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Abstract— Energy constraints on sensor nodes pose significant leads to insights on the fundamental limits with respect to
challenges towards extending operational lifetimes and sustain- the performance gains usirgy energy-aware algorithms and
able capacities of wireless sensor n_etwork_s. In this paper, we Seekprotocols. As well, additional insights on the scalabildf
to answer two fundamental questions with respect to energy- = . | twork ith t to their enerayv costs
constrained sensor networks. First, what is the operational WIreless se_nsor networks with respec X . gy
lifetime of a particular wireless sensor network under the control May be derived when we study the relationships between the
of optimal power management schemes? With an adequate network lifetimes and sizes.
definition of operational lifetimes, our asymptotic analysis shows  Studies on the scalability of sensor networks may lead to
that, with fixed node densities, operational lifetime of sensor surprising results that must be well understood at the time o

networks decreases in the order ol /n as the number of initially .
deployed nodesn grows. Second,/what is the impact of con- network deployment. Naturally, a sensor network that fals

strained energy levels on the maximum sustainable throughput function towards the end of its mission should not be deglpye
in sensor networks? Even with renewable energy sources on or should be replenished by deploying additional nodesrbefo
each of the sensors (e.g., solar energy sources), our analysisunctional failures. With adequate analysis, we may olserv
concludes that the maximum sustainable throughput in energy- na¢ the network lifetime after its initial deployment magtn

constrained sensor networks scales worse than the capacity leabs o . . )
on interference among concurrent transmissions as long as the be arbitrarily extended by simply increasing the number of

physical network size grows withn in the order greater than hodes initially deployed. Before communication failuregd
log n. In this case, when the number of nodes is sufficiently high, to energy costs, provisions must be made to replenish the

the energy-constrained network capacity dominates. network by adding additional nodes on the fly after its ihitia
deployment.
Towards extending the lifetime, strategies with respect to
suchnetwork replenishmerdue to sensor energy costs have
A fundamental limitation of sensor networks is the comever been studied in previous work. However, we argue
strained energy source at each nodé(5 Ah, 1.2V [4]), since that these are critical to the lifetime of sensor networks. A
most of sensors are micro-electronic devices. During $igreimple strategy may be that, a minimum number of nodes is
propagation, the signal decays:as* with transmission range deployed initially, with new nodes subsequently added & th
r, wherea is the loss exponent of the signal [9]. The limitechetwork according to certain schedules. However, the @itim
power and signal loss during propagation impose fundarhentiaing, location and size of node additions are still unknow
constraints on the operational lifetime of the sensor netwo Theoretical studies on influential factors with respectenser
and other performance issues such as the capacity of datdtwork lifetime may lead to insights towards optimal netko
transmissions. In most cases, it is impossible to repleniggplenishment strategies.
energy levels in the sensor nodes. In this case, the initeigy Addressing these fundamental questions on sensor network
levels in the sensor nodes and ongoing energy consumptiibatime, our original contributions in this paper are alidas.
rates directly affect the operational lifetime and the dafrst, we rigorously define the concept operational lifetime
transmission capacity of the sensor network. It is thesefoof sensor networks. After suclifetime expires, a certain
evident that effective power management mechanisms arepefcentage of data transmissions fails. Though more comple
utmost importance in sensor network designs. such a concept of lifetime is more relevant than definitions
Power management in multi-hop wireless networks sudh previous studies, e.g., the time elapsed until the lass@e
as wireless sensor networks involves energy-aware topolagpde fails [14]. We show that network fails to function with
control, scheduling and routing mechanisms. These prableraspect to transmissions long before the failure of the last
are non-trivial and extensively studied in previous work [1node. Second,we develop the lower and upper bounds of
[5], [15]. In this paper, we take a different angle when weperational lifetime using a stochastic model and a cuéedbas
examine the problem of extending the operational lifetim@ethodology. Our asymptotic analysis shows that, for fixed
of wireless sensor networks. Given a set of network charetwork sizes, operational lifetime decreases in the oofler
acteristics and definitions, we seek to answer the followingy/n as the number of initially deployed nodesgrows. For
fundamental questioriVhat is the operational lifetime of afixed node densities, the lifetime decreases in the ordéyof
particular wireless sensor network under the control ofioptOur analysis also shows that the operational lifetime of the
mal power management schemes? answer to this question network is shorter than the average lifetime of individuadles
Zhihua Hu and Baochun Li are affiliated with the Department lecEical by a C.ert‘fi'” fagtor, which sup_ports 0.ur definition of opera-
and Computer Engineering, University of Toronto. Their eraaltiresses are tional lifetime. Finally, we examine the impact of constrained
{frank,bli} @iqua.ece.toronto.edu energy levels on the maximum sustainable throughput in

I. INTRODUCTION



sensor networks. For sensor networks with renewable enef@yr key results with respect to the operational lifetime are
sources (e.g., solar energy sources), our analysis shaws #stablished in the following theorem.
the maximum sustainable throughput in energy-constrainedrpeorem I11-A 1.

sensor networks scales worse than the capacity predictegyy gor fixed network sizes, the operational lifetime of a

based on interference among concurrent transmissionse if {,.-ojass sensor network decreases in the ordet /qfnn as
physical network size grows with in the order greater than i« humber of nodes grows.

logn. In this case, when the number of nodes is sufficiently i . i o
high, the energy-constrained network capacity dominaés. .(2) For fixed node densities, the .operatlonal lifetime of a
believe that the effects of energy constraints on the ojoerit Vireless sensor network decreases in the ordelr/ef
lifetime and the capacity of wireless sensor networks dlle st (3) The operational lifetime of a wireless sensor network
largely unchartered territories, as there exists no pusagork is smaller than the average lifetime of individual nodes by a
seeking to answer these questions analytically to the Hestfactor of b./\/n for fixed network sizes and./n for fixed
our knowledge. node densities.

The remainder of the paper is structured as follows. Sec. Il-

A summarizes the main contribution of this paper in the forqnr Before showing the proof of this theorem in Sec. II-E, we
irstill he implicati ignifi f thi .
of Theorem II-A 1 and 2. Sec. II-B to Sec. II-D develop th |_st| ustrate the implications and significance of thisthem

Sincey" L > L_ and Y L+ L_ Theorem
definitions and lemmas required towards the final proof of i Vi V2 2in > 2’

the aforementioned theorems. The two theorems are proved!ift 1 shows that, a good network replenishment strategy

Sec. II-E and Sec. II-F. Sec. IIl discusses related workal§in 1S to replenish the network by adding additional batches of
Sec. IV concludes the paper. sensor nodes in subsequent stages, and these batches should

be organized so that the sizes of different stages are a$ smal
as possible.

However, there exist several constraints to the smallest
batch. These constraints include: (1) The requirement of
A. Summary of Results minimum coverage for sensing purposes (both in terms of

The primary functionality of wireless sensor networks is tg°d€ density and network size); (2) The deployment overhead

sense the environment and transmit the acquired informatig'cUed in addition to the cost of sensors; and (3) the lim-

for further processing. As a result of constrained energglte '©d deployment window due to realistic causes (e.g., enemy
sensors will eventually fail. However, intuitively, a netik positions in battlefields or weather conditions). TheoréA |

may fail to continuously support data transmissions — it May be used to identify th_e optimal network replenishment
strategy under such constraints.

primary functionality — long before the last sensor nodésfai
(such intuition is shown to be correct later in this papehisT ~ FOr sensor networks that rely on renewable energy sources
will occur when the number of failed nodes in the networRUCh @s solar energy, the maximum amount of data that can be
reaches a certain critical threshold. Therefore,aherational ransmitted in any given time period is limited by the energy

lifetime of a network should be defined such that, after sud@yailable during the same time period. We argue that there

lifetime expires, a certain percentage of data transnisdiil. €XIStS amaximum sustainable throughpirt wireless sensor
Let ¢ be a real number that satisfigs < ¢ < 1. we networks under such energy constraints. Our investigation

define the operational lifetime of a wireless sensor netwolfWards the operational lifetimes of sensor networks a@ads

as follows (detailed derivations that motivate such a dedimi O Significant results with respect to the maximum sustdeab
are postponed to Sec. II-D). throughput. The following theorem establishes our key pbse

- , o vation with respect to the maximum sustainable throughput.
Definition 1I-A 1. The operational lifetimeof a network

is the expected time after which at ledstd(1 — ¢2)% data ~ 1eorem II-A 2. . _
transmissions fail. (1) The maximum sustainable throughput of a wireless
The understanding of the asymptotic behavior of operatioriNSOr network with renewable energy sources is limited by
lifetimes is essential to the study of sensor network fatitsip 7 IN the order ofb. //n for fixed network sizes ant./n for
whether or not a sensor network can function till the end &x€d node densities.
its mission. If a sensor network is proved to be infeasible, (2) The energy-constrained capacity scales worse than
either the network should not be deployed, ometwork interference-constrained capacity if the size of the netwo
replenishment strategiias to be devised. The replenishmergrows withn in the order greater thalog n.
strategy may propose to add additional no_des — and thus tQl'he above results imply that, if the growth of the network
add additional energy — to the network, in order to ensure . .
: . o size is not exceedingly slow compared to the growth oénd
that the network will complete its mission successfully. . . -
; ) when the number of nodes in the network is sufficiently large,
In this paper, we systematically study the lower and uppgr s .
. o . e fundamental performance limits with respect to network
bounds of operational lifetime based on a stochastic mode . . ; .
and then identify its influential factors. Léf — —L_ 1 cdpacity are dominated by the energy-constrained capacity
' ~ «(2-¢) " rather than interference-constrained information-tegorca-
1Detailed justifications for such a definition bf are postponed to Lemma PaCity. The detailed proof of this theorem is postponed to
I-D 1. Sec. II-F.

Il. ENERGY-CONSTRAINEDLIFETIME AND CAPACITY IN
SENSORNETWORKS




B. Problem Setup

We begin our journey towards proving the correctness of our By = onn + ar® 4 arp = ag +apr® )
key observations and claims previously stated. Fig. 1tilies
the setup of the problem. Without loss of generality, coasid

ail'fv,'i;eI:ZZS;Pesgrrelegfgzévg?sr;]c:,dwer? ilrjlnl':fi(;rmllyEdaecﬁ:ogggeinte_rmediate nodes t_o relay the message. Under the first_ orde

has constrained energy sources. Optimal po;/ve.r schedualesraglo moqlel_, th_e optimal distance between rglay n_odes s the
. . ) Haracteristic distancelenoted byd,, [14]. d,, is defined as

assumed, achievable by optimal power management strategie

The objective is to find asymptotic impact of constrained dp = ¢ %)

energy resources on the fundamental performance limitseof t

network, such as the operational lifetime and data trarsonis 4 is independent of the source-destination distarice

capacity. Theorem 2 of [14] proves that,, is the optimal hop distance
We consider the typlcal scenario in which all nodes b%r anyd and the Opt|ma| number of hops takdn, is given by

have as sources and the data sink is the destination of @ther K = L%J or K = [diw_ Without loss of generality,

transmissions. In the case that the source can not reach Wke assumel > d,, in ourmpaper to facilitate discussions.

destination directly, intermediate nodes will act as relédy Hencek = dd )
forward messages to the destination via multiple hops.

wherea; = ay1 + aj2. When a source sends a message
to a destination whose distance from sourcel,ist can use

aq
as(a — 1)

Q

data sink

source
[ ]

\ ré destination
Fig. 1. We study a wireless sensor network wittodes in a square area.
The goal is to examine the asymptotic impact of constrainedygrresources
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on the fundamental performance limits of the sensor network. site of the

square area isl. dm \

As shown in Fig. 1, we consider nodes negaaxis (or z-
axis) cuts close to the data sirkkSuch a cut-based technique
has been used in [10] and [11]. We argue that the analysjs . . .
e Fig. 2. Ay-axis cut is placed at positian = b. B = [b— d., b] x [0, V/A].
of the energy cost and thus .th(? “fet'_me of the nodes ne@r?y message from source to destination must be relayed by omeooce
the cut can provide adequate insights into the energy cabt aiades inB.

performance of the entire sensor network. . )
We then formally define the concept ofit andfailed cut

A y-axis cut at positionz is a line segment parallel to the
C. Assumptions and Definitions y-axis whosez-axis position equals:. The y-position of the
Before we progress to a position to analyze the ener§je segment starts from and ends at/A. When the nodes
cost of data transmissions and the operational lifetime Bear the cut fail, network traffic can not cross such-axis
the network, we need to clarify our basic assumptions af#t.- Such ay-axis cut is referred to asfailed y-axis cut. An
establish a few terms by definitions. x-axis cut at positiony and a failedr-axis cut can be similarly
We first define the radio model used in this paper. In thii€fined.
paper, we adopt the first order radio model used in [2], [14] We now consider the energy cost of nodes neafraxis
and many other literatures. In this model, the followingrgge Ccut. As illustrated in Fig. 2, g-axis cut is placed at position
parameters are included: transmit;(), receive {1.), and = = b. We are interested in the energy costs of the nodes in a
transmit amplify ). Without loss of generality, all respectiveSet 2, where R is defined as
energy costs are for one bit. We do not include the energy
costs of sensing. The reason is that energy costs for sensing R = {v|(vg,vy) € [b—dc,b] x [0, VA 3)
depends heavily on the specific application. Nevertheless) , . o
energy costs can be easily integrated into our solution tree  WNere d. is the maximum transmission range used by
sensing model is defined. Based on such a radio model, fi§ nodes in the network. In the case that each node uses

energy costs for transmitting the signal across the distafic different maximum transmission ranges, sinkemust apply
ris to all the cutsd. should be interpreted as the average of the

maximum transmission ranges used by all nodes. Informally,
2The y-axis andz-axis cuts will be formally defined in Sec. II-C. R represents the nodes within the rectangular area immégdiate



d.(aq + aswe (A, de)) de(aq + ad?)

left of b, whose width isd.. Denote the area occupied by Eley] < 2 < : (9)
as B. We haveB = [b — d., b] x [0, VA]. A (1 — e 272°) A (1 — e 273°)
Definition 1I-C 1. The relay position set is defined as  \ here A\ — % and wa() d.) < do. Asymptotically

the set of possible positions of relay nodes. wa (A, d.) satisfies a)im,, oo wa (A, de) = (1+rK)dS, & > 0;
Without loss of generality, assume that the transmission js b) wa (A, d.) grows withn.

from left to right. ThenG' is the right half of the circle centered  pyof: The proof of Eq. (8) is trivial. As proved in [14], the

at the sender. We assume that each node in the network negflsy, path with the least energy cost is the straight linelfer

to send1 bit of information in each time slot. Sina&. is the 5 the s-axis (Fig. 2). In addition, the distances traversed

maximum transmission range, any source must rely on ONeRY each hop must equal to the characteristic distafge

more nodes iMk to relay the messages in order to crosstcut yefined in Eq. (1) in order to achieve the minimum energy

Let 7, be the number of hops &bit message needs to tak&:ost. Consequently, the minimum energy cost to reldyhit

in B in order to cross cub. Let r; be the distance traversedmessage across the cut shown in Fig. 24g12dn) This

in the jth hop, wherel < j < h;. Leto; andz; be the sender
and receiver of thgith hop, where obviously;_; = o; for
2 < j < hy. Letc, be the energy spent by;, 1 < j < hy. ¢
is in fact the total energy spent hye R in order to forward
such1-bit message to cross cbt We then have

hp
Cb = § ETj
i=1

hy

Z(al + 0&27‘?)

j=1

(4)

minimum value can be achieved iff network nodes occupy the
positions whose distances from the poineare multiples of
dm, Which is not the case in general. The proof of Eq. (9) is
much more involved. Due to lack of space, the detailed proofs
are not included. However, the asymptotic results of thjzepa
actually do not depend on the details of the closed form of
we. In fact, the qualitative claims pertaining to, can be
explained intuitively. Sintz:eim is the optimal distance [14],

wd4 . . .
we can usel,,(1 — e =) as the first order approximation

r; are in fact iid random variables. This claim is based og Elr cos(0)]. SInceE, = a; + asr®, the expectatiorE[E, ]

the observation thasub-paths of shortest paths are shortesf, st have the form ofy; + aow
[e2)

paths Further, the setup of cutand areaB is artificial. The

where w, = E[r®].

Obviously,w, < d%. Becaused,, is the optimal distance, if

optimal schedule of each hop does not depend on the reshlt horyork node density increases with largdi increases),

of the previous hop. The only limitation is that the maximu

transmission range can not excekdAnother way to interpret

this is that each hop actually belongs to multiple cuts.
Sincer; are iid random variablesy,; are also iid random

variables. Therefore, whenever appropriate, we will orné t
subscriptj and user and E,. respectively in later discussions.

For instance, we can write

®)

For practical applicationsd,, < d.. In addition, we are
able to show thdt the probability ofr > d,, is very low.
Therefore we have the equality

E, = a1 + asr®

hp
de. = Z r; cos(6;) (6)
j=1

where 6; is the angle betweem; and the z-axis. We
are interested in the expectation @f under optimal power
management. From Eq. (4), we have

E[Cb] = E[hb]E[ET] = E[T‘ COS(@)] E[ET] (7)
Lemma II-C 1. ¢, satisfies
dc(Oél + Oégdm) < < dC(Oél + Oégdc) (8)

dm dm

SDetailed proofs are not included due to space constraints.
4In general, the inequalitd. < Z'.‘il rjcos(0;) < 2d. rather than the
equality in Eq. (6) holds. For simp’iicity of presentation, \weroduce the

equality here. The asymptotic results of this paper remainstimae if the
inequality is applied.

"the optimal distancel,,, will more likely be chosen. In such

caseslim, ... wa(A, d.) = (1 + k)d%,. Fora = 2, it can be
proved thatkx = % if the network node density decreases
with larger n (\ decreases)y, increases since. > d,,>
However,w, never exceedd?. O

Fig. 3 shows the comparison of our theoretical bounds
and simulation results. The energy parameters used in sim-
ulation and theoretical bounds ang = 50nJ/bit, anday =
0.1nJ/bit/m?. The lower bound shown is calculated based on
the assumption that the node at the optimal distahg¢elong
the straight line parallel to the-axis will always be chosen
as the relay node. As shown in this figure, the upper bound
derived above is reasonable tight.

D. Operational Lifetime of Sensor Networks

In this paper, we are interested in the operational lifetime
t. of the sensor network. The naturetgfcan be explained as
follows. With the progress of time, some of the network nodes
may fail after the depletion of their energy resources. Even
though the distributions of the failed nodes are randonrethe
exist certain probabilities that some nodes that are phlsic
proximate, such as the nodes in the regiBnnear a cut
(Fig. 2), may fail faster than some of the other nodes in the
network. If this event happens, all the network transmissio
that across that cut will break. When the number of the failed
cuts in certain critical region (as will be analyzed in Fig. 4
reach certain threshold, more thaf0(1 — ¢*)% data trans-
missions fail and the network reach its operational lifer Ou
study of operational lifetime,. explores the aforementioned

51f d. < dm, wa Will approach a constant 0, becausel,, > 0 is the
optimal distance.
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Fig. 3. Comparison between simulation results and theotdtieger and

upper bounds, wherd. = 200m, and A = 4 x 10°m2. For convenience
of illustration, the number of nodes shownj&: rather thann. The unit of

y-axis is nd.a = 2.

time slot, to forward al-bit message across cut During

the development of the upper bound @f we consider the
probability of occupying, the probability that a position i
region B (Fig. 2) is occupied by a node, based only on the
initial deployment. In practice, the probability of occupy

is affected by the energy cost as well. A node will fail after
depleting its energy resources. Because of the failed nodes
the effective number of the nodes in the network decreases
over time. Therefore, to mode}, . ;, the energy cost in the
network after the number of nodes decreases, the value of
needs adjustment accordinglyshould equal td} 7 ;, where

0 < m,; < 1. However, because the initial distribution of
the nodes in the network is random and the random nature
of the network traffic, the distributions of the failed nodes
are also random. Consequently, the results from Lemma II-C
1 still hold for ¢ 1 ;. In fact, the inequality in Eq. (8) and
the qualitative claims pertaining to the asymptotic bebiavi
wq hold even for uneven distributions of network nodes. In
practice, we are interested in the valuesnodnd A smaller
than some finite values,,,« and A,,,.. Because a smaller

A leads to a largers, there exists a value,;,, whose
corresponding: max Satisfies

characteristics of the network. In general, the operationa

lifetime can be reached long before the last node in the

network fails.

“— £ —»

data
sink

Fig. 4. There aren y-axis cuts, whose positions afg VA, 1<4i<m.For
the convenience of illustration, the figure shown above &nmormalized to

the size ofl. When considering-axis only,100¢% transmissions will break

iff there is at least one faileg-axis cut whose position > (1 — €)v/A.

As assumed in Sec. II-C, each node in the network needs to
send 1 bit of information in each time slot. As shown in Fig. 4,

E[Cb,max(%ﬂnin; dc)] Z ma

X E Ch.k.i
ik, n<Nmax,A<Amax [ ’ )Z]

(11)
In addition, the value ofc; ,ax iS independent front..
¢, max depends on the node distribution characterized\ by

% Tmin- Therefore, we have
Elet, i) <

ntcE[Cb,max] (12)

)
m
In the remainder of the paper, all referencescioare
actually the references tQ max. FOr simplicity, we drop the
subscriptmax and usec, hereafter.
Lemma II-D 1. The opera;tional lifetimet,. satisfies

2bee, (1 767,\%“@) <t < __2¢beeodn
\/n_A[al-&-agwa(A,dc)]. m . C — Vndce(a1+azd?)’

Proof: We consider thej-axis cuts first. Because the data
sink is the destination of all the transmission80e% trans-
missions will break iff there is at least one failgehxis cut
whose position: > (1 —¢)v/A. As shown in Fig. 4, we define
the region covering these cuts &s.

We develop the lower bound first. Lat (¢) be the number

of failed cuts in regionB. by time ¢, we then have

me

ny(t) = Z Iim—it1 (13)
i=1

we assume that there are y-axis cuts, whose positions are wherel, ,, ;. is the indicator variable defined as

L\/A,1 < i < m. The value ofm will be determined later in

the proof of Lemma II-D 1. For the cut at the positi%nﬂ,
the amount of traffic needs to be relayedgl;m. Therefore,
the total energy costs in time slots for nodes € R near
such a cut is

t

?
Ct,i = E —NCh,k,i
m

k=1

(10)

where ¢, ;; is the average energy cost of, in theh

1, cut at the positionL-+/A has failed by time.
L= I i .
0, cut at the posmonT;\/Z is active by timet.
(14)
Elng(t)] = 3505 Elltm—iv1] = 272 Pllem—it1 = 1],
where, based on Markov inequalit®[l;,—iy1 = 1] =
Pletm—it1 > ndee,) < Zletm=tal "wheree, is the initial
energy available at each node, add = d;. Hencet,,
the expected time required for00 x (1 — €)% network




transmissions to fail due to faileg-axis cuts satisfies the Therefore, the upper bound of is

following:
2ebee,d,y,

lim ¢, < 15
K Elctm—it1] A Vnde(ar + aadg,) (19)
1< Blng ()] < Z n;icreo The upper bound just derived is a loose bound. To achieve

i=1

e the equality in Eq. (15), two conditions must be met. First,
t.Elcy] m—i+1

all the energy resources on all the nodes in the redin

IN

der€o P m must be depleted at the tinte. Second, the minimum energy
t.Elcy) 1 1 1 cost%ﬁdm) must be achieved for all data transmissions
= g mell+ —)—ge— 5] throughout the lifetime of the network, which is not possibt

the later stage of network life. Nevertheless, the uppentou
in Eq. (15) offers additional proof that the energy-coriggd
capacity scales worse than the interference-constraiapace
ity. For instance, for fixed\, the upper bound of. scales
as ——— becaused. must grow withn in the order of

Since there ar@ nodes in the network, we then have=
Vv/n 8. Therefore, ag — oo, t. satisfies

E 1 Virlogn
e
= Tdoe, ne(1 — 56) ©(y/™2™) in order to keep the network connected [16]. Note

that in Gupta and Kumar [16], it is assumed that the network

_ 1
Letbe = @ WE then have occupies unit area. Compaganllozgn, the upper bound af, for
im p. > 2bedero fixed \ with the interference-constrained capadgiiy Wlloﬁ)
n—oo © T /nE[cy [17], [10], [22], we prove that, since the upper boundt ofs
2bce, Aol — e Aw;t% not attainable, the energy-constrained capacity scalesewo
m(l—e ) In the above derivations, we only consider the broken
VnAlag + agwe (A, de)] y

network transmissions due to failggaxis cuts. In fact, when
e expected number of faileg-axis cuts reached, the
expected number of failed-axis cuts inB. also reached.
efherefore, at time.., there are at leas0 x (1—¢2)% network
transmissions broken.
9. ¢ Let ¢, represent the lower bound of the network lifetime,
lim t. > €0 don we then have
n—oo \/ﬂ(al + QQd?)
To develop the upper bound, we use the condition that the tiow =
total energy cost of all the cuts in the regi® can not exceed Vndlas + awa (. do))

Using the second inequality of Eq. (8), we can follow th
steps similar to the above derivation process, but withbet t
need to reference Eq. (11) and Eq. (12), to develop a rebativ
loose lower bound of,. as follows:

2be o _ ﬁ
‘ dn(1—e %) (16)

nee,. We then have o
< E. Proof of Theorem II-A 1
nee, = th,m—i—&-l . .
=1 We are now in the position to prove Theorem II-A 1.
me  te . Proof:
m—1+1 . . .
= > ) ——ncok 1) Fixed A, variable n: In such a scenario, the node
i=1 k=1 m density varies while the deployment area of the sensor mktwo
_ remains the same. As shown in the proof of Lemma II-C 1,
Applying Eq. (8) of Lemma II-C 1, we have lim,, .00 wa (A, d.) =constant. Using Lemma 1I-D 1, we have
tiow X % whenn is large. Thereforet;,,, will decrease
me t . . _1
“m—i+1 de(og + aed?) in the order ofn™ 2,
neeo = ZZ m d, 2) Fixed )\, variable n: In such a scenario, the size
k=L o\ me ) of the network varies while the node density remains
_ ntcdc(m + aadyy) Zm_“Fl the same. Whem\ is fixed, we are able to prove tHat
dm ] m lim,, . wa (A, d.) =constant for both fixed and variablg
by using the result thad. needs to grow withm in the order
Applying m = \/n as before, we have of ©(1/'%™) in order to keep the network connectedf16]
Thust, x —— = Y2, That is,t;,,, decreases in the order
) de(o1 + azd®) 1 | low X 72T = T ! '
lim nee, > ntcd—\/ﬁe(l — 56) of - when the coverage of the sensor network grows while

node density remains the same.

A more precise estimate of is m o« \/n. For simplicity of discussions, ~ ’Detailed proofs are not included due to space constraints.
we letm = /n, since it will not affect our discussions of the asymptotic 8In Gupta and Kumar [16], it is assumed that the network occupigs
behavior oft.. area.



wd?2

3) Comparison with the Average Node Lifetimeet ¢, 2bcesdpm (1 —e 2%
represent the average lifetime of an individual node. Then w= VnA(or + oaoa (0 ) (17)
t, oc dexCo Compare this with the result from Lemma II- e

nE[cpy|/2" i i .- . H
D 1, we conclude that the operational lifetime of a wireless wheree, is the power renewal rate. Therefore,x jﬁ for

sensor network is shorter than the average lifetime of #ifed network sizes and o % for fixed node densities.

individual node by a factor of.//n for fixed network sizes  2) Comparison with Interference-Constrained Capacity:
andb, /n for fixed node densities. Sineecan not be too small, Wwe compare the above result with the capacity pre-
b. can not be too large. Therefore, the operational lifetime éficted based on the interference among concurrent transmis
much smaller than the average lifetime of an individual nodgons. Interference-constrained capacity per node sces
when the number of nodes in the network is large. O @(\/11_) [17], [10], [22]. When ) is fixed, it is obvious
. . . n logn . .
Intuitively, for fixed network sizes, when there are moregnat the energy-constrained capacity scales much worse tha

nodes generating traffic, there are more nodes availabé8a9 r interference-constrained capacity. In fact,()\,d.) either
the traffic across the cut because the node density will grow . _\rdl
. . approaches a constant or grows withand (1 — e *72")
with n. Under optimal power management, when the numbe
. - C .. elther approaches zero or a constant no greater thahere-
of nodes is sufficiently large, the characteristic distandé . .
e .fore, as long asA grows with n in the order greater than
always be chosen. Thus the network lifetime depends main . .
logg n, the maximum sustainable throughput scales worse

on the number of cuts vulnerable. We can then conclude th . . . :
@an interference-constrained capacity. In this case nvthe

adding more podes in the initial deployment does not .aé]umber of nodes is sufficiently high, the energy-constiine
redundancy, since each new node needs to generate traffic and

relay traffic for other nodes. Note that agrows, the absolute nelt:v;(r)r: gf::zltéiigzygt—ej rows very slowly withn thDe
number of transmissions remaining afteris larger, but it is ' 8 g y y '

: i D f'scalability of the energy-constrained capacity and ieterfice-
much easier for a certain percentage of transmissions ko fai . : .
whenn is larger. constrained capacity with respectricare comparable. There-

fore, in the case that the power of the renewable energy

When the network size needs to grow with the number @ . i .
. . source is constrained compared to the power consumption of
nodes, the node density remains the same. Therefore, tr}%re

will be relatively fewer nodes available to relay the grogvin € system (after the adjustments necessary for consierin

traffic across the cut. Such disparity will grow in the ordér oOther variables and constants in Eq. (16)), if due to teagyol

L Together with the_L factor introduced by the numberadvances, the raw system transmission capacity pf the Isenso
of vulnerable cuts, the lifetime decreases witfin the order 9OW> much faster than the system power efficiency, or the
of L ' system power is increased in order to produce higher network

The above discussion leads to the significance of the Chg}[oughput (as proposed in [22]), the energy-constraired ¢

acteristic distance. Ife; = 0 (in which case the characteristicpa;g;v'ged%rp'Zstnes'tra.ne d enerav levels. the feasibility of
distance is not significant), more nodes will always lead té) U ' gy levels, th SIDHILY
less energy costs and a longer lifetime. However, whgris eploying sensor networks has to be studied prior to its

significant, the relay energy cost will remain the same atterﬂeglgyinem'l V\/Ie tcatnh use Eq.t %6) andt.Thelorlirr:. II-A 1 t?]nd
reach a certain threshold. - o calculate the expected operational lifetime of the

The third result of Theorem II-A 1 confirms the validitynmw_ork' In such cases, there_ usually_exists minimum cgeera
of the definition of the operational lifetime proposed insthirequfl_ren;e)\nts_rﬁn node delnsny _(f;)r f_|x_efh) or area coverted
paper. It shows that the network has ceased to function Ioﬁ%r ixed ). There may also exist minimum requirements on

before the last node fails from energy depletion. network throughput. If the operational lifetime caated
based on such minimum coverage requirements can not cover

F. Proof of Theorem II-A 2 the entire mission, a network replenishment strategy has to
Using Lemma II-D 1, we are now ready to prove Theorefi¢ devised to add additional nodes — thus more energy —

H-A 2 into the network to ensure that the network will complete
Proof: its mission successfully. Using Eqg. (16) and constrainthsu

1) Scalability of Maximum Sustainable Throughpwor @S the.deployment cost and the time Wi.ndovy, a Iinear'pro-
sensor networks depending on renewable energy such as s@iamming problem can be formulated to identify the optimal
energy, the maximum amount of data that can be transmitted/fing, location, size of node additions, and the schedol a
any given time period is limited by the energy available dgri gmou.nt of data transmissions, while minimizing the costs an
the same time period. Let denote themaximum sustainable "sks involved.
throughput i.e., the maximum number of bits can be injected

into the network by each node without causing network failur [1l. RELATED WORK
as a result of energy depletion. Based on Eq. (k6%an be  |n mylti-hop wireless networks such as sensor networks,
found by solving following equation: much efforts have been devoted to the problems of topology
) control, power schedule and optimal routing. For example,
. beestdm (1 _e—A";“) [6] _stud_ied Fopology control, [3], [5] studied energy-aear
wv/nA(ar + aswa(h dy)) routing in wireless ad hoc networks, [15] studied minimum

energy cost problems for broadcast and multicast, and [1],
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