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On the Fundamental Capacity and Lifetime Limits of

Energy-Constrained Wireless Sensor Networks
Zhihua Hu, Baochun Li

Abstract— Energy constraints on sensor nodes pose significant
challenges towards extending operational lifetimes and sustain-
able capacities of wireless sensor networks. In this paper, we seek
to answer two fundamental questions with respect to energy-
constrained sensor networks. First, what is the operational
lifetime of a particular wireless sensor network under the control
of optimal power management schemes? With an adequate
definition of operational lifetimes, our asymptotic analysis shows
that, with fixed node densities, operational lifetime of sensor
networks decreases in the order of1/n as the number of initially
deployed nodesn grows. Second, what is the impact of con-
strained energy levels on the maximum sustainable throughput
in sensor networks? Even with renewable energy sources on
each of the sensors (e.g., solar energy sources), our analysis
concludes that the maximum sustainable throughput in energy-
constrained sensor networks scales worse than the capacity based
on interference among concurrent transmissions as long as the
physical network size grows with n in the order greater than
log n. In this case, when the number of nodes is sufficiently high,
the energy-constrained network capacity dominates.

I. I NTRODUCTION

A fundamental limitation of sensor networks is the con-
strained energy source at each node (< 0.5 Ah, 1.2V [4]), since
most of sensors are micro-electronic devices. During signal
propagation, the signal decays asr−α with transmission range
r, whereα is the loss exponent of the signal [9]. The limited
power and signal loss during propagation impose fundamental
constraints on the operational lifetime of the sensor network,
and other performance issues such as the capacity of data
transmissions. In most cases, it is impossible to replenish
energy levels in the sensor nodes. In this case, the initial energy
levels in the sensor nodes and ongoing energy consumption
rates directly affect the operational lifetime and the data
transmission capacity of the sensor network. It is therefore
evident that effective power management mechanisms are of
utmost importance in sensor network designs.

Power management in multi-hop wireless networks such
as wireless sensor networks involves energy-aware topology
control, scheduling and routing mechanisms. These problems
are non-trivial and extensively studied in previous work [1],
[5], [15]. In this paper, we take a different angle when we
examine the problem of extending the operational lifetime
of wireless sensor networks. Given a set of network char-
acteristics and definitions, we seek to answer the following
fundamental question:What is the operational lifetime of a
particular wireless sensor network under the control of opti-
mal power management schemes?An answer to this question

Zhihua Hu and Baochun Li are affiliated with the Department of Electrical
and Computer Engineering, University of Toronto. Their emailaddresses are
{frank,bli}@iqua.ece.toronto.edu.

leads to insights on the fundamental limits with respect to
the performance gains usinganyenergy-aware algorithms and
protocols. As well, additional insights on the scalabilityof
wireless sensor networks with respect to their energy costs
may be derived when we study the relationships between the
network lifetimes and sizes.

Studies on the scalability of sensor networks may lead to
surprising results that must be well understood at the time of
network deployment. Naturally, a sensor network that failsto
function towards the end of its mission should not be deployed,
or should be replenished by deploying additional nodes before
functional failures. With adequate analysis, we may observe
that the network lifetime after its initial deployment may not
be arbitrarily extended by simply increasing the number of
nodes initially deployed. Before communication failures due
to energy costs, provisions must be made to replenish the
network by adding additional nodes on the fly after its initial
deployment.

Towards extending the lifetime, strategies with respect to
suchnetwork replenishmentdue to sensor energy costs have
never been studied in previous work. However, we argue
that these are critical to the lifetime of sensor networks. A
simple strategy may be that, a minimum number of nodes is
deployed initially, with new nodes subsequently added to the
network according to certain schedules. However, the optimal
timing, location and size of node additions are still unknown.
Theoretical studies on influential factors with respect to sensor
network lifetime may lead to insights towards optimal network
replenishment strategies.

Addressing these fundamental questions on sensor network
lifetime, our original contributions in this paper are as follows.
First, we rigorously define the concept ofoperational lifetime
of sensor networks. After suchlifetime expires, a certain
percentage of data transmissions fails. Though more complex,
such a concept of lifetime is more relevant than definitions
in previous studies, e.g., the time elapsed until the last sensor
node fails [14]. We show that network fails to function with
respect to transmissions long before the failure of the last
node. Second,we develop the lower and upper bounds of
operational lifetime using a stochastic model and a cut-based
methodology. Our asymptotic analysis shows that, for fixed
network sizes, operational lifetime decreases in the orderof
1/
√

n as the number of initially deployed nodesn grows. For
fixed node densities, the lifetime decreases in the order of1/n.
Our analysis also shows that the operational lifetime of the
network is shorter than the average lifetime of individual nodes
by a certain factor, which supports our definition of opera-
tional lifetime.Finally, we examine the impact of constrained
energy levels on the maximum sustainable throughput in
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sensor networks. For sensor networks with renewable energy
sources (e.g., solar energy sources), our analysis shows that
the maximum sustainable throughput in energy-constrained
sensor networks scales worse than the capacity predicted
based on interference among concurrent transmissions, if the
physical network size grows withn in the order greater than
log n. In this case, when the number of nodes is sufficiently
high, the energy-constrained network capacity dominates.We
believe that the effects of energy constraints on the operational
lifetime and the capacity of wireless sensor networks are still
largely unchartered territories, as there exists no previous work
seeking to answer these questions analytically to the best of
our knowledge.

The remainder of the paper is structured as follows. Sec. II-
A summarizes the main contribution of this paper in the form
of Theorem II-A 1 and 2. Sec. II-B to Sec. II-D develop the
definitions and lemmas required towards the final proof of
the aforementioned theorems. The two theorems are proved in
Sec. II-E and Sec. II-F. Sec. III discusses related work. Finally,
Sec. IV concludes the paper.

II. ENERGY-CONSTRAINEDL IFETIME AND CAPACITY IN

SENSORNETWORKS

A. Summary of Results

The primary functionality of wireless sensor networks is to
sense the environment and transmit the acquired information
for further processing. As a result of constrained energy levels,
sensors will eventually fail. However, intuitively, a network
may fail to continuously support data transmissions — its
primary functionality — long before the last sensor node fails
(such intuition is shown to be correct later in this paper). This
will occur when the number of failed nodes in the network
reaches a certain critical threshold. Therefore, theoperational
lifetime of a network should be defined such that, after such
lifetime expires, a certain percentage of data transmissions fail.

Let ǫ be a real number that satisfies0 < ǫ < 1, we
define the operational lifetime of a wireless sensor network
as follows (detailed derivations that motivate such a definition
are postponed to Sec. II-D).

Definition II-A 1. The operational lifetimeof a network
is the expected time after which at least100(1 − ǫ2)% data
transmissions fail.

The understanding of the asymptotic behavior of operational
lifetimes is essential to the study of sensor network feasibility:
whether or not a sensor network can function till the end of
its mission. If a sensor network is proved to be infeasible,
either the network should not be deployed, or anetwork
replenishment strategyhas to be devised. The replenishment
strategy may propose to add additional nodes — and thus to
add additional energy — to the network, in order to ensure
that the network will complete its mission successfully.

In this paper, we systematically study the lower and upper
bounds of operational lifetime based on a stochastic model,
and then identify its influential factors. Letbǫ = 1

ǫ(2−ǫ)
1.

1Detailed justifications for such a definition ofbǫ are postponed to Lemma
II-D 1.

Our key results with respect to the operational lifetime are
established in the following theorem.

Theorem II-A 1.
(1) For fixed network sizes, the operational lifetime of a

wireless sensor network decreases in the order of1/
√

n as
the number of nodesn grows.

(2) For fixed node densities, the operational lifetime of a
wireless sensor network decreases in the order of1/n.

(3) The operational lifetime of a wireless sensor network
is smaller than the average lifetime of individual nodes by a
factor of bǫ/

√
n for fixed network sizes andbǫ/n for fixed

node densities.

Before showing the proof of this theorem in Sec. II-E, we
first illustrate the implications and significance of this theorem.
Since

∑

i
1√
ni

> 1√
∑

i
ni

and
∑

i
1
ni

> 1
∑

i
ni

, Theorem

II-A 1 shows that, a good network replenishment strategy
is to replenish the network by adding additional batches of
sensor nodes in subsequent stages, and these batches should
be organized so that the sizes of different stages are as small
as possible.

However, there exist several constraints to the smallest
batch. These constraints include: (1) The requirement of
minimum coverage for sensing purposes (both in terms of
node density and network size); (2) The deployment overhead
incurred in addition to the cost of sensors; and (3) the lim-
ited deployment window due to realistic causes (e.g., enemy
positions in battlefields or weather conditions). Theorem II-A
1 may be used to identify the optimal network replenishment
strategy under such constraints.

For sensor networks that rely on renewable energy sources
such as solar energy, the maximum amount of data that can be
transmitted in any given time period is limited by the energy
available during the same time period. We argue that there
exists amaximum sustainable throughputin wireless sensor
networks under such energy constraints. Our investigation
towards the operational lifetimes of sensor networks also leads
to significant results with respect to the maximum sustainable
throughput. The following theorem establishes our key obser-
vation with respect to the maximum sustainable throughput.

Theorem II-A 2.
(1) The maximum sustainable throughput of a wireless

sensor network with renewable energy sources is limited by
n in the order ofbǫ/

√
n for fixed network sizes andbǫ/n for

fixed node densities.

(2) The energy-constrained capacity scales worse than
interference-constrained capacity if the size of the network
grows withn in the order greater thanlog n.

The above results imply that, if the growth of the network
size is not exceedingly slow compared to the growth ofn, and
when the number of nodes in the network is sufficiently large,
the fundamental performance limits with respect to network
capacity are dominated by the energy-constrained capacity,
rather than interference-constrained information-theoretic ca-
pacity. The detailed proof of this theorem is postponed to
Sec. II-F.
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B. Problem Setup

We begin our journey towards proving the correctness of our
key observations and claims previously stated. Fig. 1 illustrates
the setup of the problem. Without loss of generality, consider
a wireless sensor network withn nodes uniformly deployed
within a square area of sizeA as shown in Fig. 1. Each node
has constrained energy sources. Optimal power schedules are
assumed, achievable by optimal power management strategies.
The objective is to find asymptotic impact of constrained
energy resources on the fundamental performance limits of the
network, such as the operational lifetime and data transmission
capacity.

We consider the typical scenario in which all nodes be-
have as sources and the data sink is the destination of all
transmissions. In the case that the source can not reach the
destination directly, intermediate nodes will act as relays to
forward messages to the destination via multiple hops.

data sink

Fig. 1. We study a wireless sensor network withn nodes in a square area.
The goal is to examine the asymptotic impact of constrained energy resources
on the fundamental performance limits of the sensor network. The size of the
square area isA.

As shown in Fig. 1, we consider nodes neary-axis (or x-
axis) cuts close to the data sink.2 Such a cut-based technique
has been used in [10] and [11]. We argue that the analysis
of the energy cost and thus the lifetime of the nodes near
the cut can provide adequate insights into the energy cost and
performance of the entire sensor network.

C. Assumptions and Definitions

Before we progress to a position to analyze the energy
cost of data transmissions and the operational lifetime of
the network, we need to clarify our basic assumptions and
establish a few terms by definitions.

We first define the radio model used in this paper. In this
paper, we adopt the first order radio model used in [2], [14]
and many other literatures. In this model, the following energy
parameters are included: transmit (α11), receive (α12), and
transmit amplify (α2). Without loss of generality, all respective
energy costs are for one bit. We do not include the energy
costs of sensing. The reason is that energy costs for sensing
depends heavily on the specific application. Nevertheless,such
energy costs can be easily integrated into our solution oncethe
sensing model is defined. Based on such a radio model, the
energy costs for transmitting the signal across the distance of
r is

2The y-axis andx-axis cuts will be formally defined in Sec. II-C.

Er = α11 + α2r
α + α12 = α1 + α2r

α (1)

whereα1 = α11 + α12. When a source sends a message
to a destination whose distance from source isd, it can use
intermediate nodes to relay the message. Under the first order
radio model, the optimal distance between relay nodes is the
characteristic distancedenoted bydm [14]. dm is defined as

dm = α

√

α1

α2(α − 1)
(2)

dm is independent of the source-destination distanced.
Theorem 2 of [14] proves thatdm is the optimal hop distance
for anyd and the optimal number of hops taken,K, is given by
either K = ⌊ d

dm
⌋ or K = ⌈ d

dm
⌉. Without loss of generality,

we assumed ≫ dm in our paper to facilitate discussions.
HenceK = d

dm
.

dc

x=bB

r

r

 

source

destination

dm

G




o

Fig. 2. A y-axis cut is placed at positionx = b. B = [b−dc, b]× [0,
√

A].
Any message from source to destination must be relayed by one ormore
nodes inB.

We then formally define the concept ofcut and failed cut.
A y-axis cut at positionx is a line segment parallel to the
y-axis whosex-axis position equalsx. The y-position of the
line segment starts from0 and ends at

√
A. When the nodes

near the cut fail, network traffic can not cross such ay-axis
cut. Such ay-axis cut is referred to as afailed y-axis cut. An
x-axis cut at positiony and a failedx-axis cut can be similarly
defined.

We now consider the energy cost of nodes near ay-axis
cut. As illustrated in Fig. 2, ay-axis cut is placed at position
x = b. We are interested in the energy costs of the nodes in a
setR, whereR is defined as

R = {v|(vx, vy) ∈ [b − dc, b] × [0,
√

A]} (3)

where dc is the maximum transmission range used by
the nodes in the network. In the case that each node uses
different maximum transmission ranges, sincedc must apply
to all the cuts,dc should be interpreted as the average of the
maximum transmission ranges used by all nodes. Informally,
R represents the nodes within the rectangular area immediately
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left of b, whose width isdc. Denote the area occupied byR
asB. We haveB = [b − dc, b] × [0,

√
A].

Definition II-C 1. The relay position setG is defined as
the set of possible positions of relay nodes.

Without loss of generality, assume that the transmission is
from left to right. ThenG is the right half of the circle centered
at the sender. We assume that each node in the network needs
to send1 bit of information in each time slot. Sincedc is the
maximum transmission range, any source must rely on one or
more nodes inR to relay the messages in order to cross cutb.
Let hb be the number of hops a1-bit message needs to take
in B in order to cross cutb. Let rj be the distance traversed
in the jth hop, where1 ≤ j ≤ hb. Let oj andzj be the sender
and receiver of thejth hop, where obviouslyzj−1 = oj for
2 ≤ j ≤ hb. Let cb be the energy spent byoj , 1 ≤ j ≤ hb. cb

is in fact the total energy spent byv ∈ R in order to forward
such1-bit message to cross cutb. We then have

cb =

hb
∑

j=1

Erj
=

hb
∑

j=1

(α1 + α2r
α
j ) (4)

rj are in fact iid random variables. This claim is based on
the observation thatsub-paths of shortest paths are shortest
paths. Further, the setup of cutb and areaB is artificial. The
optimal schedule of each hop does not depend on the result
of the previous hop. The only limitation is that the maximum
transmission range can not exceeddc. Another way to interpret
this is that each hop actually belongs to multiple cuts.

Sincerj are iid random variables,Erj
are also iid random

variables. Therefore, whenever appropriate, we will omit the
subscriptj and user andEr respectively in later discussions.
For instance, we can write

Er = α1 + α2r
α (5)

For practical applications,dm ≪ dc. In addition, we are
able to show that3, the probability ofr ≫ dm is very low.
Therefore we have the equality4

dc =

hb
∑

j=1

rj cos(θj) (6)

where θj is the angle between~r j and the x-axis. We
are interested in the expectation ofcb under optimal power
management. From Eq. (4), we have

E[cb] = E[hb]E[Er] =
dc

E[r cos(θ)]
E[Er] (7)

Lemma II-C 1. cb satisfies

dc(α1 + α2d
α
m)

dm
≤ cb ≤

dc(α1 + α2d
α
c )

dm
(8)

3Detailed proofs are not included due to space constraints.
4In general, the inequalitydc ≤

∑hb
j=1

rj cos(θj) ≤ 2dc rather than the
equality in Eq. (6) holds. For simplicity of presentation, weintroduce the
equality here. The asymptotic results of this paper remain thesame if the
inequality is applied.

E[cb] <
dc(α1 + α2ωα(λ, dc))

dm(1 − e−λ
πd2

c
2 )

≤ dc(α1 + α2d
α
c )

dm(1 − e−λ
πd2

c
2 )

(9)

where λ = n
A and ωα(λ, dc) < dα

c . Asymptotically,
ωα(λ, dc) satisfies a)limn→∞ ωα(λ, dc) = (1+κ)dα

m, κ > 0;
or b) ωα(λ, dc) grows withn.

Proof: The proof of Eq. (8) is trivial. As proved in [14], the
relay path with the least energy cost is the straight line parallel
to the x-axis (Fig. 2). In addition, the distances traversed
by each hop must equal to the characteristic distancedm

defined in Eq. (1) in order to achieve the minimum energy
cost. Consequently, the minimum energy cost to relay a1-bit
message across the cut shown in Fig. 2 isdc(α1+α2dα

m)
dm

. This
minimum value can be achieved iff network nodes occupy the
positions whose distances from the pointo are multiples of
dm, which is not the case in general. The proof of Eq. (9) is
much more involved. Due to lack of space, the detailed proofs
are not included. However, the asymptotic results of this paper
actually do not depend on the details of the closed form of
ωα. In fact, the qualitative claims pertaining toωα can be
explained intuitively. Sincedm is the optimal distance [14],

we can usedm(1 − e−λ
πd2

c
2 ) as the first order approximation

of E[r cos(θ)]. SinceEr = α1 +α2r
α, the expectationE[Er]

must have the form ofα1 + α2ωα, where ωα = E[rα].
Obviously,ωα ≤ dα

c . Becausedm is the optimal distance, if
the network node density increases with largern (λ increases),
the optimal distancedm will more likely be chosen. In such
cases,limn→∞ ωα(λ, dc) = (1 + κ)dα

m. For α = 2, it can be
proved thatκ = 1

2π . if the network node density decreases
with larger n (λ decreases),ωα increases sincedc ≫ dm

5

However,ωα never exceedsdα
c . ⊓⊔

Fig. 3 shows the comparison of our theoretical bounds
and simulation results. The energy parameters used in sim-
ulation and theoretical bounds areα1 = 50nJ/bit, andα2 =
0.1nJ/bit/m2. The lower bound shown is calculated based on
the assumption that the node at the optimal distancedm along
the straight line parallel to thex-axis will always be chosen
as the relay node. As shown in this figure, the upper bound
derived above is reasonable tight.

D. Operational Lifetime of Sensor Networks

In this paper, we are interested in the operational lifetime
tc of the sensor network. The nature oftc can be explained as
follows. With the progress of time, some of the network nodes
may fail after the depletion of their energy resources. Even
though the distributions of the failed nodes are random, there
exist certain probabilities that some nodes that are physical
proximate, such as the nodes in the regionB near a cut
(Fig. 2), may fail faster than some of the other nodes in the
network. If this event happens, all the network transmissions
that across that cut will break. When the number of the failed
cuts in certain critical region (as will be analyzed in Fig. 4)
reach certain threshold, more than100(1 − ǫ2)% data trans-
missions fail and the network reach its operational life. Our
study of operational lifetimetc explores the aforementioned

5If dc ≪ dm, ωα will approach a constant> 0, becausedm > 0 is the
optimal distance.
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Fig. 3. Comparison between simulation results and theoretical lower and
upper bounds, wheredc = 200m, andA = 4 × 106m2. For convenience
of illustration, the number of nodes shown is

√
n rather thann. The unit of

y-axis is nJ.α = 2.

characteristics of the network. In general, the operational
lifetime can be reached long before the last node in the
network fails.

......

1/m
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B

Fig. 4. There arem y-axis cuts, whose positions arei
m

√
A, 1 ≤ i ≤ m. For

the convenience of illustration, the figure shown above has been normalized to
the size of1. When consideringy-axis only,100ǫ% transmissions will break
iff there is at least one failedy-axis cut whose positionx ≥ (1 − ǫ)

√
A.

As assumed in Sec. II-C, each node in the network needs to
send 1 bit of information in each time slot. As shown in Fig. 4,
we assume that there arem y-axis cuts, whose positions are
i
m

√
A, 1 ≤ i ≤ m. The value ofm will be determined later in

the proof of Lemma II-D 1. For the cut at the positionim
√

A,
the amount of traffic needs to be relayed isi

mn. Therefore,
the total energy costs int time slots for nodesv ∈ R near
such a cut is

ct,i =

t
∑

k=1

i

m
ncb,k,i (10)

where cb,k,i is the average energy cost of, in thekth

time slot, to forward a1-bit message across cuti. During
the development of the upper bound ofcb, we consider the
probability of occupying, the probability that a position in
region B (Fig. 2) is occupied by a node, based only on the
initial deployment. In practice, the probability of occupying
is affected by the energy cost as well. A node will fail after
depleting its energy resources. Because of the failed nodes,
the effective number of the nodes in the network decreases
over time. Therefore, to modelcb,k,i, the energy cost in the
network after the number of nodes decreases, the value ofλ
needs adjustment accordingly.λ should equal ton

Aτk,i, where
0 < τk,i ≤ 1. However, because the initial distribution of
the nodes in the network is random and the random nature
of the network traffic, the distributions of the failed nodes
are also random. Consequently, the results from Lemma II-C
1 still hold for cb,k,i. In fact, the inequality in Eq. (8) and
the qualitative claims pertaining to the asymptotic behavior
ωα hold even for uneven distributions of network nodes. In
practice, we are interested in the values ofn and A smaller
than some finite valuesnmax and Amax. Because a smaller
λ leads to a largercb, there exists a valueτmin, whose
correspondingcb,max satisfies

E[cb,max(
n

A
τmin, dc)] ≥ max

i,k,n<nmax,A<Amax

E[cb,k,i] (11)

In addition, the value ofcb,max is independent fromtc.
cb,max depends on the node distribution characterized byλ =
n
Aτmin. Therefore, we have

E[ctc,i] ≤
i

m
ntcE[cb,max] (12)

In the remainder of the paper, all references tocb are
actually the references tocb,max. For simplicity, we drop the
subscriptmax and usecb hereafter.

Lemma II-D 1. The operational lifetimetc satisfies
2bǫeo√

nA[α1+α2ωα(λ,dc)]
dm(1 − e−λ

πd2
c

2 ) < tc ≤ 2ǫbǫeodm√
ndc(α1+α2dα

m)
.

Proof: We consider they-axis cuts first. Because the data
sink is the destination of all the transmissions,100ǫ% trans-
missions will break iff there is at least one failedy-axis cut
whose positionx ≥ (1−ǫ)

√
A. As shown in Fig. 4, we define

the region covering these cuts asBǫ.
We develop the lower bound first. Letnf (t) be the number

of failed cuts in regionBǫ by time t, we then have

nf (t) =

mǫ
∑

i=1

It,m−i+1 (13)

whereIt,m−i+1 is the indicator variable defined as

It,j =

{

1, cut at the positionj
m

√
A has failed by timet.

0, cut at the positionj
m

√
A is active by timet.

(14)
E[nf (t)] =

∑mǫ
i=1 E[It,m−i+1] =

∑mǫ
i=1 P [It,m−i+1 = 1],

where, based on Markov inequality,P [It,m−i+1 = 1] =

P [ct,m−i+1 ≥ ndcreo] ≤ E[ct,m−i+1]
ndcreo

, whereeo is the initial
energy available at each node, anddcr = dc√

A
. Hence tc,

the expected time required for100 × (1 − ǫ)% network
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transmissions to fail due to failedy-axis cuts satisfies the
following:

1 ≤ E[nf (t)] ≤
mǫ
∑

i=1

E[ct,m−i+1]

ndcreo

≤ tcE[cb]

dcreo

mǫ
∑

i=1

m − i + 1

m

=
tcE[cb]

dcreo
mǫ[(1 +

1

m
) − 1

2
ǫ − 1

2m
]

Since there aren nodes in the network, we then havem =√
n 6. Therefore, asn → ∞, tc satisfies

1 ≤ tcE[cb]

dcreo

√
nǫ(1 − 1

2
ǫ)

Let bǫ = 1
ǫ(2−ǫ) , we then have

lim
n→∞

tc ≥ 2bǫdcreo√
nE[cb]

>
2bǫeo√

nA[α1 + α2ωα(λ, dc)]
dm(1 − e−λ

πd2
c

2 )

Using the second inequality of Eq. (8), we can follow the
steps similar to the above derivation process, but without the
need to reference Eq. (11) and Eq. (12), to develop a relatively
loose lower bound oftc as follows:

lim
n→∞

tc >
2bǫeo√

nA(α1 + α2dα
c )

dm

To develop the upper bound, we use the condition that the
total energy cost of all the cuts in the regionBǫ can not exceed
nǫeo. We then have

nǫeo ≥
mǫ
∑

i=1

ct,m−i+1

=

mǫ
∑

i=1

tc
∑

k=1

m − i + 1

m
ncb,k,i

Applying Eq. (8) of Lemma II-C 1, we have

nǫeo ≥
mǫ
∑

i=1

tc
∑

k=1

m − i + 1

m
n

dc(α1 + α2d
α
m)

dm

= ntc
dc(α1 + α2d

α
m)

dm

mǫ
∑

i=1

m − i + 1

m

Applying m =
√

n as before, we have

lim
n→∞

nǫeo ≥ ntc
dc(α1 + α2d

α
m)

dm

√
nǫ(1 − 1

2
ǫ)

6A more precise estimate ofm is m ∝ √
n. For simplicity of discussions,

we let m =
√

n, since it will not affect our discussions of the asymptotic
behavior oftc.

Therefore, the upper bound oftc is

lim
n→∞

tc ≤ 2ǫbǫeodm√
ndc(α1 + α2dα

m)
(15)

The upper bound just derived is a loose bound. To achieve
the equality in Eq. (15), two conditions must be met. First,
all the energy resources on all the nodes in the regionBǫ

must be depleted at the timetc. Second, the minimum energy
cost dc(α1+α2dα

m)
dm

must be achieved for all data transmissions
throughout the lifetime of the network, which is not possible at
the later stage of network life. Nevertheless, the upper bound
in Eq. (15) offers additional proof that the energy-constrained
capacity scales worse than the interference-constrained capac-
ity. For instance, for fixedλ, the upper bound oftc scales
as 1√

n log n
becausedc must grow with n in the order of

Θ(
√

log n
πn ) in order to keep the network connected [16]. Note

that in Gupta and Kumar [16], it is assumed that the network
occupies unit area. Compare 1√

n log n
, the upper bound oftc for

fixed λ with the interference-constrained capacityΘ( 1√
n log n

)
[17], [10], [22], we prove that, since the upper bound oftc is
not attainable, the energy-constrained capacity scales worse.

In the above derivations, we only consider the broken
network transmissions due to failedy-axis cuts. In fact, when
the expected number of failedy-axis cuts reaches1, the
expected number of failedx-axis cuts inBǫ also reaches1.
Therefore, at timetc, there are at least100×(1−ǫ2)% network
transmissions broken.

Let tlow represent the lower bound of the network lifetime,
we then have

tlow =
2bǫeo√

nA[α1 + α2ωα(λ, dc)]
dm(1 − e−λ

πd2
c

2 ) (16)

⊓⊔

E. Proof of Theorem II-A 1

We are now in the position to prove Theorem II-A 1.
Proof:
1) Fixed A, variable n: In such a scenario, the node

density varies while the deployment area of the sensor network
remains the same. As shown in the proof of Lemma II-C 1,
limn→∞ ωα(λ, dc) =constant. Using Lemma II-D 1, we have
tlow ∝ 2bǫeo√

nA
, whenn is large. Therefore,tlow will decrease

in the order ofn− 1
2 .

2) Fixed λ, variable n: In such a scenario, the size
of the network varies while the node density remains
the same. Whenλ is fixed, we are able to prove that7,
limn→∞ ωα(λ, dc) =constant for both fixed and variabledc

by using the result thatdc needs to grow withn in the order

of Θ(
√

log n
πn ) in order to keep the network connected[16]8.

Thus tlow ∝ 1√
nA

=
√

λ
n . That is,tlow decreases in the order

of 1
n when the coverage of the sensor network grows while

node density remains the same.

7Detailed proofs are not included due to space constraints.
8In Gupta and Kumar [16], it is assumed that the network occupiesunit

area.
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3) Comparison with the Average Node Lifetime:Let to
represent the average lifetime of an individual node. Then
to ∝ ndcreo

nE[cb]/2 . Compare this with the result from Lemma II-
D 1, we conclude that the operational lifetime of a wireless
sensor network is shorter than the average lifetime of an
individual node by a factor ofbǫ/

√
n for fixed network sizes

andbǫ/n for fixed node densities. Sinceǫ can not be too small,
bǫ can not be too large. Therefore, the operational lifetime is
much smaller than the average lifetime of an individual node
when the number of nodes in the network is large. ⊓⊔

Intuitively, for fixed network sizes, when there are more
nodes generating traffic, there are more nodes available to relay
the traffic across the cut because the node density will grow
with n. Under optimal power management, when the number
of nodes is sufficiently large, the characteristic distancewill
always be chosen. Thus the network lifetime depends mainly
on the number of cuts vulnerable. We can then conclude that
adding more nodes in the initial deployment does not add
redundancy, since each new node needs to generate traffic and
relay traffic for other nodes. Note that asn grows, the absolute
number of transmissions remaining aftertc is larger, but it is
much easier for a certain percentage of transmissions to fail
whenn is larger.

When the network size needs to grow with the number of
nodes, the node density remains the same. Therefore, there
will be relatively fewer nodes available to relay the growing
traffic across the cut. Such disparity will grow in the order of
1√
n

. Together with the 1√
n

factor introduced by the number
of vulnerable cuts, the lifetime decreases withn in the order
of 1

n .
The above discussion leads to the significance of the char-

acteristic distance. Ifα1 = 0 (in which case the characteristic
distance is not significant), more nodes will always lead to
less energy costs and a longer lifetime. However, whenα1 is
significant, the relay energy cost will remain the same aftern
reach a certain threshold.

The third result of Theorem II-A 1 confirms the validity
of the definition of the operational lifetime proposed in this
paper. It shows that the network has ceased to function long
before the last node fails from energy depletion.

F. Proof of Theorem II-A 2

Using Lemma II-D 1, we are now ready to prove Theorem
II-A 2.

Proof:
1) Scalability of Maximum Sustainable Throughput:For

sensor networks depending on renewable energy such as solar
energy, the maximum amount of data that can be transmitted in
any given time period is limited by the energy available during
the same time period. Letw denote themaximum sustainable
throughput, i.e., the maximum number of bits can be injected
into the network by each node without causing network failure
as a result of energy depletion. Based on Eq. (16),w can be
found by solving following equation:

t =
2bǫestdm(1 − e−λ

πd2
c

2 )

w
√

nA(α1 + α2ωα(λ, dc))

w =
2bǫesdm(1 − e−λ

πd2
c

2 )√
nA(α1 + α2ωα(λ, dc))

(17)

wherees is the power renewal rate. Therefore,w ∝ bǫ√
n

for

fixed network sizes andw ∝ bǫ

n for fixed node densities.
2) Comparison with Interference-Constrained Capacity:

We compare the above result with the capacity pre-
dicted based on the interference among concurrent transmis-
sions. Interference-constrained capacity per node scalesas
Θ( 1√

n log n
) [17], [10], [22]. Whenλ is fixed, it is obvious

that the energy-constrained capacity scales much worse than
interference-constrained capacity. In fact,ωα(λ, dc) either

approaches a constant or grows withn, and (1 − e−λ
πd2

c
2 )

either approaches zero or a constant no greater than1. There-
fore, as long asA grows with n in the order greater than
log n, the maximum sustainable throughputw scales worse
than interference-constrained capacity. In this case, when the
number of nodes is sufficiently high, the energy-constrained
network capacity dominates. ⊓⊔

For a fixedA, since
√

log n grows very slowly withn, the
scalability of the energy-constrained capacity and interference-
constrained capacity with respect ton are comparable. There-
fore, in the case that the power of the renewable energy
source is constrained compared to the power consumption of
the system (after the adjustments necessary for considering
other variables and constants in Eq. (16)), if due to technology
advances, the raw system transmission capacity of the sensors
grows much faster than the system power efficiency, or the
system power is increased in order to produce higher network
throughput (as proposed in [22]), the energy-constrained ca-
pacity will dominate.

Because of constrained energy levels, the feasibility of
deploying sensor networks has to be studied prior to its
deployment. We can use Eq. (16) and Theorem II-A 1 and
II-A 2 to calculate the expected operational lifetime of the
network. In such cases, there usually exists minimum coverage
requirements on node density (for fixedA) or area covered
(for fixed λ). There may also exist minimum requirements on
the network throughput. If the operational lifetime calculated
based on such minimum coverage requirements can not cover
the entire mission, a network replenishment strategy has to
be devised to add additional nodes — thus more energy —
into the network to ensure that the network will complete
its mission successfully. Using Eq. (16) and constraints such
as the deployment cost and the time window, a linear pro-
gramming problem can be formulated to identify the optimal
timing, location, size of node additions, and the schedule and
amount of data transmissions, while minimizing the costs and
risks involved.

III. R ELATED WORK

In multi-hop wireless networks such as sensor networks,
much efforts have been devoted to the problems of topology
control, power schedule and optimal routing. For example,
[6] studied topology control, [3], [5] studied energy-aware
routing in wireless ad hoc networks, [15] studied minimum
energy cost problems for broadcast and multicast, and [1],
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[2] studied energy management in wireless sensor networks.
Recently, [12] presented a competitive and efficient algorithm
for routing of messages in energy-constrained ad-hoc network.

The paper most related to our work is written by Bhardwaj
et al. [14]. In this paper, they studied the upper bound of
lifetime of sensor networks with a single data source. However,
the lifetime studied in this paper is theactive lifetime, i.e.,
the time at which the total energy consumed equals the the
total energy in the network available at the start. As shown
in our paper, such definition of upper bound yields very little
relevance to the practical network. Since the network failsto
function long before the last node in the network fails from
energy depletion. In addition, [14] uses very simple models
that fail to consider the stochastic behavior of relay nodes
along the path between the source and data sink. Another
related work is by Shakkottaiet al. [13]. In this work, it is
shown that the the necessary and sufficient conditions for the
coverage and the connectivity of the random grid network are
p(n)r2(n) ∼ log(n)

n . The authors claimed that, using a node
failure model as a function of time, the results in the paper
can be used to answer the question pertaining to the maximum
length of time over which one can expect the network to
provide coverage and be connected with probability no smaller
than1 − ǫ, whereǫ is a small value.

There have been many papers on the capacity of wireless
ad hoc networks. These papers focus on the interference-
constrained capacity of the network. The comparison of
interference-constrained capacity and energy-constrained ca-
pacity has been presented in Sec. II-F. Guptaet al.
[17] predicted that the total throughput of the network is
Θ(

√

n/ log n). Grossglauseret al. [18] proposed that mobility
can increase the capacity of the wireless ad hoc networks.
Li et al. [19] demonstrated that the scalability of mobile ad
hoc networks depends on whether the network traffic can be
localized. Perakiet al. [10] and Scaglioneet al. [11] used
the cut-based analysis. In both papers, the maximum data
capacity that can cross any cut is studied to find the maximum
network throughput based on max-flow/min-cut theorem of
the flow network. In particular, Perakiet al. studied the
maximum stable throughput problem in random networks with
directional antennas. Barroset al. [20] studied the reachback
capacity of sensor networks. Servetto [21] investigated the
feasibility of large scale sensor networks. Xieet al. [22]
studied the optimal strategies for information transmission and
cooperation among the network nodes. One of the conclusions
in [22] is that the transport capacity of the network is upper
bounded by the total power for a positive absorption constant
or path loss exponent greater than 3.

IV. CONCLUSION

In this paper, we studied the asymptotic behavior of op-
erational lifetime and energy-constrained capacity of sensor
networks. For sensor networks with renewable energy sources,
our analysis shows that the maximum sustainable throughput
in the network scales much worse than the capacity predicted
based on interference among concurrent transmissions, if the
growth of the physical network size is not exceedingly slow

compared to the growth ofn. Our results can be used to
study the feasibility of deploying energy-constrained sensor
networks and their replenishment strategies.
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