% to 20%, with
a difference of 2% between each experiment. We fix the RTT
to 60 ms, and the interarrival time between packets was set to
5 ms. Therefore, T" was chosen to be 10 (the maximum value),
to meet the one-way delay requirement.

In Fig. 10a and 10b, we plot the average FLR and FEC

0 a=08 a=04 MDS 0 a=08 a=04 MDS
0.06 1
0.05 { ‘ ‘ J J J { L Foos 08
o« O >
T 004 o oo 06
:-fv 0.03 e 003 “é,é))
= . © 3 £- I « e o o
g o002 o g3 b bl il
< o ze
0.01 T 02 ‘
-D;ai 0

0t S S PEE TP SR PR
2 4 6 8 10 12 14 16 18 20

Loss rate (%)

2 4 6 8 10 12 14 16 18 20
Loss rate (%)

0 a=08 4 a=04 O MDS 0 a=08 4 a=04 0 MDS
5.00 1
g e 2 08
3 400 Bk s
2 : 3.60 Z 06
(%] £ X e
& 300 ﬁ o .
g . e
§ 200 S o2 s
< .a’
1.00 0 PR . ST - il S NP S
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

Loss rate (%)

Loss rate (%)

(a) The average FLR vs. environment (b) The average redundancy vs. envi- (c) The average PESQ score vs. envi- (d) The low-fidelity rate vs. environ-

loss rate ronment loss rate

ronment loss rate

ment loss rate

Fig. 10. Comparing Ivory trained over o« = 0.4, 0.8 with MDS over the testing environment of loss rates varying from 2% to 20% in terms of average FLR,

average FEC redundancy, PESQ score and low-fidelity rate.

redundancy, respectively, for each 10 min call over different
loss rate. While in Fig. 10c and 10d, we plot the PESQ score
and low-fidelity rate of the speech received at the receiver after
decoding. To calculate the PESQ score and low-fidelity rate,
we first measure the PESQ score of every 10 seconds received
by comparing audio of decoded packets at the receiver with the
corresponding original audio. The average of these 10 second
PESQ scores is plotted as the average PESQ score in Fig. 10c,
and the ratio of these 10 second PESQ scores that is below
3.6 is the low-fidelity rate as plotted in Fig. 10d.

In Fig. 10a and 10b, Ivory trained using o = 0.4 tends to
trade recovery ratio for reduced redundancy when loss rate
is higher than 8%. This led to low FLR for loss rates less
than 8% and high FLR rates elsewhere. However, in all of
these cases, the PESQ score of Ivory trained over o = 0.4
did not get affected with increase in FLR, and it was kept
above 3.6 as shown in Fig. 10c. In summary, Ivory trained
using « = 0.4 tends to provide a better trade-off between loss
rate and redundancy, by keeping the PESQ score in Fig. 10c
acceptable. However, for loss rates bigger than 10%, Ivory
tends to have more 10s sessions with PESQ scores lower
than 3.6, as reflected in Fig. 10d. This is a result of Ivory’s
preference to reduced loss rates than redundancy.

For Ivory trained using o = 0.8, the loss rate is certainly
higher and redundancy is lower than Ivory trained using o =
0.4. However, Ivory trained using a = 0.8 seems to not fit the
audio conferencing applications as loss rates crossed 5% when
packet loss rates were 18% or more. This indeed degraded
the performance of audio as observed in Fig. 10c with PESQ
scores dropping below 3.6.

On the other hand, MDS performed well in terms of
recovering more packets than Ivory trained using o = 0.4,
especially when loss rates were high. This owes to the fact
that MDS was using a conservative heuristic to save more
packets without much regard to redundancy. For example, at
loss rate of 12%, MDS used 5% more redundant packets, and
hence 5% more bandwidth than Ivory trained with o = 0.4, to
bring the quality of speech from an acceptable rate to another
acceptable rate, which is unnecessary.

If we were to use retransmissions of lost packets, we
will not be able to meet the deadline requirements of low-
latency applications, as a successfully retransmitted packet

would arrive after 60 x 3 = 180ms, after the one-way delay
required by ITU, which is 150ms. However, for RTT below
50ms, we do still advocate for retransmissions, since the added
redundancy of FEC would typically be higher than the added
redundancy of retransmissions. For example, if RTT was 20ms
and packet loss rate was 10%, if we were to retransmit a lost
packet only once, the added redundancy would be just 10%,
and it would still meet the delay requirements of interactive
applications.

In conclusion, Ivory has an adaptive behavior as you change
o. This makes Ivory flexible in terms of suiting different
applications that have different requirements. Ivory using
a = 0.4 performed well in terms of loss rate, but not better
than MDS, but was capable of having lower redundancy than
MDS to save bandwidth. We do not claim Ivory always has
a better trade-off, but we claim that Ivory has an adaptive
trade-off that can be changed to well-suit an application.

3) Varying RTT: Apart from adapting Ivory’s trade-off, we
are concerned with meeting the deadline of packet reception by
the application to ensure quality of application is not hindered.
To achieve this, Ivory considers RTT into its choice of 7.
In the next experiment, we use the loss rate of 10% since
MDS and Ivory trained using o = 0.4 showed a similar
behavior in terms of average FLR and FEC redundancy in
the previous experiments in Fig. 10. Therefore, any changes
in behavior is to be attributed to change in RTT. The packet
interrarrival times is 10 ms and RTT varies from 50 ms
to 100 ms. Audio calls run for 10 min each over different
RTT. We compare the behavior of MDS and Ivory trained
using o = 0.4 in protecting packets, reducing redundancy and
meeting deadlines. However, since MDS is always choosing
T = 10, it would not meet the 150 ms deadline for 60 ms RTT
and more. We could stop here and say MDS is not suitable for
RTT larger than 60 ms, however, we adjust MDS’s algorithm
to study the effect of changing RTT on the performance.

In Fig. 11a, MDS and Ivory both show similar loss rates;
however, Ivory is using slightly higher redundancy than MDS
in Fig. 11b. Similar loss rates did translate to similar PESQ
scores as in Fig. 11c. However, Ivory shows almost 0% low-
fidelity rates in Fig. 11d compared to almost 2% low-fidelity
rate for MDS.

It is difficult to find out why Ivory is having lower low-

0O MDS a=04 ‘0 MDS a=04
0.003 1
« o 0.8
>
= 0.002 w o
P LR a [28T o S goe
2 Qe o B B |- e - prrre B a
2 0.001 23
2 ze
0.2
0.000 0
50 60 70 80 90 100 50 60 70 80 90 100
RTT (ms) RTT (ms)

(a) The average FLR vs. environment (b) The average redundancy vs. envi- (c) The average PESQ score vs. RTT

loss rate ronment loss rate

0 MDS a=0.4 ‘O MDS a=04

5 0.05
g PN P o P, S— '
% 4 % 0.04
% 2 003
W)

°

g’ = 0.02
- T 0 Boeeens Boeeeees a- Boeeneend a
= o
g = 0.01

1 0b—2—A A A

50 60 70 80 90 100 50 60 70 80 90 100
RTT (ms) RTT (ms)

(d) The low-fidelity rate vs. RTT

Fig. 11. Comparing average FLR, FEC redundancy and PESQ scores of Ivory trained over o« = 0.4, 0.8 and of MDS over the testing environment of RTT

varying from 50 ms to 100 ms

fidelity rates, but one main reason is that Ivory was trained
over different RTTs. Hence, Ivory is trained to be aware of
feedback arriving late or out-dated. This is why with high
RTTs, Ivory was capable of perhaps acting earlier than MDS
to be able to correct future losses in packets.

4) Online training of Ivory: Online learning is another
feature of Ivory, which can be turned off or on if the receiver
operating on Ivory has limited computational resources. Ivory
can continue to learn online as it adapts to new loss patterns,
or it can improve as it observes more samples of previously
observed loss patterns.

To observe the behavior of Ivory as it learns online, we use
Ivory’s model trained using oo = 0.4 and make it observe the
environment with 16% loss rate for 10 minutes. After online
training for 10 minutes against the environment with 16% loss
rate, we test Ivory for 10 minutes over the same environment.
In Fig. 12, we compare the changes in average FLR, FEC
redundancy, PESQ and low-fidelity rate. It is clear in Fig. 12a
that Ivory is having lower FLR, yet higher than that of MDS.
This is indeed a result of the slight increase in redundancy
observed in Fig. 12b. However, the reduced loss rate did not
significantly improve the average PESQ in Fig. 12c. This is
because the improvement was targeting the huge decline in
low-fidelity rate from 25% to 8%.

Online learning indeed benefited Ivory improvement as it
trained more on 16% loss rate environment. In addition, it is
noteworthy that this improvement was over the span of 10
minutes only.

VI. RELATED WORK

In this field of research, there are two main areas of
research investigation and effort: FEC coding schemes and
adaptive FEC. There are different variations of FEC coding
schemes. For non-interactive applications, Low-density parity-
check (LDPC) codes [21], [22], and digital fountain codes [7],
[23] are two FEC schemes that are currently used in the DVB-
S2 [24] and DVB-IPTV [25] standards. Caveats of LDPC and
fountain codes is that they require long wait times to receive
long block lengths and computation time to encode and decode
these long block lengths.

Since we give special attention to interactive audio appli-
cations, the schemes that relate most to our work are low-

After online After online
0.016 Before online . 1.00 Before online
(6]
C
3
« 0.012 g 075
o B
S 0.008 o 0.50
© i
[} [T
z o
0.004 2 0.25
E>3
o — < oo —

(a) The average FLR of Ivory
before and after online learning

(b) The average FEC redun-
dancy of Ivory before and after
online learning

After online
Before online

After online
5 Before online 0.5

0.4
0.3
0.2

0.1

Average PESQ Score
w
Low-fidelity rate

| — = 0o ——

(c) The average PESQ score of
Ivory before and after online
learning

(d) Low-fidelity rate of Ivory
before and after online learning

Fig. 12. Comparing the performance of Ivory before and after online learning
over 16% loss rate environment over a 10 min call

latency FEC streaming codes. Different variations of low-
latency FEC schemes are studied in [4]-[6], [10], [15], [26]
to improve interactive streaming applications. Indeed, using
low-latency FEC schemes plays a major role in the success of
Skype [15] and WebRTC [4]. The biggest issue with existing
FEC streaming codes is that they are not optimum in correcting
both bursty and arbitrary erasures, except for [12], [13], [27],
[28].

Besides, there have research works on adaptive FEC al-
gorithms for non-interactive applications on different coding
streams, such as [29], [30]. Also, some works implement
learning-based algorithms to learn coding parameters, such
as [31]-[33]; however, they do not consider low-latency

streaming codes, where decoding delay plays a major role in
defining effectiveness of the solution.

To the best of our knowledge, [12], [13] is the most recent
work on deploying FEC streaming codes for interactive audio
conferencing. They achieve an optimum trade-off between
correcting bursty and arbitrary erasures with a fixed low
latency guarantee. [12], [13] also adapt the redundancy used
in their coding scheme showing that they perform better than
fixed coding schemes attaining lower average redundancies
and higher recovery rate of dropped packets. However, they
do not change their maximum decoding delay to bound it with
respect to the observed RTT, as Ivory does.

VII. CONCLUDING REMARKS

In this paper, we present Ivory, a new real-world system
design powered by deep reinforcement learning, which aims
at recovering as many lost packets as possible without over
utilizing the bandwidth of the network link. Ivory is tested
over audio packets, since audio quality is more sensitive to
delays than video packets. We design Ivory to train offline
to have a pre-trained model for deployment, and as Ivory
gets deployed, it continues online learning to adapt to newly
seen scenarios. Ivory’s main goal is to achieve a better trade-
off between recovering all packets to achieve high-quality
interactive experience and minimizing redundancy overhead
to better utilize network bandwidth while maintaining low-
latencies.

Our evaluation results show that Ivory is competitive with
the state-of-the-art in terms of adaptability and flexibility
of trade-offs between packet recovery rate, redundancy and
meeting latency deadlines. In some cases, it outperforms the
state-of-the-art, and when it comes to achieving a trade-off
between redundancy, FLR and meeting latency deadlines in
stress testing scenarios, Ivory performs better than the state-
of-the-art. Ivory’s performance is also resilient to changes in
RTT. We believe Ivory represents a step forward towards audio
conferencing with adaptive streaming codes over UDP.

REFERENCES

—

[1] International Telecommunication Union, “One-way transmission time,”
Recommendation G.114, May 2003.

[2] A.Badr, A. Khisti, W.-T. Tan, and J. Apostolopoulos, “Perfecting protec-
tion for interactive multimedia: A survey of forward error correction for
low-delay interactive applications,” IEEE Signal Process. Mag., vol. 34,
pp. 95 - 113, 2017.

[3] A. Hameed, R. Dai, and B. Balas, “A decision-tree-based perceptual
video quality prediction model and its application in FEC for wireless
multimedia communications,” IEEE Trans. Multimedia, vol. 18, no. 4,
pp. 764-774, April 2016.

[4] S. Holmer, M. Shemer, and M. Paniconi, “Handling packet loss in

WebRTC,” in Proc. IEEE Intl. Conference on Image Process., Sept 2013.

J. Korhonena and P. Frossard, “Flexible forward error correction codes

with application to partial media data recovery,” Signal Processing:

Image Communication, vol. 24, no. 3, pp. 229 — 242, 2009.

[6] M. Nagy, V. Singh, J. Ott, and L. Eggert, “Congestion control using

FEC for conversational multimedia communication,” in Proc. the 5th

ACM Multimedia Systems Conference, 2014.

A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6,

pp. 2551-2567, 2006.

[8] M. Watson, T. Stockhammer, and M. Luby. (2012, August) Raptor
forward error correction (FEC) schemes for FECFRAME. [Online].
Available: https://tools.ietf.org/html/rfc6681

[5

=

[7

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

V. Roca and B. Teibi. (2020, January) Sliding window random
linear code (RLC) forward erasure correction (FEC) schemes for
FECFRAME. [Online]. Available: https://tools.ietf.org/html/rfc8681

J. Wang and D. Katabi, “ChitChat: Making video chat robust to packet
loss,” Master’s thesis, Massachusetts Institute of Technology, 2010.

A. Langley, A. Riddoch, A. Wilk, and et al., “The QUIC transport
protocol: Design and internet-scale deployment,” in Proc. Conference
of the ACM Special Interest Group Data Communication. SIGCOMM,
August 2017.

S. Emara, S. Fong, B. Li, A. Khisti, W.-T. Tan, X. Zhu, and J. Apos-
tolopoulos, “Low-latency network-adaptive error control for interactive
streaming,” IEEE Transactions on Multimedia, pp. 1-1, 2021.

S. L. Fong, S. Emara, B. Li, A. Khisti, W.-T. Tan, X. Zhu, and
J. Apostolopoulos, “Low-latency network-adaptive error control for
interactive streaming,” in Proc. 27th ACM International Conference on
Multimedia, Oct 2019.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

T. Huang, P. Huang, K. Chen, and P. Wang, “Could Skype be more
satisfying? A QoE-centric study of the FEC mechanism in an Internet-
scale VoIP system,” IEEE Network, vol. 24, no. 2, pp. 42 —48, 2010.
December 2018. [Online]. Available:
https://www.vyopta.com/blog/video-conferencing/understanding-packet-
loss/

I. T. Union, “Wideband extension to recommendation p.862 for the
assessment of wideband telephone networks and speech codecs,” In-
ternational Telecommunication Union, Recommendation P.862.2, Nov
2007.

J. Valin, K. Vos, and T. Terriberry. (2012, Sept) Definition of the opus
audio codec. [Online]. Available: https://tools.ietf.org/html/rfc6716

S. D.Whitehead and L.-J. Lin, “Reinforcement learning of non-markov
decision processes,” Artificial Intelligence, vol. 73, no. 1, pp. 271-306,
1995.

R. Rubinstein and D. Kroese, The Cross-Entropy Method.
2004.

R. G. Gallagher, “Low density parity check codes,” IRE Transactions
on Inf. Theory, vol. 8, pp. 21 — 28, 1962.

D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of
low density parity check codes,” Electronics Letters, vol. 33, no. 6, pp.
457 — 458, 1997.

M. Luby, “LT codes,” in Proc. 43rd Annual IEEE Symposium on
Foundations Computer Science, 2002.

E. T. S. Institute, “Digital video broadcasting (DVB); Second gener-
ation framing structure, channel coding and modulation systems for
broadcasting, interactiv services, news gathering and other broadband
satellite applications; Part 1: DVB-S2,” European Telecommunications
Standards Institute, Standard ETSI EN 302 307-1, Nov 2014.

——, “Digital video broadcasting (DVB); Transport of MPEG-2 TS
based DVB services over IP based networks,” European Telecommuni-
cations Standards Institute, Standard ETSI TS 102 034, April 2016.

A. Badr, A. Khisti, W. Tan, X. Zhu, and J. Apostolopoulos, “FEC for
VoIP using dual-delay streaming codes,” in Proc. IEEE INFOCOM,
2017.

E. Domanovitz, S. L. Fong, and A. Khisti, “An explicit rate-optimal
streaming code for channels with burst and arbitrary erasures,” in
Proc. IEEE Information Theory Workshop (ITW), 2019.

D. Dudzicz, S. L. Fong, and A. Khisti, “An explicit construction of
optimal streaming codes for channels with burst and arbitrary erasures,”
IEEE Transactions on Communications, vol. 68, no. 1, pp. 12-25, 2020.
A. Nguyen, B. Li, and F. Eliassen, “Chameleon: Adaptive peer-to-peer
streaming with network coding,” in Proc. IEEE INFOCOM, 2010.

W. Dong, J. Yu, and X. Liu, “CARE: corruption-aware retransmission
with adaptive coding for the low-power wireless,” in IEEE 23rd Inter-
national Conference on Network Protocols (ICNP), 2015.

Q. Wang, J. Liu, K. Jaffres-Runser, Y. Wang, C. He, C. Liu, and
Y. Xu, “INCdeep: Intelligent network coding with deep reinforcement
learning,” in Proc. IEEE INFOCOM, 2021.

S. Cheng, H. Hu, X. Zhang, and Z. Guo, “DeepRS: Deep-learning based
network-adaptive FEC for real-time video communications,” in 2020
IEEE International Symposium on Circuits and Systems (ISCAS), 2020.
H. Hu, S. Cheng, X. Zhang, and Z. Guo, “LightFEC: Network adaptive
FEC with a lightweight deep-learning approach,” in Proc. 29th ACM
International Conference on Multimedia, 2021.

Springer,

