Towards Optimal Multi-Modal
Federated Learning on Non-IID Data
with Hierarchical Gradient Blending



Federated Learning

~ enhables resource-constrained edge clients, such as mobile
phones and lol devices, to learn a shared global model for
prediction, while keeping the training data local.
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Uni-modal Federated Learning

- The global model receives one type of data A
modality as input.
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> The x,, denote samples extracted from single
data modality such as RGB frames, audio, or

optical flows. RGB image
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An example of image classification
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Multi-modal Machine Learning

~ aims to build models that can process and relate information
from multiple modalities.
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Multi-modal Federated Learning

- The global multi-modal model is trained under the
federated learning paradigm.
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> Each client contains samples from M modalities.

? The global multi-modal model contains M sub-networks that are going to be
jointly trained.



Performance Degradation of Classical Methods

- The classical federated learning method, FedAvg, presents
performance degradation when training the multi-modal global
model.

1.0 TABLE I: The performance comparison of the FedAvg method
09 on uni-modal FL and the multi-modal FL under the non-1I1D
O data settings of three modalities.
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Non-IlID Multi-modal Data Challenge

- Multi-modal weights divergence:
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Non-IlID Multi-modal Data Challenge

o Local divergence || ¥ fk(v-k, EX) — vi.(w;, E9 -
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> Gradient divergence from M sub-networks.
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Non-IlID Multi-modal Data Challenge

> Local-global divergence || ¥ fk(V-k, EX) — viw;, 6) |-
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> Gradient divergence from participating clients.

> Data distribution distance of modality m between local data k and the global data.



Hierarchical gradient blending

> The high-level idea is to update the model to reduce the training loss
while achieving low evaluation loss.

> HGB directly minimizes the overfitting-to-generalization ratio (OGR).
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> Achieve the best OGR for adjacent global parameters sz_ and th obtained by

1
aggregating local models from K clients.
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Optimal hierarchical gradient blending

M
- Computes the optimal {z,];l} 1,k € | 1,K]in the local updates.
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> To achieve the minimum overfitting-to-generalization ratio (OGR)
when jointly training M sub-networks in the local update.
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Optimal hierarchical gradient blending

K
- Computes the optimal { pk}k_l IN the global aggregation.

> To achieve the minimum overfitting-to-generalization ratio (OGR)
when aggregating gradients from K participating clients.
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Evaluations

- Targeting the video recognition task
> Kinetics
> FineGym
- Designing the non-1ID multi-modal data as:
> In case A, each client contains all modalities.
> |n case B, each client can only contain subset modalities.

» Case Cis built on case B but adds the sample skewness among modalities.
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Performance

- Our method outperforms alternative leading methods, including FedAttn [1]
and FedNova [2], in terms of classification accuracy and convergence speed.
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TABLE II: The performance comparison of methods in case B FedAvg
with two modality non-IID types (i.e., Mixed-B and 2M-B). The 07 4 7 EejﬁN\ttn
evaluation metric 1s the top-1 accuracy and the communication S os ] — gy R
. ' T T ca’d FH A :
rounds distance (ACR) between FedHGB and the fastest < L y
method g o ) i | :
. © i i N T oty
S S il v,,‘,*'f‘/v' I i
Datasets Kinetics Gym S v Y Y e |
Case B settings | Mixed-B | 2M-B | Mixed-B | 2M-B g °3 .n.:j{'{: A
FedAvg 38.04 | 4432 | 4233 | 51.42 5., [T
FedAttn 5179 | 5691 | 58.07 | 64.52 >
FedNova 5512 | 5876 | 63.92 | 68.3 o1 1]
FedHGB 62.97 64.39 71.66 73.34 - . . . . i
NCR 34 15 51 20 100 C 200 _ 13:(:0 400CI 500
Uni-RGB 62.33 70.52 ommunication rounds

The validation curve on Gym dataset under Case C.

[1].S. Ji, et. Al, Learning private neural language modeling with attentive aggregation, International Joint Conference on Neural Networks (IJCNN 2019).

[2]. Jianyu Wang, et. Al, Tackling the Objective Inconsistency Problem, Neural Information Processing Systems (NeurlPS 2020).
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Ablation Study

TABLE III: The performance comparison between ablation
methods of HGB i1n two datasets with all non-1ID settings.
The evaluation metric 1s the top-1 accuracy (%) and the
communication rounds AC'R that is computed as CR of M-GB

> M-GB computes optimal
blending of sub-networks.

minus the CR of C-GB .

Datasets | methods | CaseA | mixed-B | 2M-B IM-B | Case C
z C-GB Computes Opt|ma| M-GB 65.92 56.55 60.47 | 58.73 57.66
: : . : Kinetics C-GB 63.83 55.91 57.02 | 58.64 52.81
blending of clients’ gradients. ACR >% A3 66 05 67
M-GB 71.36 66.13 69.92 || 67.34 65.17
Gym C-GB 70.03 64.4 66.1 66.38 58.93
ANCR 41 36 69 87 46

> M-GB performs well on the accuracy metric.

> C-GB performs well on the convergence speed.
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Comparison of quantitative results on the Kinetics dataset in the non-I1ID Case C.
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> The first column shows the generalization distribution of clients before
aggregation in different communication rounds.

>z The other two columns show the relationship between generalization error
and the computed weight p]jifor participating clients.
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Conclusion Remarks

- Hierarchical Gradient Blending for Optimal Multi-Modal Federated Learning on Non-|ID Data

> Train multi-modal global model to consistently outperform uni-modal model.

>z Maintain high performance (i.e., accuracy and convergence speed) under different
challenging non-IID multi-modal data.

> Qutperform alternative leading methods.

o Future Work:

> Explore more complicated multi-modal federated learning tasks, such as visual grounding
federated learning.
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