
Optimal Multicast in Virtualized Datacenter
Networks with Software Switches

Rui Zhu∗, Di Niu∗, Baochun Li† and Zongpeng Li‡
∗Department of Electrical and Computer Engineering, University of Alberta
†Department of Electrical and Computer Engineering, University of Toronto

‡Department of Computer Science, University of Calgary

Abstract—Virtualized datacenter networks have been deployed
in production platforms, e.g., Amazon VPC and VMware’s NVP,
to offer the flexibility of network management to enterprise-level
clients. A common characteristic of these platforms is that they
adopt software switches, such as Open vSwitch (OvS), instead
of hardware switches to transfer data between VMs. Although
group communication is common in enterprise applications,
the unique characteristics of software switches have posed new
challenges to the design of multicast protocols. How logical
multicast can be optimally performed with software switches is
still not well understood. In this paper, we observe that unlike
hardware switches, the per-stream output rate in a software
switch critically depends on the packet processing overhead of
flow cloning. We study the optimal OvS multicast topology with
or without the help of additional dedicated software switches
called service nodes, and formulate the throughput maximization
as a new class of degree-supervised combinatorial graph problems
due to the presence of flow cloning costs. We propose a linear-
time optimal solution that translates into simple forwarding rules
installed at each software switch. Through emulation-based OvS
profiling and extensive simulation results, we demonstrate that
our proposed logical multicast solutions can significantly improve
session throughput with the ability to handle load balancing
and latency issues, as compared to the state-of-the-art in the
literature.

I. INTRODUCTION

Designed to improve performance isolation and manage-
ment flexibility, server virtualization technologies, such as
VMware and Xen, allow multiple virtual machines (VMs) to
be hosted by the same physical machine. In the same vein,
virtualized datacenter networks [1] have recently been pro-
posed to create logical virtual networks, each for a tenant, with
independent service models and addressing architectures. They
have already been deployed in production systems targeting
enterprise clients, such as Amazon’s Virtual Private Cloud [2]
and VMware’s NVP [3].

A common characteristic of these production systems is
that data transfers between VMs rely on virtualized software
switches — such as Open vSwitch (OvS) [4] — installed
in host hypervisors, rather than hardware switches. The use
of Open vSwitch is not a surprise. First, it is an OpenFlow-
compliant multi-layer switch designed to enable easy network
protocol customization. Moreover, as the number of tenants
scales up, it does not suffer from flow table size constraints in
traditional hardware switches1. Such constraints have been the

1Due to hardware space limitations, only a limited number of rules, e.g.,
1000, can be supported in OpenFlow-enabled hardware switches.

main obstacle to the adoption of software-defined networking
(SDN) with hardware switches in multi-tenant datacenters [5],
[6]. As such, software switches are also able to support more
complex and fine-grained rules and actions.

In current virtualized datacenter networks, the communi-
cation between a pair of VMs is handled by tunneling [3]
through software switches in the host hypervisors of both
source and destination VMs. With the prevalence of modern
data analytics using Apache Hadoop and Spark, multicast is an
important communication pattern in enterprise applications, as
large volumes of data are transferred from a mapper to multiple
reducers. Yet, how multicast topologies are to be optimally
constructed in such virtualized datacenter networks remains
to be an open challenge.

In this paper, we focus on multicast communication be-
tween VMs in virtualized datacenter networks with software
switches, such as Open vSwitch. In this context, the use of
software switches has posed new and interesting challenges
to the design of multicast solutions. First, the per-stream
forwarding throughput of a software switch is mainly limited
by flow cloning, when packets in a flow are forwarded onto
multiple output ports [7] — a key operation in multicast
sessions. Second, running on commodity x86 architectures, the
performance of software switches is also limited by their CPU
and I/O resources when incoming packets are processed based
on the installed forwarding rules [8], [9]. In fact, we have
profiled the performance characteristics of software switches,
using Open vSwitch as an example, by transmitting real
packets in the Mininet emulation testbed. Our measurement
results suggest that the per-stream output packet rate of an
Open vSwitch critically depends on both the input packet rate
and its output degree in a numerically characterizable model.
Third, as compared to the switching cost, link bandwidth is
not a bottleneck in today’s datacenters featuring 40 Gigabit
Ethernet.

Taking into account these new characteristics of software
switches, we aim to construct optimal multicast topologies in
a virtualized datacenter network of software switches in order
to maximize session throughput. In particular, we consider
two types of multicast topologies: (1) small multicast sessions,
consisting of VMs interconnected by hypervisor-to-hypervisor
tunnels [9]; and (2) larger multicast sessions, using additional
service nodes — dedicated hosts running software switches —
to help relay traffic [3].



In both scenarios, the total throughput of a multicast session
is critically determined by the output degree distribution
among the nodes, i.e., the topology in which the nodes are
interconnected. We formulate the throughput maximization
problem with or without the help of service nodes as a new
class of combinatorial degree-supervised graph problem. In
a small session without service nodes, Based on the profiled
performance model of an Open vSwitch, we directly give the
optimal multicast topology connecting the source and all desti-
nation host hypervisors. More importantly, in a larger session,
we analytically characterize the class of multicast trees with
the optimal throughput and propose a linear-time algorithm
to build such a tree, leading to closed-form SDN multicast
forwarding rules that can be computed and installed on each
participating switch in constant time. Aside from throughput
optimality, our solution also minimizes the worst-case latency
in the session among all the trees of optimal throughput.
Moreover, our solution can further lead to balanced loads
among service nodes when multiple sessions are using the
service.

Driven by our profiling results, we demonstrate through ex-
tensive simulations that, as compared to state-of-the-art multi-
cast solutions and several straightforward optimization heuris-
tics, our proposed algorithms can improve session throughput
by a substantial margin, yet maintaining balanced loads across
service nodes.

II. RELATED WORK

In virtualization-dominated IT services, datacenter network
virtualization has emerged as a promising solution to improve
network manageability and performance isolation, and has
been extensively studied recently [10]–[12]. For example, Net-
Lord [10] aims to meet the scalability of tenants using shared
infrastructures in datacenters. PortLand [11] uses a hierarchical
Pseudo MAC (PMAC) addressing of VMs for L2 routing
with a variation of FatTree topologies. An emerging trend
in network virtualization is to use software switches, such
as Open vSwitches (OvS), to transfer data. For example, in
Amazon’s Virtual Private Cloud [2], an OvS is installed inside
each host hypervisor to forward packets from its associated
VMs.

Group communication occurs frequently in many VM-based
applications running in datacenters. However, existing multi-
cast routing protocols are no longer well suited for multicast
in virtualized datacenter networks with software switches. On
one hand, traditional IP multicast protocols in ISP networks
like PIM [13] and CBT [14] are not designed to detect network
topology or end-to-end reachability. Without a global view,
they are unable to optimize session throughput or balance
switching loads in datacenters.

On the other hand, by exploiting the global view and central-
ized controllers, SDN-based multicast routing schemes have
been proposed for datacenter networks to reduce forwarding
states [15] or to minimize the link cost of multicast trees [16].
However, these solutions rely on OpenFlow-enabled hardware
switches, which are either not always available in an existing

Hypervisor

VM VM...

Hypervisor

VM VM...
Hypervisor

VM VM...

Hypervisor

VM VM...

Controller

Fig. 1. A complete graph of host-hypervisors (each running an OvS) over
point-to-point IP tunnels.

datacenter or even if available, can only support a limited
number of rules due to hardware space limitations. In contrast,
for OvS-based multicast in virtualized datacenter networks, the
number of forwarding rules or link cost is not a critical issue,
since link bandwidth is not a bottleneck in modern datacenter
networks with 40-Gigabit Ethernet [17] and the propagation
delay between nodes in datacenters is also negligible [18].

Measurement studies [7] have shown that in software
switches like OvS, sending the same flow on multiple output
ports will lead to a reduced throughput per stream. Specifically,
[7] has reported that the packet rate per stream drops by 30%
when a flow is sent out twice, and another 25% when it
is copied one more time. Since the outgoing bandwidth of
a datacenter host is abundant, such performance degradation
is mainly attributed to the CPU/memory overhead of packet
processing and flow cloning in software switches. Our mea-
surements using Open vSwitches have confirmed these facts.
In addition, we build a performance model to characterize the
input-output relationship within a software switch, based on
which an optimal multicast topology can be constructed.

III. BACKGROUND AND EXISTING SOLUTIONS

In this paper, we focus on a specific network virtualiza-
tion architecture, adopted by Amazon’s Virtual Private Cloud
(VPC) [2], [9] and VMware’s NVP [3], that uses software
switches (such as OvSes) to handle data transfers between
VMs. In such an architecture, as illustrated in Fig. 1, each
physical machine has a hypervisor that hosts multiple VMs. An
OvS is installed inside each host hypervisor and will serve as
the virtual tunnel endpoint (VTEP) [3] in the communication
between VMs: the source VM sends packets to its own host
hypervisor, which then forwards them to the host hypervisor
to which the destination VM is attached.

A tenant of such a virtualized datacenter network can form
a logical multicast session across its VMs, by configuring the
forwarding rules in the corresponding OvSes via a centralized
SDN controller. Under such an architecture, there are currently
two kinds of logical multicast solutions: 1) point-to-point
logical multicast, and 2) logical multicast via a service node.

Point-to-point logical multicast. A basic approach to OvS-
based logical multicast [9] is to let the hypervisor of the source
VM send the same data stream to all destination hypervisors
at the same time in a star topology, based on point-to-point



Controller ...

Hypervisor

VM VM...
Hypervisor

VM VM...
Hypervisor

VM VM...
Hypervisor

VM VM...

Service Node Cluster

...

Fig. 2. Logical multicast via the help of service nodes.

tunnels, as shown in Fig. 1. However, as the number of
receivers increases, such a simple star topology will suffer
from serious throughput losses due to the overly high flow
cloning cost at the source OvS.

Optimal logical multicast via service nodes. Another
solution proposed by VMware’s NVP [3] mainly targets larger
sessions and uses service nodes as helpers to relay traffic,
thus reducing the flow cloning workload at host hypervisors
while improving reliability. In the implementation of NVP
[3], service nodes are additional physical forwarding servers
(x86-based hosts running OvSes). As shown in Fig. 2, the
source hypervisor first tunnels the packet stream to one of the
service nodes, which then forwards packets to all destination
hypervisors. By using a service node cluster, it is further
guaranteed that the failure of any single service node will not
disrupt the logical multicast traffic.

However, using a single service node for each session may
still be suboptimal, since all the forwarding burden is put
on the single service node. To construct a topology with the
optimal throughput for each multicast session, the operator
must decide 1) how many service nodes are to be used, 2)
which service nodes are to be selected for forwarding, and 3)
how to connect all the nodes, including the source, the selected
service nodes and destination nodes.

IV. OVS PERFORMANCE PROFILING

In this section, we benchmark the performance of software
switches, using OvS as an example, as a function of the
rate of the input flow and the number of output streams
which the input flow is cloned into. We use Mininet v2.3
[19] network emulation platform, which supports OpenFlow
v1.3, to inject real packets into an OvS and measure the data
rate at each output port. Starting from this version, OpenFlow
has supported Group Table rules, which allow us to write a
multicast rule to an action list for output to multiple ports.
Based on all the measurements data, we will build a model to
characterize the input-output relationship at an OvS.

First, we evaluate the effect of flow cloning, when an
incoming stream needs to be replicated onto multiple output
ports. In this experiment, we use a single OvS to connect to at
most 15 Mininet hosts, and let one of them be the source host
to multicast packets to the others. We use the Iperf utility as
a load generator to send UDP packets at a certain rate from
the source to others via the OvS. The input rate of the OvS is
measured and ranges from 0.2 Gbps to 0.8 Gbps. The number
of output streams ranges from 1 to 14.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of Output Streams

0

0.2

0.4

0.6

0.8

1

O
u

tp
u

t 
R

a
te

 p
e

r 
S

tr
e

a
m

 (
G

b
p

s
)

1 Gbps
0.8 Gbps
0.6 Gbps
0.5 Gbps
0.4 Gbps
0.3 Gbps
0.2 Gbps

Fig. 3. The relationship between output rate per stream and the number of
output streams under different fixed input rates.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of Output Streams

0

0.5

1

1.5

2

T
o

ta
l 
T

h
ro

u
g

h
p

u
t 

(G
b

p
s
)

0.8 Gbps
0.6 Gbps
0.5 Gbps
0.4 Gbps
0.3 Gbps
0.2 Gbps

Fig. 4. The total output rate is an increasing concave function of the number
of output streams under each fixed input rate.

As shown in Fig. 3, for each fixed input rate, the output
rate per stream decreases as the number of output streams
increases, confirming the result shown in another measurement
study [7]. We also find that when the input rate is below 0.8
Gbps, the output rate per stream does not decrease for small
multicast sessions. Yet it starts to drop when the number of
output streams exceeds a certain value. When the input rate is
0.8 Gbps or larger, the output rate per stream starts to decrease
even when there are two output streams.

Then, we show the relationship between the total output
rate and the number of output streams in Fig. 4. We can
see that given any fixed input rate, as the number of output
streams increases, the total output throughput increases, yet its
marginal increase rate decreases. Thus, we can conclude that
the total output rate is an increasing concave function of the
number of output streams under a fixed input rate.

For comparison, we also check the output rate for a unicast
session from a single source host to a single destination host
connected via a line network of OvSes, and plot the output
rate of the session as the number of OvSes between the
source and the destination increases. As we can observe in
Fig. 5, the output rate does not drop as more OvSes are used.
This is different from the multicasting scenario in Fig. 3,
where the output rate will drop significantly as the number
of output streams increases. Thus, we can conclude that store-
and-forward does not affect the throughput of the OvS, no
matter how many hops are involved. However, flow cloning,
i.e., forwarding the same input flow onto multiple output ports,
will affect throughput.

Finally, we investigate the relationship between the input
rate and the total output rate. In Fig. 6, we can see that the



Number of Hops
1 2 3 4 5 6 7 8 9

O
u
tp

u
t 
R

a
te

 (
G

b
p
s
)

0.7

0.75

0.8

0.85

Fig. 5. Output Rate of unicast
sessions.

Input Rate (Gbps)
0.2 0.4 0.6 0.8

T
o
ta

l 
O

u
tp

u
t 
R

a
te

 (
G

b
p
s
)

0

0.5

1

1.5

2

2.5

3
1 output stream
2 output streams
3 output streams
4 output streams

Fig. 6. Input Rate vs. Total
Output Rate

output rate of an OvS increases as the input rate increases. We
can also see that the output rate stops increasing after the input
rate exceeds a certain value, and having more output streams
will make such an increasing trend stop earlier. Furthermore,
the final cap that the total throughput reached still increases
as the number of output streams increases.

These observations reveal that we can build a model for
the total output throughput of an OvS as a function of both
the number of output streams and the input rate. Formally
speaking, for an OvS with d output streams and an input rate
of r Gbps, where d is a nonnegative integer, denote its output
rate per stream by f(d, r) and denote its total throughput by
U(d, r) := d · f(d, r). From Fig. 3, we can see that the output
rate per stream can be expressed as

f(d, r) = min(g(d), r), d = 1, 2, . . . , r ≤ 0.8.

i.e., the output rate per stream is the minimum between the
input rate r and another curve g(d), where g(d) corresponds
to the curve in Fig. 3 with an input rate of 0.8 Gbps.
Clearly, g(d) is a decreasing function of the out degree d.
Therefore, we have the total output throughput given by
U(d, r) = min(dg(d), dr).

From Fig. 6, we can observe that U(d, r) is a concave
function of r for each fixed d, and in Fig. 4 we can further see
that the curve with a 0.8 Gbps input rate, i.e., dg(d), is also
concave in terms of the (integer) out degree d. Note that 0.8
Gbps is the maximum packet rate generated by Iperf under
the default packet length setting. We can increase packet length
and get a higher input rate in Iperf. In this case, f(d, r) will
be always decreasing in d like in g(d) but is larger than g(d)
when d = 1.

We will utilize these properties to derive the optimal so-
lutions to our logical multicast problems in Sec. V-A and
Sec. VI-B.

V. PROBLEM FORMULATION

In a multicast among VMs, the source VM is sending pack-
ets via the OvS in its own host hypervisor to the corresponding
OvSes in the host hypervisors of the receiving VMs. Each
receiving VM then acquires data from its own host hypervisor.
Therefore, we only need to consider the multicast among the
participating host hypervisors (or hypervisors for brevity).

A. Small Sessions without Service Nodes

We first consider a small OvS-based multicast session
involving only a few VMs, without the help of service nodes,
where the hosts of all the involved hypervisors are most likely
co-located within a same server rack or connected by the same
Tier-2 switch or edge switch. Therefore, we can assume that
the propagation delay between nodes is negligible [20] and
the virtual links between them have abundant bandwidth in 40
Gigabit datacenters [12], [18]. As a result, unlike traditional
networking, the main bottleneck is not the network bandwidth,
but lies in the processing capability of the software switches
in the hypervisors.

Let G = (V,E) denote the logical overlay network of all
participating hypervisors V = {h1, . . . , hn}, where h1 is the
source hypervisor and h2, . . . , hn are destination hypervisors,
and we denote the source rate of this multicast session by r. E
is the set of all logical point-to-point tunnels interconnecting
the hypervisors V . We call each logical tunnel a “link.”

Without any service node, the optimal logical multicast from
h1 to all the other nodes in G should maximize the total
receiving rate of all the receivers h2, . . . , hn. Since the total
receiving rate is equal to the total sending rate plus the source
rate r, we can equivalently maximize the total sending rate of
participating hypervisors h1, . . . , hn. Formally speaking, the
problem is to form a spanning tree T connecting all nodes in
G such that the total session throughput is maximized, i.e.,

maximize
T

∑
v∈T

U
(
doT (v), rT (v)

)
(1)

subject to T is a spanning tree of G, (2)

where U(doT (v), rT (v)) represents the output rate of hypervi-
sor v, which depends on the number of its output streams, or
its out degree doT (v) in the formed spanning tree T , as well as
on the input rate denoted by rT (v) that node v receives from
its parent in the tree T .

Clearly, the combinatorial problem above is different from
the well-known min-cost spanning tree problem or Steiner
Tree [21] which aims to minimize the total edge cost of T .
Here the challenge is that the input rT (v1) of a node v1
depends on its parent v0’s output per stream, which depends
on the out degree of the parent v0 as well as its input rate
rT (v0), in a recursive fashion. Hence, we call this type of
problem a Degree Supervised Graph problem. In Sec. VI-A,
we will derive a closed-form solution to (1), which directly
translates the forwarding rules to be installed on the OvSes of
corresponding hypervisors.

B. Larger Sessions with the Help of Service Nodes

For a larger multicast session involving many host hyper-
visors, it is helpful to use service nodes, which are additional
physical forwarding servers (x86-based hosts running OvSes),
to relieve the traffic forwarding burden on the host hypervisors.
When a cluster of dedicated service nodes is introduced, there
is no point for each host hypervisor to help forward packets.
Therefore, in this case, we require the source hypervisor to



send packets to only one service node, which may further
forward data to other service nodes for traffic relaying, as
illustrated in Fig. 7. Each receiving hypervisor only needs to
connect to one of the service nodes to receive data.

For a larger session with the help of service nodes (SNs),
there are more factors to be considered. First, we need to
maximize a session’s throughput by jointly deciding 1) which
and how many service nodes to employ, and 2) the connection
topology among service nodes and receiving hypervisors, i.e.,
to which hypervisor or other service nodes should each service
node forward its received packet stream. Second, when choos-
ing service nodes for each session, we also need to consider
the loads that are already imposed on each service node and
route traffic away from already heavily loaded service nodes.
Third, since in a larger session, hosts may be from different
server racks spanning several aggregation switches or even
core switches, we wish to reduce the number of hops from
the source to any receiver hypervisor in order to confine the
propagation delays.

Formally speaking, for a particular session, denote the set
of service nodes by F = {s1, . . . , sm}, in addition to the set
of all source and receiving hypervisors V = {h1, . . . , hn},
where h1 is still the source hypervisor. The source rate of the
multicast session is still r.

We use a binary integer yi ∈ {0, 1} to indicate whether
service node si is employed, and use xi,j ∈ {0, 1} to indicate
whether hypervisor hj will be a child of si (receiving packets
from si). Let Fs denote all the service nodes employed by
the session. Clearly, the topology connecting all the employed
service nodes should be a spanning tree in the complete graph
Gs formed by all the employed service nodes Fs. We denote
this spanning tree by T .

In this case, since the receiving hypervisors h2, . . . , hn are
not forwarding packets, the total session throughput is the
summation of sending rates of all service nodes. Assume each
service node si has a weight wi, representing the existing
workload on si. Then, we aim to maximize the total session
throughput penalized by the total weight of all the selected
service nodes Fs, where the penalty is used to avoid selecting
already heavily loaded service nodes. That is, we need to
jointly determine the selection of service nodes {yi}, the
connection topology (spanning tree) of the selected service
nodes T , and {xi,j}, i.e., from which service node each
hypervisor should receive packets, by solving the following
problem:

max
x,y,T

∑
si∈F

U

( ∑
hj∈V

xi,j + doT (si), rT (si)

)
− λ

∑
si∈F

yiwi

(3)
s.t. xi,j , yi ∈ {0, 1}, ∀si ∈ F, hj ∈ V (4)

xi,j ≤ yi, ∀si ∈ F, hj ∈ V (5)∑
si∈F

xi,j = 1, ∀hj ∈ V (6)

T is a spanning tree of Gs, (7)

where U(
∑

hj∈V xi,j + doT (si), rT (si)) is the output rate
of service node si, in which rT (si) denotes the input rate
of si, and

∑
hj∈V xi,j + doT (si) gives the total number of

output streams of service node si. The rationale is that doT (si)
represents the out degree of si in the spanning tree T of
all the employed service nodes in Gs. Thus, doT (si) is the
number of output streams at si going to other service nodes.
In the meantime, the term

∑
hj∈V xi,j is the number of

output streams at si going to receiving hypervisors. Therefore,∑
hj∈V xi,j + doT (si) represents the total number of output

streams at service node si Finally, λ > 0 is a multiplier to
balance the trade-off between throughput maximization and
load balancing.

Again, (3) is a new type of degree-supervised combinatorial
graph problem, which also involves integer decision variables.
We will propose a linear-time algorithm to find an optimal
solution to problem (3), and among all such optimal multicast
trees, we find the one with the minimum height to confine
propagation delays.

VI. OPTIMAL SOLUTIONS AND FORWARDING RULES

We provide efficient solutions to form optimal multicast
trees for both small sessions without service nodes and larger
sessions with service nodes, and directly translate them to
SDN forwarding rules to be installed on each OvS.

A. Small Sessions without Service Nodes

Due to the property of the input-output relationship of OvS
profiled in Sec. IV, the optimal multicast tree of small sessions
can be given in a closed form:

Theorem 1. Suppose U(do, r) is concave, increasing and
positive with respect to do with U(0, r) = 0, U(1, r) = r
for all r > 0, and is also increasing and positive with respect
to r > 0. Then, the optimal solution to problem (1) is a path
of all the nodes in V , i.e., h1 → h2 → . . .→ hn.

Proof. We first provide an upper bound on the objective
function of (1) and then show that the path from h1 to hn
can achieve such a bound. The upper bound can be derived
by Jensen’s inequality as follows. As a tree, there must be at
least one leaf node in a multicast tree. For convenience, denote
di as the degree of each node hi and ri as its input stream
rate. Recall that h1 is the source node and node hn is a leaf
node. As a source node, we have

U(doT (hn), rT (hn)) =

 U(d1, r1), i = 1
U(di − 1, ri), i = 2, . . . , n− 1
U(0, ri), i = n.

And for all hi we have U(doT (hn), r(hn)) ≤ U(doT (hn), r).
Thus, the total utility is

n∑
i=1

U(doT (hi), r(hi)) = U(d1, ri) +

n−1∑
i=2

U(di − 1, ri)

≤ U(d1) +

n−1∑
i=2

U(di − 1, r).



As a tree, we have the constraint
∑n

i=1 di = 2(n − 1). Let
d′1 := d1, and d′i := di − 1 for all i = 2, . . . , n− 1. Thus, we
have

∑n−1
i=1 d

′
i = n− 1, and the total utility is

n∑
i=1

U(doT (hi), rT (hi)) ≤
n−1∑
i=1

U(d′i, r) ≤ (n− 1)U(1, r) (8)

by Jensen’s inequality. Now we show that the path graph
can achieve (8). As a path graph h1 → . . . → hn, we
have U(doT (hi), rT (hi)) = U(1, rT (hi)) = r. Therefore, both
inequalities in (8) can achieve equalities.

The assumption that U(do, r) is concave in do has been
verified by the OvS performance profiling results that we
have presented in Sec. IV. In Sec. VII, we will show that
the proposed line network of hypervisors indeed achieves a
higher total receiving rate than the naive star topology and
binary/ternary trees. The forwarding rules in the line network
h1 → h2 → . . .→ hn is straightforward: each node hi (except
h1) receives from hi−1 and each node hi (except hn) sends to
hi+1. The insight from Theorem 1 is that we should make the
out degrees in the network as evenly distributed as possible,
an idea we will exploit again to solve the harder problem for
larger sessions with service nodes.

B. Optimal Multicast with Service Nodes
In the presence of service nodes, we notice that solving

problem (3) is equivalent to selecting the best k∗ service nodes,
and forming the optimal spanning tree among all these k∗

service nodes and finally connecting the receiving hypervisors
h2, . . . , hn to these service nodes as leaf nodes in an optimal
way. In the following, we first show that given a particular set
of k selected service nodes, the optimal multicast tree of these
selected service nodes and receiving hypervisors must satisfy
a certain degree distribution. Based on this fact, we can give
a linear-time algorithm to solve problem (3) by searching for
the best k value.

First, we present two lemmas to characterize the structure
of optimal solutions to (3) given a particular set of k selected
service nodes. In this case, without loss of generality, we
abuse the notation for simplicity and denote the selected k
service nodes as s1, . . . , sk, with s1 being the root that receives
packets from the source h1. Thus,

∑
i∈F yiwi is fixed. Now

we will show that the optimal total throughput, i.e., the first
term in (3), is maximized when the out degrees doT (si) of
service nodes are as evenly distributed as possible.

Let di := d1i + d2i denote the out degree of si, where d1i :=∑
hj∈V xi,j is the number of receiver hypervisors connected

to si, and d2i := doT (si) is the number of other service nodes
connected to si. Let d(k)i and r(k)i denote the di and ri in an
optimal multicast tree of the k selected service nodes and all
the hypervisors.

Lemma 1. Suppose f(d, r) = min(g(d), r) and g(·) is a
positive and decreasing function. Suppose k service nodes
s1, . . . , sk are already selected, with s1 being the root. In an
optimal solution to (3), the out degrees of the nodes on any

path from the root s1 in the formed multicast tree are non-
increasing. In addition, we have f(d

(k)
i , r

(k)
i ) = f(d

(k)
1 , r) and

U
(
d
(k)
i , r

(k)
i

)
= d

(k)
i f

(
d
(k)
1 , r

)
, for all i = 1, . . . , k. (9)

Proof. Consider a particular path s1, si1 , . . . , sil , . . . of the
service nodes in the formed multicast tree T (k). The sum of
U(·, ·) along these service nodes is

U(d1, r) + U(di1 , ri1) + . . .+ U(dil , ril) + . . .

= d1f(d1, r) + . . .+ dilf(dil , ril) + . . .

= d1ri1 + . . .+ dilril+1
+ . . . .

Since the input rates along this path are non-increasing,
according to the rearranged inequality, the sum is upper-
bounded by the case when the out degrees in T (k) are also
non-increasing, i.e., in an optimal multicast tree, we have
d
(k)
1 ≥ d(k)i1

≥ d(k)il
≥ . . .. For si1 , we have

f(d
(k)
i1
, r

(k)
i1

) = min

(
g
(
d
(k)
i1

)
, g
(
d
(k)
1

)
, r

)
= min

(
g
(
d
(k)
1

)
, r

)
= f

(
d
(k)
1 , r

)
, (10)

where the second equality is from d
(k)
i1
≤ d

(k)
1 and the

decreasing property of g(·). Similarly, we have f(d
(k)
il
, r

(k)
il

) =

f(d
(k)
1 , r). Since for each service node si there is always a path

from s1 to si, we have U(d
(k)
i , r

(k)
i ) = d

(k)
i f(d

(k)
i , r

(k)
i ) =

d
(k)
i f(d

(k)
1 , r) and have proved the lemma.

The assumption that f(d, r) = min(g(d), r) and g(·) is a
positive and decreasing function has been substantiated by the
careful OvS performance profiling in Sec. IV.

Lemma 2. Let D := d(n + k − 2)/ke. Under the same
conditions of Lemma 1, we have

k∑
i=1

U
(
d
(k)
i , r

(k)
i

)
= (n+ k − 2)f(D, r), (11)

And for a given k, exactly x = (n − 2) mod k elements of
d
(k)
1 , . . . , d

(k)
k must be D, and the remaining k − x elements

in the list must be D − 1.

Proof. Since each of the n− 1 receiving hypervisors must be
served by one service node and the k service nodes form a
tree, we have{

d11 + d12 + . . .+ d1k = n− 1,

d21 +
∑k

i=2(d2i + 1) = 2k − 2.
(12)

Thus, we have

d1 + . . .+ dk = n+ k − 2.

The same applies to d(k)1 , . . . , d
(k)
k . By Lemma 1, we have

k∑
i=1

U
(
d
(k)
i , r

(k)
i

)
=

( k∑
i=1

d
(k)
i

)
f(d

(k)
1 , r)

= (n+ k − 2)f(d
(k)
1 , r), (13)



Therefore,
∑k

i=1 U
(
di, ri

)
is maximized when f(d1, r) is

maximized over d1. Since f is non-increasing in d1, the
optimal d(k)1 should be the smallest possible d1. Since d1 +
. . . + dk = n + k − 2 and by Lemma 1, d1 is no smaller
than di, for i = 2, . . . , k, the smallest possible d1 is simply
d
(k)
1 = D = d(n + k − 2)/ke. Therefore, substituting d(k)1 in

(13), we have shown
∑k

i=1 U(d
(k)
i , r

(k)
i ) = (n+k−2)f(D, r).

When d(k)1 = D = d(n+k−2)/ke, to maintain
∑k

i=1 d
(k)
i =

n+k−2, d(k)i for i = 2, . . . , k must be either D or D−1. And
there is only one unique degree distribution of d(k)1 , . . . , d

(k)
k

that can achieve this, which is described below: let x = (n+
k − 2) mod k = (n − 2) mod k; exactly x elements of
d
(k)
1 , . . . , d

(k)
k must be D, and the remaining k − x elements

in the list must be D−1. This is because x = (n−2) mod k
is the unique nonnegative integer solution to

xD + (k − x)(D − 1) = n+ k − 2 =
∑k

i=1d
(k)
i .

To see this, at this point, if x is increased xD+(k−x)(D−1)
will exceed n+k−2 and if x is decreased, xD+(k−x)(D−1)
will be less than n+ k − 2.

Based on the necessary conditions above, we can give a
linear-time algorithm to solve problem (3).

Theorem 2. If the weights of service nodes w1 ≤ . . . ≤ wm

are sorted in ascending order, there exists a linear time
algorithm to find the optimal k∗ together with the optimal
degree distributions d(k

∗)
1 , . . . , d

(k∗)
k∗ .

Proof. To find the best k∗, we only need to evaluate∑k
i=1 U

(
d
(k)
i , r

(k)
i

)
− λ

∑k
i=1 wi = (n + k − 2)f(D, r) −

λ
∑k

i=1 wi for each k ∈ {1, . . . ,m}, which can be done in
linear time. To see this, we first recursively construct a cumu-
lative array W1 = w1 and Wk = Wk−1+wk for k = 2, . . . ,m
in linear time. Without loss of generality, we assume m ≤ n,
otherwise we can simply consider the n service nodes with the
least weights. Then, k∗ = arg maxk(n+k−2)f(D, r)−λWk

can be found in linear time. And service nodes 1, . . . , k∗ (in
the sorted list) will be used.

Once k∗ is found, the optimal degree distribution
d
(k∗)
1 , . . . , d

(k∗)
k∗ can be determined from Lemma 2. The com-

plexity of the entire procedure is O(m).

We are now ready to give a linear-time algorithm to solve
problem (3) and construct the optimal multicast tree, which
also has the minimum height, thus also achieving the minimum
worst-case delay from the source to any receiving hypervisor.
Once k∗ and the optimal degree distribution are found, we can
form a corresponding tree by the following straightforward
corollary. Under this degree distribution, we can minimize the
tree height by letting nodes closer to the root have as many
children as possible, as shown in the corollary:

Corollary 3. Let k∗ be the number of service nodes found by
Theorem 2. Let D := d(n + k∗ − 2)/k∗e, then a min-height
multicast tree, which is an optimal solution to problem (3), is
given by a D-ary tree as follows:

D

D � 1

h1

Receiver Hosts

(a) n = 5, k = 4, D = 2

D

...

D � 1

h1

Service Nodes

(b) n = 12, k = 9, D = 3

Fig. 7. Min-height optimal multicast trees according to Corollary 3.

1) Form an ordered list of all the nodes

N = {h1, s1, . . . , sk∗ , h2, . . . , hn}.
2) Let x := (n−2) mod k. From s2 onward in N , form x

groups of nodes, each group having D nodes. Then form
k − x groups of nodes, each group having D− 1 nodes.

3) For i = 1, . . . , k, assign group i to be the children of si.
Assign s1 to be the only child of the source h1.

Then, we arrive at a set of simple closed-form forwarding
rules that can be installed by the SDN controller into each
node, described in Algorithm 1, where Lines 5-7 can always
generate the desired optimal degree distribution satisfying
Lemma 2. Apparently, once k∗ is found, it takes constant
time for each service node to form its own forwarding rules.
Thus, the time complexity of forwarding rule generation is
also linear.

Examples: Fig. 7 shows two examples of min-height op-
timal trees according to Corollary 3, given n and k as the
input. As we can observe, the intuition is that the out degrees
of service nodes should be as evenly distributed as possible,
and should be either D or D−1. That is, given that k service
nodes are selected, their out degree distribution is unique.
Then, letting nodes closer to the root have a higher degree D
will reduce the worst number of hops from h1 to any receiver,
i.e., the height of the formed tree is only O(logD(n+ k)).

VII. PERFORMANCE EVALUATION

Based on the OvS performance traces obtained from
Mininet-based profiling in Sec. IV, we perform extensive
simulations to evaluate our proposed logical multicast routing
schemes.

A. Point-to-Point Multicast without Service Nodes

First, we show how the formed multicast topology affects
the total throughput. Since point-to-point multicast is only use-
ful for small sessions, we only test up to 14 hypervisors (each
equipped with an OvS). We compare our optimal algorithm (a
pipelined path graph) in Sec. VI-A with some typical multicast
topologies: a star graph, a binary tree, and a ternary tree in
which a node can have at most four children. From Fig. 8, we
can see that the path graph has the largest total throughput,
since there are at most two output streams for each OvS: one
to the host attached to it and the other to the next OvS. The
star graph has the lowest throughput, since the workload for



Algorithm 1 Forwarding Rules for Min-Height Optimal Mul-
ticast with Service Nodes

1: Input: {s1, . . . , sm}, {h1, . . . , hn}.
2: Output: The forwarding rule for each service nodes.
3: Use the O(m) procedure in Theorem 2 to get the optimal
k∗ nodes with the least weights.

4: Arrange all the hypervisors and service nodes into an
ordered list h1, s1, . . . , sk∗ , h2, . . . , hn, and assign them
the node indices 0, 1, . . . , n+ k∗ − 1.

5: D := d(n+ k∗ − 2)/k∗e.
6: Each service node j ∈ {1, . . . , k∗} should forward packets

to the nodes with indices given by

(j − 1)D + 2 ∼ jD + 1, if 1 ≤ j ≤ x

(j − 1)(D − 1) + x+ 2 ∼ (j − 1)(D − 1) + x+D, else,

where x := (n− 2) mod k.
7: Each node y ∈ {1, . . . , n+k∗−1} should receive packets

from its parent, which has a node index p(y) given by

p(y) =


0, if y = 1,

by−2D c+ 1, if 2 ≤ y ≤ xD + 1

by−(x+2)
D−1 c+ 1, if xD + 2 ≤ y ≤ n+ k∗ − 1.

Number of Session Size
1 2 3 4 5 6 7 8 9 10 11 12 13 14T

o
ta

l 
S

e
s
s
io

n
 T

h
ro

u
g
h
p
u
t 
(G

b
p
s
)

0.8

1.6

2.4

3.2
Path Graph
Star Graph
Binary Tree
Ternary Tree

Fig. 8. Comparison of logical multicast with point-to-point tunnels.

the central switch is higher than all the others. Furthermore,
the performance with binary and ternary trees is in between the
optimal topology and the star topology. The simple message
conveyed by Fig. 8 is that the larger the output degree of each
switch, the less total throughput we will have, which conforms
to our analysis.

B. Multicast with a Service Node Cluster

We assume 100 service nodes (dedicated OvSes for traffic
relaying) are available with some initial background flows,
and simulate 100 multicast sessions that join the network
consecutively. The multicast rate ranges from 0 to 100 Mbps,
and the number of involved host hypervisors is uniformly
distributed between 10 and 200. The service node selection
and optimal multicast topology construction are performed for
each session individually when it joins.

The weight of each service node si used for load balancing
in (3) is defined as wi = c(ωi) = −α log(1 − ωi/Ω), where
ωi is the total existing workload (input rate) on si, including
background flows and flows of previously joined multicast
sessions; α > 0 is a coefficient; and we set Ω = 32 Gbps

0 0.2 0.4 0.6 0.8 1
Output Rate per Stream/Input Rate

0

0.2

0.4

0.6

0.8

1

C
D

F

Empirical CDF

Algorithm 1
Alg. 1 + random sampling
Baseline 1
Baseline 2

Fig. 9. CDF of the output rate per stream, normalized by the input rate in
each session, which compares the throughput performance.

0 5 10 15 20
Workload per Switch (Gbps)

0

0.2

0.4

0.6

0.8

1

C
D

F

Empirical CDF

Algorithm 1
Alg. 1 + random sampling
Baseline 1
Baseline 2

Fig. 10. CDF of the workload per service node under different schemes.

to be the highest input rate supported. The increasing convex
nature of c(·) ensures that a higher existing workload implies
a higher weight wi, which increases faster when the existing
workload is closer to the capacity of an OvS. This way, newly
joined sessions will avoid selecting OvSes with higher weights
to achieve load balancing.

We compare Algorithm 1 with the following algorithms,
including a variation of itself and two baseline algorithms:
• Algorithm 1 with Random Sampling: each session

randomly selects 10 service nodes and use Algorithm 1 to
form the optimal multicast topology with these selected
service nodes;

• Baseline 1 (NVP): each session finds the least loaded
service node and use this single service node to multicast
data to all destination hosts;

• Baseline 2 (Binary Tree): each session finds the 50
least loaded service nodes, and among them selects all
those with enough remaining capacity to accommodate
the new session’s input rate. Then, the selected service
nodes are connected in a binary tree, where each service
node handles two receiving hypervisors.

First, to evaluate throughput, we plot the output rate per
stream normalized by the input rate for each session in Fig. 9.
We can see that nearly half of the sessions controlled by
Algorithm 1 can reach the full output/input ratio; the random
sampling version further improves such a ratio to nearly 60%,
though at the cost of degraded load balancing to be described
below. In contrast, in Baseline 1 (the scheme used in NVP), a
single service node may become a bottleneck for each session,
leading to a throughput loss when there are many flows.
Baseline 2, using binary trees as a heuristic solution, is even
worse, since neither the number of used service nodes nor the



0 0.2 0.4 0.6 0.8 1
Output Rate per Stream/Input Rate

0

0.2

0.4

0.6

0.8

1

C
D

F

Empirical CDF

λ=1
λ=10
λ=100

(a) CDF of the output rate per stream, normalized by the input rate
in each session.

0 5 10 15 20
Workload per Switch (Gbps)

0

0.2

0.4

0.6

0.8

1

C
D

F

Empirical CDF

λ=1
λ=10
λ=100

(b) CDF of the workload per service node.

Fig. 11. The impact of λ on throughput performance and workload balancing among service nodes.

topology is optimized for each session.
Second, we show the workload per service node in Fig. 10

after all multicast sessions have been scheduled. Without
surprise, as more service nodes are used in each session, the
workload will be more balanced, with Baseline 2 that uses 50
service nodes per session achieving the best load balancing
and Baseline 1 that uses 1 service node per session achieving
the worst. Moreover, Algorithm 1 is better than its random
sampling version.

In fact, with Algorithm 1, we can explicitly adjust the trade-
off between the total throughput and load balancing, by tuning
the parameter λ in (3). It now becomes helpful to evaluate the
impact of λ. A smaller λ encourages Algorithm 1 to employ
more service nodes per session, whereas a larger λ discour-
ages that. Therefore, a small λ can achieve more balanced
workloads and a large λ can lead to higher throughput, as is
confirmed in our evaluation results, shown in Fig. 11.

VIII. CONCLUDING REMARKS

In this paper, we have proposed optimal logical multicast
solutions for a virtualized datacenter network running software
switches, where the bottleneck shifts from the link bandwidth
to packet processing and flow cloning. Based on careful perfor-
mance profiling on Open vSwitches, we formulate the logical
multicast problem as Degree Supervised Graph problems,
which is a new type of combinatorial optimization problems.
As a highlight of this paper, we have proposed a linear-time
algorithm to find the optimal multicast tree in the presence
of service nodes, with joint considerations of throughput,
load balancing and delay. Our solutions and algorithms can
translate to simple SDN forwarding rules to be installed on
each involved switch. By a wide margin, it outperforms the
current industrial practices, such as NVP, in terms of both
throughput and load balancing.

REFERENCES

[1] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny,
M. G. Rabbani, Q. Zhang, and M. F. Zhani, “Data Center Network
Virtualization: A Survey,” Communications Surveys & Tutorials, IEEE,
vol. 15, no. 2, pp. 909–928, 2013.

[2] “Amazon Virtual Private Cloud,” http://docs.aws.amazon.com/AmazonVPC/
latest/UserGuide/VPC_Introduction.html.

[3] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,
I. Ganichev, J. Gross, N. Gude, P. Ingram et al., “Network Virtual-
ization in Multi-Tenant Datacenters,” in Proc. USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2014.

[4] Open vSwitch, http://openvswitch.org.
[5] X. Li and M. J. Freedman, “Scaling IP Multicast on Datacenter Topolo-

gies,” in Proc. ACM Conference on Emerging Networking Experiments
and Technologies (CoNEXT), 2013, pp. 61–72.

[6] R. Cohen, L. Lewin-Eytan, J. S. Naor et al., “On the Effect of
Forwarding Table Size on SDN Network Utilization,” in Proc. IEEE
INFOCOM, 2014, pp. 1734–1742.

[7] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “Performance Char-
acteristics of Virtual Switching,” in Proc. IEEE International Conference
on Cloud Networking (CloudNet), 2014, pp. 120–125.

[8] M. Moshref, M. Yu, A. B. Sharma, and R. Govindan, “Scalable
Rule Management for Data Centers.” in Proc. USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2013, pp. 157–
170.

[9] R. Niranjan Mysore, G. Porter, and A. Vahdat, “FasTrak: Enabling
Express Lanes in Multi-Tenant Data Centers,” in Proc. ACM Conference
on Emerging Networking Experiments and Technologies (CoNEXT),
2013, pp. 139–150.

[10] J. Mudigonda, P. Yalagandula, J. Mogul, B. Stiekes, and Y. Pouffary,
“NetLord: a Scalable Multi-Tenant Network Architecture for Virtualized
Datacenters,” in ACM SIGCOMM Computer Communication Review,
vol. 41, no. 4, 2011, pp. 62–73.

[11] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat, “Portland: a Scalable
Fault-Tolerant Layer 2 Data Center Network Fabric,” in ACM SIG-
COMM Computer Communication Review, vol. 39, no. 4. ACM, 2009.

[12] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “SecondNet: a Data Center Network Virtualization Architec-
ture with Bandwidth Guarantees,” in Proc. ACM CoNEXT, 2010.

[13] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C.-G. Liu, and L. Wei,
“An Architecture for Wide-Area Multicast Routing,” ACM SIGCOMM
Computer Communication Review, vol. 24, no. 4, pp. 126–135, 1994.

[14] T. Ballardie, P. Francis, and J. Crowcroft, “Core Based Trees (CBT),”
ACM SIGCOMM Computer Communication Review, vol. 23, no. 4, pp.
85–95, 1993.

[15] W.-K. Jia and L.-C. Wang, “A Unified Unicast and Multicast Routing
and Forwarding Algorithm for Software-Defined Datacenter Networks,”
IEEE Journal on Selected Areas in Communications, vol. 31, no. 12,
pp. 2646–2657, 2013.

[16] A. Iyer, P. Kumar, and V. Mann, “Avalanche: Data Center Multicast
Using Foftware Defined Networking,” in Proc. IEEE Conference on
Communication Systems and Networks (COMSNETS), 2014, pp. 1–8.

[17] R. Sankar, “Data-Center Networking: What’s Next Beyond 10 Giga-
bit Ethernet?” http://electronicdesign.com/communications/data-center-
networking-what-s-next-beyond-10-gigabit-ethernet.

[18] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
Predictable Datacenter Networks,” in ACM SIGCOMM Computer Com-
munication Review, vol. 41, no. 4. ACM, 2011, pp. 242–253.

[19] “Mininet,” http://mininet.org/.
[20] F. Hao, T. Lakshman, S. Mukherjee, and H. Song, “Enhancing Dynamic

Cloud-Based Services Using Network Virtualization,” in Proc. the 1st
ACM Workshop on Virtualized Infrastructure Systems and Architectures,
2009, pp. 37–44.

[21] F. K. Hwang, D. S. Richards, and P. Winter, The Steiner Tree Problem.
Elsevier, 1992.


