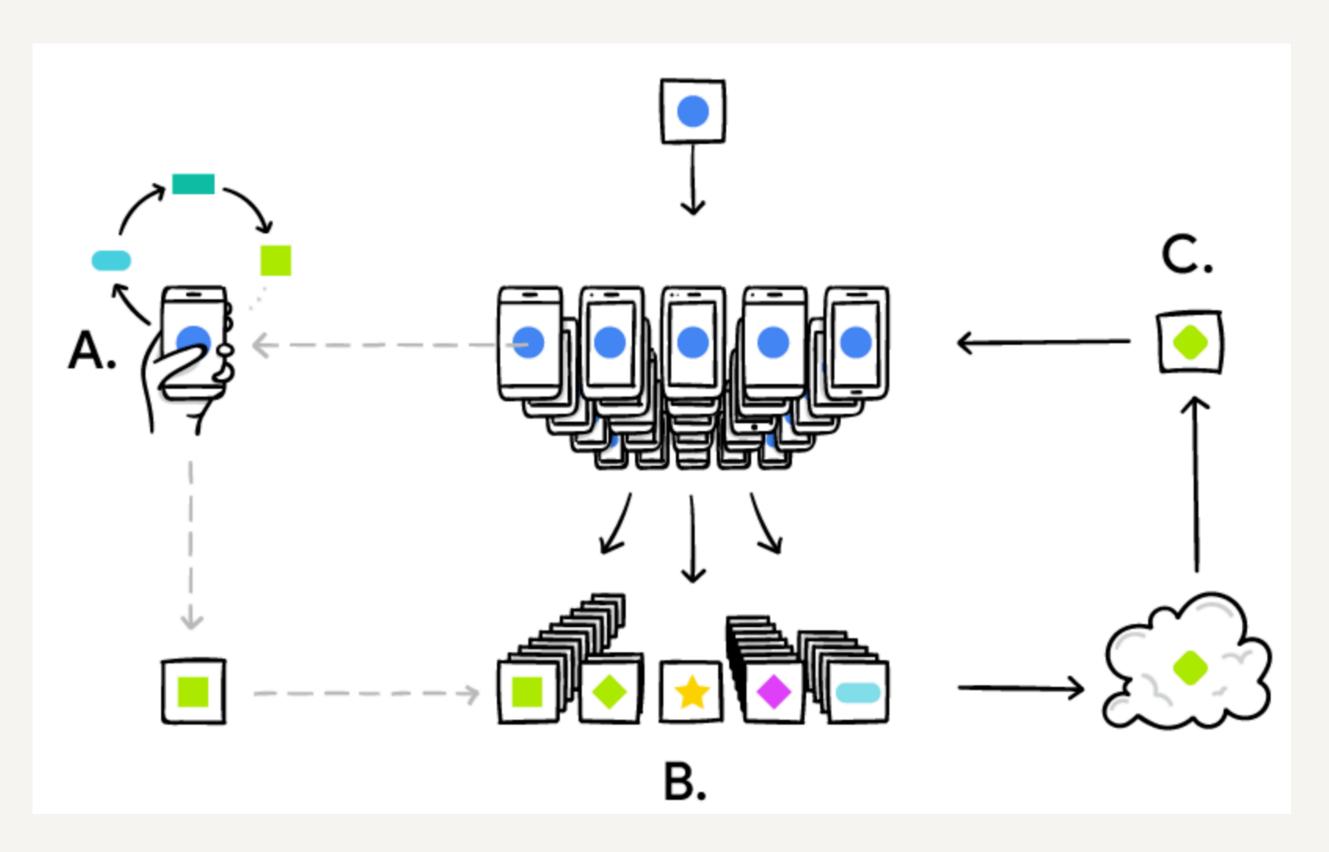
Towards Optimal Multi-Modal Federated Learning on Non-IID Data with Hierarchical Gradient Blending

Sijia Chen, Baochun Li University of Toronto

Federated Learning

prediction, while keeping the training data local.



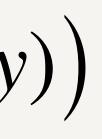
enables resource-constrained edge clients, such as mobile phones and IoT devices, to learn a shared global model for

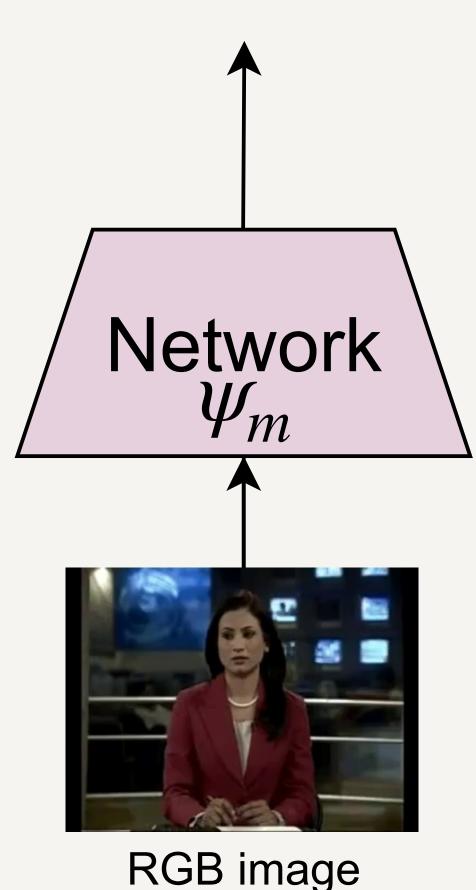
Uni-modal Federated Learning

The global model receives one type of data modality as input.

$$f_k = \frac{1}{|D^k|} \sum_{s \in D^k} l(\psi_m(x_m; v_m); y_m))$$

The x_m denote samples extracted from single data modality such as RGB frames, audio, or optical flows.

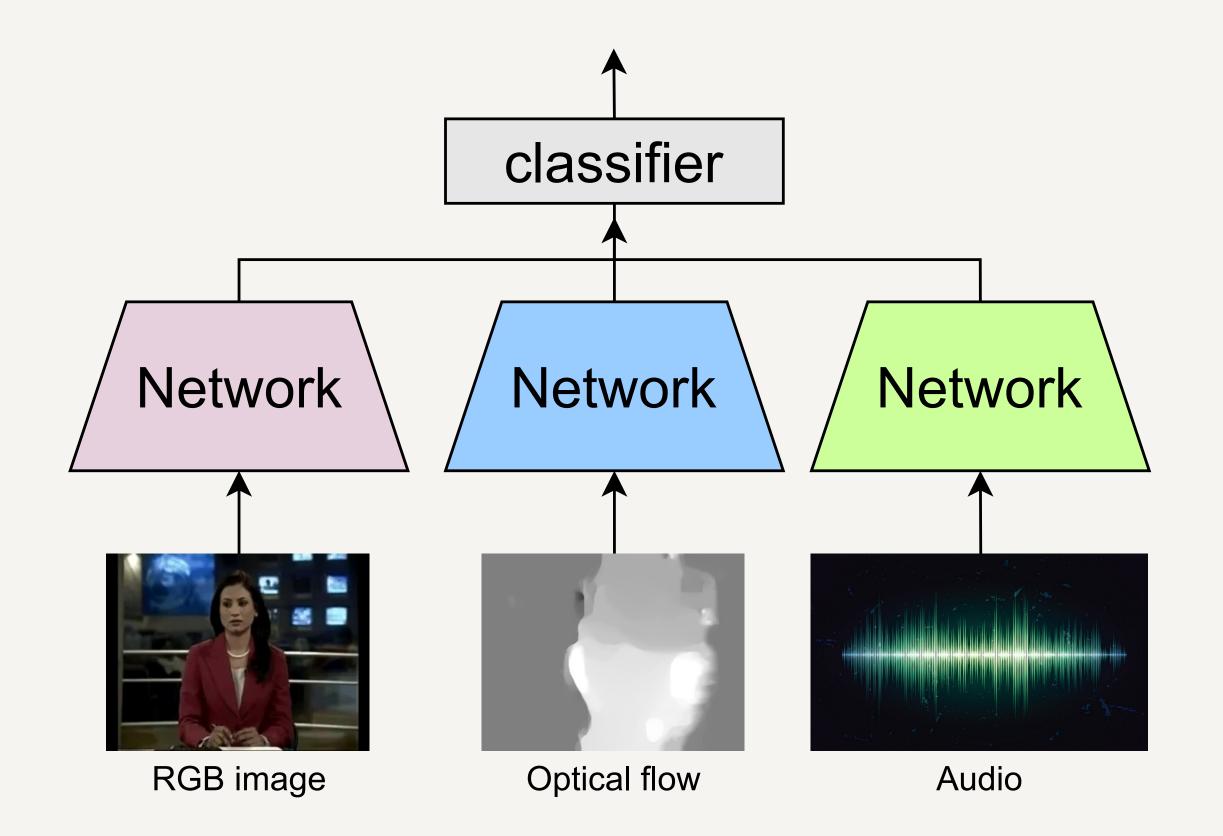




An example of image classification

Multi-modal Machine Learning

aims to build models that car from multiple modalities.



aims to build models that can process and relate information

4

Multi-modal Federated Learning

The global multi-modal model is trained under the federated learning paradigm.

$$f_k = \frac{1}{|D^k|} \sum_{s \in D^k} l\left(\mathbb{C}(\psi_1(x_1), \ldots, s_{s \in D^k})\right)$$

Each client contains samples from M modalities.

The global multi-modal model contains M sub-networks that are going to be jointly trained.

 $\psi_M(x_M)); y)$

Performance Degradation of Classical Methods

 The classical federated learning method, FedAvg, presents performance degradation when training the multi-modal global model.

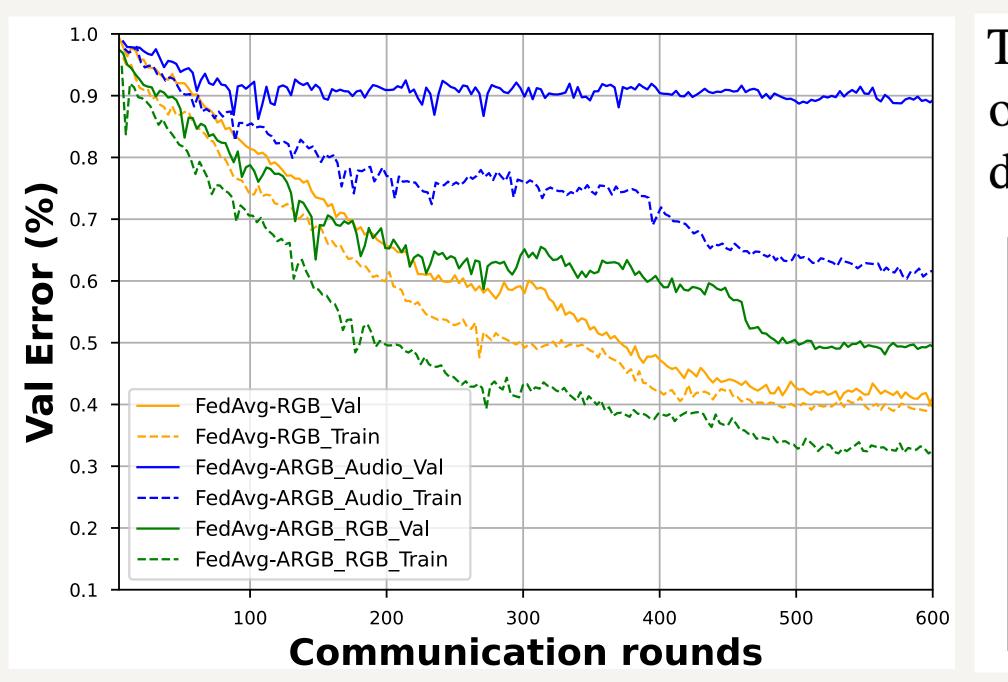


TABLE I: The performance comparison of the FedAvg method on uni-modal FL and the multi-modal FL under the non-IID data settings of three modalities.

	Centralized	FedAvg		
Modalities	V@1	V@1	#Rounds	
RGB	71.52	58.43	480	
A+RGB	72.17	49.91	519	
OF+RGB	72.3	52.57	504	
A+OF+RGB	73.62	38.62	557	

Non-IID Multi-modal Data Challenge

Multi-modal weights divergence:

$$\| w_{t_p}^{(f)} - w_{t_p}^{(c)} \| \le \| w_{t_{p-1}}^{(f)} - w_{t_{p-1}}^{(c)} \| + \sum_{k=1}^{K} p_k \sum_{j=1}^{E} \left(d_{local} + d_{local_global} \right)$$

▶ Local divergence $d_{local'} \parallel \nabla f_k(v_i^k, q)$

$$\xi^k) - \nabla f_k(w_j, \xi^k) \parallel.$$

► Local-global divergence $d_{local_global'} \| \nabla f_k(v_j^k, \xi^k) - \nabla f(w_j, \xi_j) \|$.

Non-IID Multi-modal Data Challenge • Local divergence $\| \nabla f_k(v_i^k, \xi^k) - \nabla f_k(w_i, \xi^k) \|$:

$$\sum_{m=1}^{M} z_m^k g_{max} \left(w_{m_{j-1}} \right) \sum_{i \in \mathscr{Y}} B_n^k$$

Gradient divergence from M sub-networks.

$$g_{max}\left(w_{m_{j-1}}\right) = \max_{i \in \mathscr{Y}} \| \nabla \psi_{(i)}$$

 $\mathbf{S}_{mi}^{k} \frac{\Delta d_{m}^{k}}{R^{k}} \left(\left(\eta B_{m}^{k} + 1 \right)^{j-1-t_{p-1}} - 1 \right)$

 $(x_m; w_{m_{j-1}}) \parallel$

Non-IID Multi-modal Data Challenge

 \bigcirc Local-global divergence $\parallel \nabla$

$$\sum_{m} z_{m}^{k} g_{max}\left(w_{m_{j}}\right) \sum_{i \in \mathcal{Y}} \left(p_{m}^{k}(y=i)\right)$$

Gradient divergence from participating clients.

Data distribution distance of modality m between local data k and the global data.

$$f_k(v_j^k,\xi^k) - \nabla f(w_j,\xi_j) \parallel:$$

$$-p_m(y=i)\big)$$

Hierarchical gradient blending

- The high-level idea is to update the model to reduce the training loss while achieving low evaluation loss.
 - HGB directly minimizes the overfitting-to-generalization ratio (OGR).

 $\min_{\{z_m\}_{m=1}^M, \{p_k\}_{k=1}^K} \left(\frac{[L^T(w_{t_{p-1}} - L^T(w_{t_{p-1}}) - L^T(w_{t_{p-1}})]}{L^*(w_{t_{p-1}})} \right)$

Achieve the best OGR for adjacent global parameters $w_{t_{p-1}}$ and w_{t_p} obtained by aggregating local models from *K* clients.

$$\frac{[v_{t_p})] - [L^*(w_{t_{p-1}}) - L^*(w_{t_p})]}{[w_{t_{p-1}}) - L^*(w_{t_p})} \right)^2$$

Optimal hierarchical gradient blending • Computes the optimal $\{z_m^k\}_{m=1}^M$, $k \in [1,K]$ in the local updates.

$$z_m^{k^*} = \frac{1}{Q} \frac{\langle \nabla l_k^*, g_m^k \rangle}{\sigma_m^2}, Q = \frac{\sum_{m=1}^M}{\sigma_m^2}$$

To achieve the minimum overfitting-to-generalization ratio (OGR) when jointly training M sub-networks in the local update.

$$\langle \nabla l_k^*, g_m^k \rangle$$
 σ_m^2

11

Optimal hierarchical gradient blending Computes the optimal $\{p_k\}_{k=1}^K$ in the global aggregation.

 $p_{k}^{*} = \frac{1}{M} \frac{\bigtriangleup G^{k}(t_{p-1}, t_{p})}{2\left(\bigtriangleup O^{k}(t_{p-1}, t_{p})\right)^{2}}, M = \sum_{k=1}^{K} \frac{\bigtriangleup G^{k}(t_{p-1}, t_{p})}{2\left(\bigtriangleup O^{k}(t_{p-1}, t_{p})\right)^{2}}$

To achieve the minimum overfitting-to-generalization ratio (OGR) when aggregating gradients from K participating clients.

Evaluations

- Targeting the video recognition task
 - Kinetics
 - FineGym
- Designing the non-IID multi-modal data as: \bigcirc
 - In case A, each client contains all modalities.
 - In case B, each client can only contain subset modalities.
 - Case C is built on case B but adds the sample skewness among modalities.

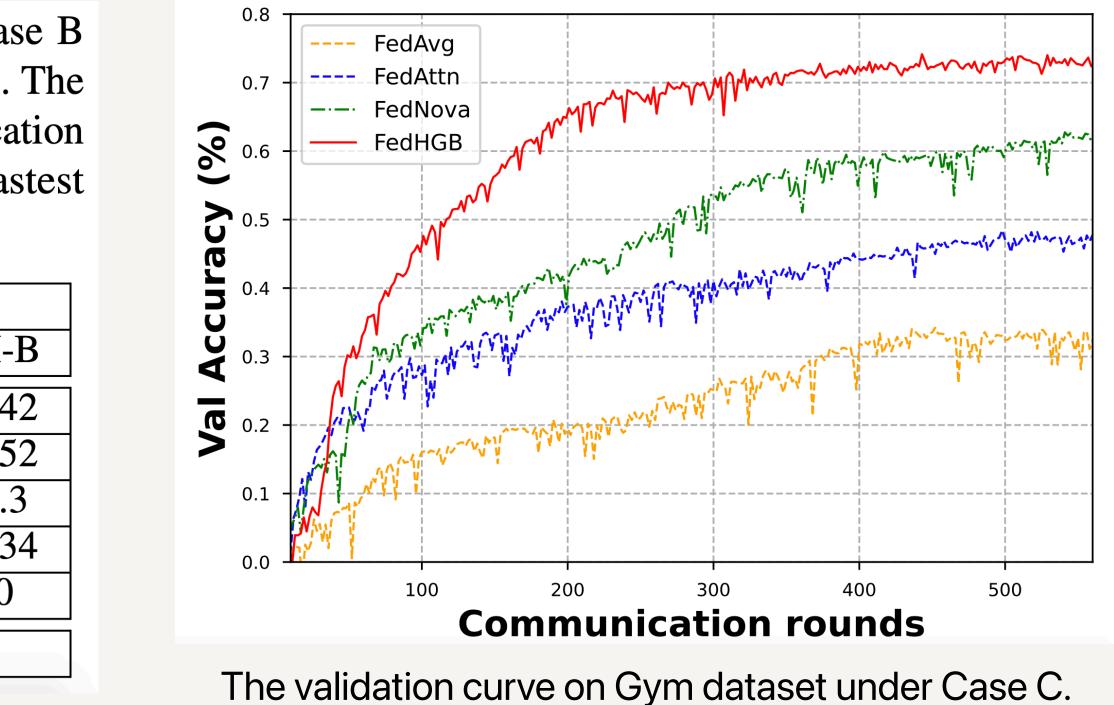
Performance

Our method outperforms alternative leading methods, including FedAttn [1] and FedNova [2], in terms of classification accuracy and convergence speed.

TABLE II: The performance comparison of methods in case B with two modality non-IID types (i.e., Mixed-B and 2M-B). The evaluation metric is the top-1 accuracy and the communication rounds distance ($\triangle CR$) between FedHGB and the fastest method.

Datasets	Kinet	ics	Gym		
Case B settings	Mixed-B	2M-B	Mixed-B	2M-	
FedAvg	38.04	44.32	42.33	51.4	
FedAttn	51.79	56.91	58.07	64.5	
FedNova	55.12	58.76	63.92	68.	
FedHGB	62.97	64.39	71.66	73.3	
$\triangle CR$	34	15	51	20	
Uni-RGB	62.33		70.52		

[1]. S. Ji, et. Al, Learning private neural language modeling with attentive aggregation, International Joint Conference on Neural Networks (IJCNN 2019).
 [2]. Jianyu Wang, et. Al, Tackling the Objective Inconsistency Problem, Neural Information Processing Systems (NeurIPS 2020).



14

Ablation Study

M-GB computes optimal blending of sub-networks.

C-GB computes optimal blending of clients' gradients.

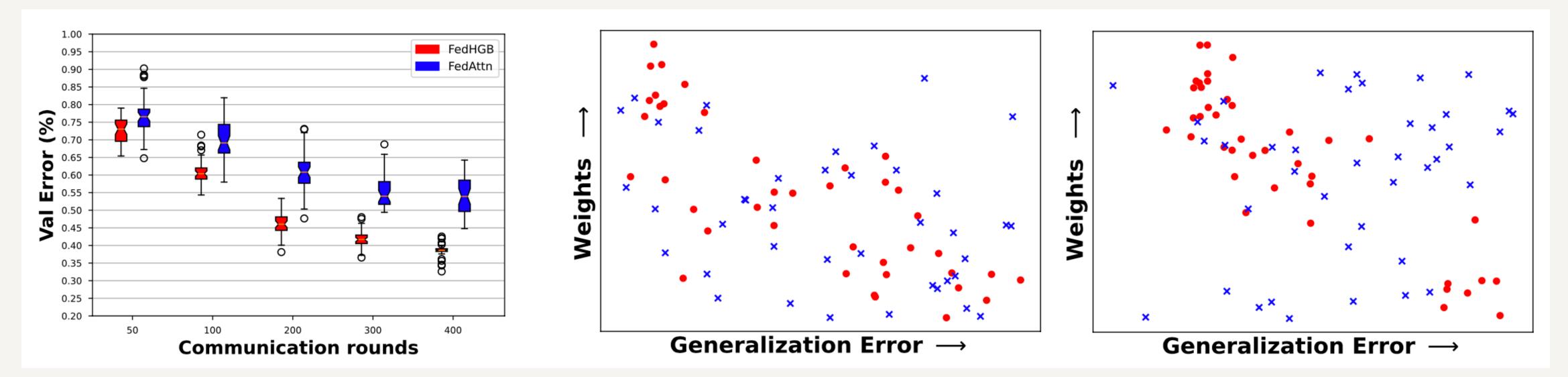


- M-GB performs well on the accuracy metric.
- C-GB performs well on the convergence speed.

TABLE III: The performance comparison between ablation methods of HGB in two datasets with all non-IID settings. The evaluation metric is the top-1 accuracy (%) and the communication rounds $\triangle CR$ that is computed as CR of M-GB minus the CR of C-GB.

tasets	methods	CaseA	mixed-B	2M-B	1 M-B	Case C
netics	M-GB	65.92	56.55	60.47	58.73	57.66
	C-GB	63.83	55.91	57.02	58.64	52.81
	$\triangle CR$	25	48	66	95	67
- Bym	M-GB	71.36	66.13	69.92	67.34	65.17
	C-GB	70.03	64.4	66.1	66.38	58.93
	$\triangle CR$	41	36	69	87	46

Qualitative Analysis



Comparison of quantitative results on the Kinetics dataset in the non-IID Case C.

- The first column shows the generalization distribution of clients before aggregation in different communication rounds.
- The other two columns show the relationship between generalization error and the computed weight p_k^* for participating clients.

Conclusion Remarks

- - Train multi-modal global model to consistently outperform uni-modal model.
 - challenging non-IID multi-modal data.
 - Outperform alternative leading methods.
- Future Work:
 - federated learning.

Hierarchical Gradient Blending for Optimal Multi-Modal Federated Learning on Non-IID Data

Maintain high performance (i.e., accuracy and convergence speed) under different

Explore more complicated multi-modal federated learning tasks, such as visual grounding

Contact: sjia.chen@mail.utoronto.ca