
Vassago: Efficient and Authenticated Provenance Query on Multiple Blockchains

Rui Han∗, Jiang Xiao∗, Xiaohai Dai∗, Shijie Zhang∗, Yi Sun†, Baochun Li§, and Hai Jin∗
∗National Engineering Research Center for Big Data Technology and System

∗Services Computing Technology and System Lab, Cluster and Grid Computing Lab
∗School of Computer Science and Technology, Huazhong University of Science and Technology, China

†University of Chinese Academy of Sciences, China
§University of Toronto, Canada

jiangxiao@hust.edu.cn

Abstract—Recent successful pilot studies on blockchains
showed significant benefits of data provenance towards im-
proved visibility and authenticity, as well as a reduction of
administrative costs. Traditionally, all the parties reside in a
single blockchain system, which leads to various single-chain
provenance query schemes. However, for the sake of conve-
nience, it has been a trend for different parties to deploy their
own blockchain systems separately, which requires cross-chain
provenance queries. Unfortunately, state-of-the-art blockchain
query schemes suffered from inauthentic transactions and low
efficiencies when expanding to adversarial cross-chain commer-
cial deals. To be more specific, query results may be inconsistent
and incomplete over multiple blockchains due to the lack of
global knowledge on cross-chain dependencies. Moreover, these
schemes perform cross-chain provenance queries in sequence,
leading to high query latencies. In this paper, we present
Vassago, the first multi-chain system that empowers efficient
and authenticated provenance queries. Vassago incorporates
three innovative designs: 1) it explores the dependencies of
cross-chain transactions, 2) it validates the authenticity of cross-
chain provenance by recording and querying the dependencies
on a shared blockchain, and 3) it improves efficiency by
parallelizing query processes. Our experimental results show
that Vassago can shorten the query latency by 85.9% and
reduce the storage consumption by up to 85.7%, with negligible
overhead.

Keywords-Blockchain, Cross-chain, Data provenance, Trace-
ability

I. INTRODUCTION

Due to their merits of immutability and transparency,

blockchain systems have been deployed in many fields, such

as industry supply chains. However, in many scenarios, not

all the parties are able to participate in a single blockchain

system. For example, in a supply chain for COVID-19

vaccines, suppliers from different countries may need to co-

operate to establish a supply chain over a blockchain system.

However, due to the lack of scalability of a single blockchain

and various regulatory policies from different countries, it is

impractical to record the vaccine transactions from all the

relevant suppliers in a single blockchain. Instead, multiple

blockchains must be utilized, each of which is deployed in

its own country. As a result, cross-chain queries are required

to trace the circulation of vaccines across these blockchains.

Compared with single-chain queries, cross-chain queries

are presented with two major challenges: lack of guarantees

for data authenticity and longer query latencies. To be more

specific, the consensus in a single chain can ensure the con-

sistency of query results. In contrast, there is no such cross-

chain consensus covering multiple chains. Consequently,

results from cross-chain queries may not be authentic, as

they may be either inconsistent or incomplete. As shown

in Figure 2, query result from blockchain 2 and 3 must

be consistent, and a complete historical record should be

obtained from blockchain 1. Besides, a cross-chain query

consists of multiple sub-query tasks on each blockchain,

each of which will incur additional query latencies.

Although there are some cross-chain technologies, they

can only support the interaction of two blockchains and

guarantee the consistency between a pair of transactions.

However, a cross-chain query usually involves the interac-

tions across more than two blockchains, which are not able

to utilize existing cross-chain technologies directly. Take a

supply chain consisting of three blockchains (A, B, and C) as

an example. Although the cross-chain technology can ensure

the consistency between chain A and B or between B and C,

it cannot deal with the consistency between chain A and C.

Furthermore, existing cross-chain technologies mainly focus

on the execution logic, which ignores the implementation of

query functions.

To deal with the challenges above, we exploit the relation-

ship among cross-chain transactions and successfully find

the cross-chain provenance dependency. This dependency

can indicate if a transaction in one chain has a corresponding

transaction in the other chains. With this dependency, the

consistency and completeness of the query results can be

verified, thus guaranteeing the data authenticity of cross-

chain queries. Besides, once acquiring the dependency, the

sub-query tasks in a cross-chain query can be executed in

parallel, thereby accelerating the overall efficiency.

Based on the cross-chain provenance dependency, we

propose an efficient and authenticated query mechanism

for the cross-chain scenarios, Vassago, which contains an

adaptive two-layer architecture. The first layer contains a

Dependency Blockchain (DB), which records the cross-



chain provenance dependency. The second layer includes a

Transaction Blockchain (TB) Group, which contains a group

of TB executing intra-chain and inter-chain transactions.

Users will join the TBs on demand which is defined in the

DB.

To evaluate Vassago, we have implemented a prototype

system on top of Hyperledger Fabric [1] and conduct

multiple experiments on our prototype implementation. Our

experimental results demonstrate Vassago’s high efficiency

in executing cross-chain queries. Compared with the system

without dependency, Vassago can reduce the latency of a

data query by 85.9%. Our experimental results also show

that Vassago is scalable. It can reduce storage overhead by

up to 85.7% while providing comparable transactions per
second.

Our original contributions in this paper are as follows:

• We present an in-depth analysis of the fundamental

challenges in cross-chain scenarios: a lack of guarantees

for data authenticity and longer query latencies.

• We identify the cross-chain provenance dependency,

based on which we propose Vassago to support authen-

ticated cross-chain data queries efficiently.

• We demonstrate the efficiency and scalability of Vas-

sago with an extensive array of experiments. Our

experimental results show that Vassago improves the

efficiency of cross-chain queries, reduces unnecessary

storage overhead, and provides a comparable through-

put as the state-of-the-art.

The remainder of this paper is organized as follows. In

Section II, we present the limitations of the current cross-

chain techniques and describe the problem caused by a lack

of the cross-chain provenance dependency. In Section III,

we propose Vassago design principles and system archi-

tecture. We clearly define the cross-chain provenance and

elaborate the cross-chain data query process supported by

Vassago in Section IV. Our theoretical analysis of Vassago’s

performance is presented in Section V. The feasibility and

scalability of Vassago are evaluated by our experiments in

Section VI. Finally, we briefly present the related work,

along with further discussions and some concluding remarks

in Section VII, VIII, and IX, respectively.

II. BACKGROUND AND MOTIVATION

Current cross-chain technologies focus on cross-chain

correctness in the transaction execution, but they could not

satisfy functional requirements. In this section, we consider

the provenance query requirement and figure out why the

current cross-chain transaction could not get on well with

the requirement.

A. Limitations of the Cross-chain Strategies

Side-chain [2]–[4] and relay-chain [5]–[7] are the main-

stream cross-chain techniques. Side-chain enables the inter-

operability of two different blockchains, in which the side-

Figure 1. Cross-chain Data Provenance Scenario

Figure 2. Overall Workflow of Cross-chain Data Provenance in Ford’s
view

chain acts as an extension of the main blockchain, and

can validate data from the main blockchain through the

Simplified Payment Verification (SPV) proof. Relay-chain

alternatively adopts an intermediate blockchain to record

cross-chain transactions on all interactive blockchains, which

guarantees the existence of the transaction. Both succeed

in ensuring the atomicity of transaction execution among

different blockchains (e.g., atomic swaps). However, side-

chain and relay-chain could not fulfill all the data provenance

requirements separately. The limitations that side-chain and

relay-chain suffer from are concluded as follows.

• Limitation 1: low efficiency. In a data provenance

query, the query target in upstream is decided by the

downstream query result, and the query will serially

iterate each block. In the multi-chain scenario, we can

perform queries in multiple blockchains at the same

time. However, due to the lack of a trusted dependency

for the target in different blockchains, the query is

still carried out in the order from the downstream

blockchain to the upstream blockchain, which leads to

low query efficiency.

• Limitation 2: authenticated requirement. A depen-

dency in a group of cross-chain transactions could



not be explicitly recorded and be consented to by all

participators. As a result, the dependency is unauthen-

ticated for the data provenance query. This can lead

to two problems in the cross-chain provenance query,

namely inconsistency and incompleteness. Limitation
2.1: inconsistency. Since a cross-chain transaction is a

group of transactions recorded in different blockchains

and current cross-chain strategies lack the ability to

perceive the change of history records, this query

for these cross-chain transactions cannot be verified

as consistent. Limitation 2.2: incompleteness. Since

the cross-chain provenance dependency could not be

credibly recorded in different blockchains, it hurdles

the query executor to determine whether the transaction

is a cross-chain transaction, which leads to incomplete

query results.

B. A Motivating Example

We use a scenario in Figure 1 to describe the problem

lacking the cross-chain provenance dependency in the cross-

chain data provenance.

We first consider a pipeline supply-chain scenario with

data provenance requirements. When all transactions hap-

pened in one blockchain (i.e., Blockchain 1), the downstream

transaction could record the dependency with its upstream

transaction. For example, Tx3 records its upstream depen-

dency with Tx2, so the item’s tracking can perform one by

one.

Now, consider a scenario with three blockchains (i.e.,

Blockchain 1, Blockchain 2, Blockchain 3). It is worth noting

that there is no interoperation between Blockchain 1 and

Blockchain 3 so they are unaware of each other’s existence.

When Ford wants to track the item history and then decides

whether to make a transaction with Eva according to the

query result as Figure 2, he will face the following chal-

lenges:

First, the query is inefficient (Limitation 1). Only after

tracking in Blockchain 3, can we know Tx7 has a cross-chain

transaction dependency with Tx6 in Blockchain 2. Similarly,

after tracking in Blockchain 2, we know Tx4 has a cross-

chain transaction dependency with Tx3 in Blockchain 1.

Hence the tracing is serial. If we can perceive the complete

dependencies before the query, we can track the provenance

in all the three related blockchains in parallel. More impor-

tantly, the cross-chain provenance dependencies cannot be

agreed upon by different blockchains, so the dependencies

are not trusted, leading to the following problem.

Second, the query may be inconsistent (Limitation 2.1).
There is a cross-chain transaction dependency between Tx6
in Blockchain 2 and Tx7 in Blockchain 3. When Blockchain2
forks, Tx6 will be erased, making the transaction inconsistent

with the other blockchains, resulting in an incorrectness

problem. The problem will not happen if all the transactions

are in one blockchain since the dependency can be consented

Figure 3. Vassago Architecture

to by all nodes with the same result. In other words, if the

dependency about cross-chain transactions is consented to by

all participators, the inconsistent record will be perceived.
Third, the query may be incomplete (Limitation 2.2). We

consider a scenario that Ford does not perceive the existence

of Blockchain 1, and he does not know there is a cross-chain

transaction dependency between Tx4 and Tx3, so he could

miss the provenance in Blockchain1. If all blockchains’

existence and the cross-chain provenance dependencies can

be integrated and consented by all nodes, any sub blockchain

will realize the existence of the other blockchains without

repudiation.

III. SYSTEM DESIGN

Vassago is designed to avoid the limitations described in

Section II so as to enable efficient and authenticated cross-

chain queries. In this section, we will describe the design

principles and elaborate on Vassago architecture based on

these design principles.

A. Design Principle
The entire design of Vassago is based on two prin-

ciples: (1) cross-chain transactions are recorded without

being tampered with; (2) query results are consistent with

what is recorded before. Detailed descriptions of the design

principles are as follows:

• Avoid the cross-chain transactions to be tampered with
in the Byzantine environment. To make the cross-chain

transactions authentic for the data provenance query, it

should be agreed upon by all the cross-chain participa-

tors. Therefore, we should use a blockchain maintained

by cross-chain participators to record the existence of

the cross-chain transactions.

• Guarantee the cross-chain transactions trusted for the
data provenance query. The key to enabling trustwor-

thy relevance is that each node’s cross-chain behavior



should be consistent with each other. As a result, we

design the corresponding smart contracts to record the

relevance of cross-chain transactions.

B. Vassago Architecture

As shown in Figure 3, the overall design of Vassago

specifies a system architecture consisting of four layers:

the application layer, the smart contract layer, the two-layer

storage layer, and the network layer.

The application layer provides a provenance track in pipe-

like information transfer scenarios like supply chain and

logistics.

In the smart contract layer, it provides interfaces to

interact with the underlying blockchain. There are two types

of API. The first is dependency API, which is used to

update and query cross-chain dependency described in Sec-

tion IV-A. The second is transaction API, containing parallel

cross-chain data query and transaction execution. When

the transaction is a cross-chain transaction, it will upgrade

to an asynchronously cross-chain transaction. The cross-

chain read and write operation calls for dependency read

API because they should follow the cross-chain dependency

described in Section IV-A.

In the storage layer, we design a two-layer storage struc-

ture. The first layer is the Dependency Blockchain (DB),

which records each item’s cross-chain dependency graph

and can be called by dependency API. The second layer is a

group of the Transaction Blockchains (TBs). TBs perform as

traditional blockchain to record inter-and intra-chain trans-

actions. They will execute operations by calling dependency

API. It is worth noting that a TB can dynamically attach to

the system so that the cross-chain provenance dependency

may change in the running process.

Finally, we consider how nodes join the DB and TBs

according to the cross-chain provenance dependency in the

network layer.

IV. DATA QUERY BY VASSAGO

This section dwells on the cross-chain data query mech-

anism supported by Vassago. We first present the definition

and property of the cross-chain provenance dependency,

and generate a dependency graph to guide the cross-chain

data query. Then, we introduce the execution process of

cross-chain data query that guarantees both authenticity and

efficiency.

A. Dependency Definition

Specifically, the cross-chain provenance dependency de-

picts the dependencies between different cross-chain trans-

actions, by which we can infer the item transfer rules

between multiple blockchains. The provenance dependency

can be reused for similar transactions which have the same

transaction footprint among multiple blockchains. Therefore,

compared with a transaction, a provenance dependency is

more static for operation and has fewer states in terms of

storage.

The smallest unit of cross-chain provenance dependency

is the cross-chain transaction dependency. A cross-chain

transaction dependency contains a group of transactions that

happened in different blockchains with implicit dependency.

In other words, they should be executed atomically. A de-

pendency should contain at least two transactions in different

blockchains because they are divided into two groups called

upstream and downstream. The rule is that transactions

in the downstream group should happen after those in the

upstream. If and only if the number of one of the upstream or

the downstream is bigger than 2, the cross-chain transaction

is defined as a multi-dependent transaction. Otherwise, it is

a single-dependent transaction. The math definition of cross-
chain transaction dependency is described as following.

Definition 1: Cross-chain transaction dependency. We de-
note a transaction as Tx, the upstream of Tx as ρ(Tx),
the downstream of Tx as ω(Tx), the belonging blockchain
of Tx as B(Tx). Giving a group of transactions Tx =
{Tx1, Tx2, ..., Txn}(n ≥ 2), for any transaction Txi ∈
Tx, we define Txi′ = Tx− {Txi}. A cross-chain transac-
tion dependency Rcro satisfies the following properties:

(ω(Txi) ∩ ρ(Txi′) �= ∅ ∨ ρ(Txi) ∩ ω(Txi′) �= ∅)

∧B(Txi) ∩B(Txi′) = ∅ (1)

The cross-chain provenance dependency reveals the re-

lations between multiple cross-chain transaction dependen-
cies. Similar to cross-chain transaction dependency, a cross-
chain provenance dependency contains a group of cross-
chain transaction dependencies. The math definition of

cross-chain provenance dependency is described as follow-

ing.

Definition 2: Cross-chain provenance dependency. We
denote a group of cross-chain provenance dependency as
Rcro = {Rcro1, Rcro2, ..., Rcron}(n ≥ 2). For any
dependency Rcroi ∈ Rcro, we define Rcroi′ = Rcro −
{Rcroi}. An cross-chain provenance dependency Rint sat-
isfies the following properties:

ω(Rcroi) ∩ ρ(Rcroi′) �= ∅ ∨ ρ(Rcroi) ∩ ω(Rcroi′) �= ∅

(2)

Finally, to guide cross-chain transaction execution and

query, we need to link all the cross-chain provenance
dependencies into a route as a description for an item’s

complete dependency among blockchains.

Definition 3: Dependency graph. Given a
group of cross-chain provenance dependency as
Rint = {Rint1, Rint2, ..., Rintn} for one item. The cross-
chain transaction route is a directed graph G = (τ, ε),



Blockchain 1

Rcro1

Tx1 Tx2 Tx3 Tx4 Tx5 Tx6

Blockchain 2

Tx7 New
Tx

Blockchain 3

Rcro2

(a) Cross-chain Transaction Dependency

RintNRint1

Rcro1 Rcro2 RcroN

……

Dependency graph

(b) Cross-chain Provenance Dependency

Figure 4. Cross-chain Dependency Graph

which satisfies the following properties:

τ = Rint

ε = {(Rinti, Rintj)|ρ(Rinti) ∩ ω(Rintj) �= ∅} (3)

where Rinti, Rintj ∈ Rint.

Figure 4 depicts the cross-chain transaction dependency
and the cross-chain provenance dependency in the case of

the single-dependent transaction. Taking the scenario pre-

sented in Section II as an example again, the item first comes

from Blockchain 1, and then it is developed by Blockchain 2
and finally distributed in Blockchain 3. Each group contains

multiple enterprises. The transaction in a group that is not

dependent on other groups’ transactions is denoted by the

blue square, while the transaction that is dependent on other

groups’ transactions (i.e., cross-chain transaction) is denoted

by the red square. A black arrow denotes a transaction

dependency that happens in one group, and a red arrow

denotes a cross-chain transaction dependency. There are

two cross-chain transaction dependencies shown in this

figure: the dependency Rcro1 between Tx3 and Tx4 and the

dependency Rcro2 between Tx6 and Tx7. The dependency

direction is from the downstream enterprise to the upstream

enterprise. A blue arrow denotes the cross-chain provenance
dependency, for instance, the provenance dependency Rint1
links a downstream transaction dependency Rcro2 with

an upstream transaction dependency Rcro1 in this figure.

Besides, some other cross-chain provenance dependencies
RintN initiated from Blockchain N also exist. The set of

all the blue arrows will constitute a complete provenance

dependency graph for one item.

B. Adaptive Two-layer Blockchain

In the four-layer architecture, the two-layer storage plays

a vital role. Next, we elaborate on the two-layer storage

containing the Dependency Blockchain (DB) and the Trans-
action Blockchain (TB).

As mentioned before, every node can choose to join any

blockchain in Vassago on demand. There are two roles that a

participator can play to join a blockchain, called consensus

node and witness node. A consensus will take part in the

blockchain consensus, which will cost the devices computing

power, and more consensus nodes lead to more consensus

difficulty. A witness node will record and verify the results

passed by the consensus node without a consensus process.

A witness node will not increase consensus difficulty. Par-

ticipators could join the blockchain as a consensus node or

a witness node depending on their demands.

Some specific examples for describing the join rule are

shown in Figure 5(a). As a cross-chain dealer like Carol, she

first joins the DB as a consensus node to define the cross-

chain dependency, then she joins the upstream TB and the

downstream TB as a consensus node to execute the cross-

chain transaction.

As a cross-chain tracer like Ford, he joins the DB as a

witness node to read the cross-chain provenance dependency,

then enters the related blockchain TB1, TB2 based on the

dependency defined in DB as a witnesses node to trace the

data provenance in all corresponding blockchains.

Usually, some nodes do not care about the cross-chain

behaviors like Alice, so they do not take part in the DB and

only join the TB where she originally belongs to.

C. Authentic Query by Dependency

We show how Vassago enables authentic cross-chain

queries in this subsection. In general, Vassago makes use

of the cross-chain provenance dependency recorded in DB

to ensure the authenticity of query results. We implement

the cross-chain data query on the smart contract. The user

can obtain the historical transaction records through the

smart contract and judge whether the transaction is executed

according to the cross-chain provenance dependency.

We take the cross-chain dealer (i.e., Carol) in Figure 5(a)

as an example. She first reaches a consensus on the cross-

chain provenance dependency with Bob in DB. There are

two transactions (i.e., Tx3, Tx4) that record the item’s

belonging with her. We assume the new owner will execute

the transaction to simplify the transaction, so Carol needs to

complete Tx3 and Tx4 in different blockchain (i.e., TB1,

TB2). It is worth noting that Tx3 and Tx4 are a couple

of cross-chain transactions because there is a cross-chain

transaction dependency that indicates Tx4’s dependency on

Tx3.

The cross-chain transaction execution process is shown in

Figure 5(b). Tx3 can be directly executed in TB1 with Bob’s

consensus because Tx3 could find its dependent transaction

Tx2 in the same blockchain. When Carol wants to make

a transaction with Dave, she needs first to record Tx4 for

Dave to prove her ownership of the item by calling TB smart

contract in TB2. The process of Tx4 execution is as follows.



(a) Adaptive Two-layer Blockchain (b) Cross-chain Transaction Execution (c) Cross-chain Data Provenance Query

Figure 5. Processing of Vassago: Transaction Execution and Query

Once a cross-chain transaction is proposed (Tx4 in TB3),

Vassago first examines whether its cross-chain dependency

exists in DB (Dep1). If it exists, Vassago finds the dependent

blockchain and validates whether the dependent transaction

has been executed in this chain (Tx3 in TB2). If so, the newly

proposed cross-chain transaction can be safely executed. It

is worth noting that the dependency could be reused for

many items if they have the same cross-chain provenance

dependency with this item.
In terms of the provenance query, the query executor

needs to verify whether the provenance query result matches

the cross-chain provenance dependency defined in the DB.

We present two main properties of the authenticity of the

cross-chain provenance query:
Soundness. Soundness means inconsistent cross-chain

transactions are appreciable in the query process. The

tamper-proof property is guaranteed by DB because it stores

the cross-chain provenance dependency, and cross-chain

operations will follow the dependency. Since the objective

of Vassago is to enable multi-chain queries, whose query

results correspond to the exiting data status, if there is a

blockchain fork before query processes, the query results

will be inconsistent. At this time, the inquirer can use the

provenance dependency to judge the wrong result. We can

avoid limitation 2.1 by this verification strategy.
Completeness. Completeness means the inquirer should

visit all blockchains which relate to the target item’s history.

Because the broken transaction dependency causing by the

cross-chain scenario is renovated by the dependency graph,

which links all the cross-chain provenance dependencies into

an integrity route, the inquirer could perceive the global view

of an item’s history among different blockchains. Therefore

he will not miss any blockchains that properly have the item

history records. According to this, we can avoid limitation
2.2.

D. Efficient Query by Parallelization
Vassago improves the query efficiency by parallelizing

the query tasks on multiple chains based on the cross-chain

provenance dependency recorded on DB.

Figure 5(c) depicts the process of the cross-chain data

provenance in Ford’s view. The cross-chain data prove-

nance query consists of five steps: item trace proposal,

dependency query, cross-chain query, result verification,

and result return. To be more specific, if Ford wants to

make a query among multiple blockchains, he needs to

first propose the item trace proposal to the smart contract

in TB3. As a response, the smart contract queries the DB

for the cross-chain provenance dependency related to the

target item. Afterward, TB3 can execute the trace on all

related TBs according to the item’s cross-chain provenance

dependency. Since the item’s global dependency among

different blockchains has been consented to and recorded

by all cross-chain participators, the data provenance query

process can be executed in parallel to avoid limitation 1. The

query results will be verified to ensure their authenticity. If

the results pass the verification, they will be returned to Ford

finally.

V. THEORETICAL ANALYSIS

Vassago incurs little additional overhead to cross-chain

data provenance. It cuts off unnecessary storage, and the

design itself will not bring additional compute or storage

costs for the data provenance query. With the help of

Vassago, the provenance query could be efficient. In this

section, we quantify the optimization capabilities of the

above solutions.
We evaluate Vassago performance in two transaction

dependency modes. The first is the single-dependency, which

indicates that the dependency between transactions is one

by one. The second is multi-dependency. According to the

cross-chain transaction dependency definition in Sec. IV-A,

we set each group of cross-chain transactions to contain

three transactions, which includes two transactions in the

upstream group and one in the downstream group. In this

case, TBs arrange like a binary tree that the earliest upstream

TBs are the leaf nodes and the latest downstream TB is

the root node. To simplify the analysis, we assume that

all participators in the downstream TB are interested in

the transactions in the upstream, so they participate in the



upstream TBs as witness nodes. We denote the group of

participators node as an organization.

A. Reducing Storage Overhead

The number of transactions M is determined by the

number of initial information I and the times of information

transfers T , i.e., M = I × T . For one piece of information,

each node will participate in the information transmission

process only once. When nodes are distributed into several

blockchains, the total amount of information I remains

unchanged. For each blockchain, let K and T ′ represent the

number of nodes and the number of information transfers,

so T ′ = T/K. Thus, the number of transactions in each

blockchain is similar. We denote the number as N , and it

is:

N = T ′ × I =
M

K
(4)

In a single-dependency scenario among multiple

blockchains, downstream blockchains choose to store

upstream blockchains’ transactions for provenance query.

With the cross-chain provenance dependency, nodes can

precisely store the related blockchain. We denote the

number of organizations as O. In Vassago, the average

storage cost for each node denoted as Ss
V assago is:

Ss
V assago =

1 + 2 + ...+O

O
×N (5)

Without the dependency, nodes need to store all

blockchains to try their best to achieve data provenance

completeness. Each node’s cost denoted as Ss
common is as

follows, which is almost 2× in Vassago.

Ss
common = O ×N (6)

In the multi-dependency scenario, to quantify calculations

and facilitate experiments, we assume the dependency is

two. According to the cross-chain provenance dependency

defined in Sec. IV-A the blockchain will be arranged as

a binary tree. The earliest upstream blockchains are the

leaf nodes whose heights are 1, and the latest downstream

blockchain is the root node which the height is the same as

tree depth. In the layer where the height is h, and the tree

depth is d, the nodes’ storage cost denoted as f(h) is:

f(h) =

{
(2f(h− 1) + 1) ·N, h > 1

N, h = 1
⇒ f(h) = (2h−1)·N

(7)

The total storage cost in Vassago denoted as

Total(V assago) is:

Total(V assago) =

d∑
h=1

2d−h · f(h)

= N · (2d · (d− 1) + 1)

(8)

The total number of organizations denoted as TotalO is

TotalO =
d−1∑
h=0

2h (9)

In this case, the average storage for each node cost in

Vassago denoted as Sm
V assago is as follows, while the space

complexity is O(d).

Sm
V assago =

Total(V assago)

TotalO

=
2d · (d− 1) + 1

(2d − 1)

(10)

At this time, the node storage cost in the common

solution denoted as Sm
common is as follows, where the space

complexity is O(2d).

Sm
common = TotalO ·N

= (2d − 1) ·N (11)

B. Avoiding Additional Overhead

Our design will not bring obvious storage overhead for

the dependency. The dependency is the abstract of relation-

ship among blockchain for each item, while each related

blockchain contains much more transactions to record the

particular item transfer history. In common cases, the depen-

dency is much smaller compared with provenance history.

We assume an item traveling among different blockchains in

single dependency for easy to formulate the problem, and

it will visit each blockchain one time. We denote the corre-

sponding blockchain number as B. Transaction number in

each blockchain is Ki(0 < i < B). We denote dependency

record number as D, transaction number relating to the item

as T . We have the following equations.

D = 2× (B − 1)− 1 (12)

T = 2×B − 1 +
B∑
i=1

Ki (13)

In common case,

B∑
i=1

Ki 	 D, so T 	 D.

Plus, the dependency is reusable, which further reduces

the dependency storage overhead.

C. Improving Efficiency

Since the cross-chain provenance dependencies are reli-

ably recorded in Vassago, the data provenance in each TB

can be executed in parallel. The total query latency can

be regarded as the query time on a single TB, denoted as

TV assago, the velocity for querying a transaction as v, and

the time cost in DB query is TDB . We can obtain:



TV assago =
N

v
+ TDB (14)

The data provenance time for an item’s completeness

history without the dependency denoted as Tcommon is:

Tcommon =
N ·O
v

(15)

Because TDB is small enough, which is described in

Sec. V-B and verified in Sec. VI-B. Compared with the

common solution without the cross-chain provenance de-

pendency, Vassago can reduce the time cost to 1/O.

VI. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to

demonstrate Vassago’s feasibility and efficiency. We first

introduce the experimental setup and then evaluate Vassago

from three aspects: query latency, system throughput, and

storage overhead.

A. Experimental Setup

We implement the prototypes on top of Hyperledger

Fabric v2.2, which supports multiple channels for different

blockchains. Since our main design relies on dependency,

we implement two prototypes with and without depen-

dency respectively. In this part of the experiments, each

organization will issue 100,000 cross-chain transactions.

Based on the smart contracts in Fabric, we implement the

functions to issue cross-chain transactions and cross-chain

query requests.

We run the orderer group using a typical Kafka orderer

setup with 3 ZooKeeper nodes, 4 Kafka brokers, and 3
orderers. To simulate the supply chain scenario, each party

can join multiple Fabric channels as an organization. In

each organization, we deploy 4 peers and generate 100, 000
transactions of 100 items in parallel. The proposal rate of

cross-chain transactions depends on the number of items and

the time taken to execute the transactions of each item.

Our experiments are conducted on the Alibaba Cloud

Compute Optimized ECS Instance with 8 vCPUs and 16 GB

RAM, Intel Xeon Platinum 3.30 GHz, with Ubuntu 18.04
LTS as the operating system. The experiments are set up as

the description in Sec. V. In each experiment, we increase

the total number of transactions from 100, 000 to 800, 000
by increasing the number of organizations running on each

VM. We use Smallbank benchmark in BLOCKBENCH [8]

to test the system performance with different read-write sets.

B. Query Latency

We compare the query latency of systems with and with-

out the dependency and depict the results as shown in Figure

6. Since each participator in Vassago stores the dependency,

the inquirer can perform a query in different TBs in parallel.

Without the dependency, the query latency increases linearly

1 2 3 4 5 6 7 8

Number of blocks (x105)

0

100

200

300

400

m
s

w/o dependency

w dependency

Figure 6. Query latency w and w/o the cross-chain dependency

0 2 4 6 8
Org number

0

100

200

300

400

T
P
S

w dependency

w/o dependency

Figure 7. TPS w and w/o the cross-chain dependency

as the number of blocks increases. By contrast, it keeps

almost unchanged in Vassago. In particular, when 800, 000
blocks are packaged, the query latency in Vassago is only

58.41ms, which outperforms 410.56ms without the depen-

dency. Besides, the larger is the number of organizations

involved in the system, the larger is the reduction of query

latency. To sum up, Vassago can significantly improve the

efficiency of cross-chain data queries.

C. System Throughput

To study if the cross-chain query technology will bring

negative effects on the system performance, we compare the

throughput between systems with and without dependency.

The comparison results are shown in Figure 7. It can be

easily found from the figure that whether the dependency

is utilized or not, the system performance keeps similar

to each other. To be more specific, the TPS gap between

the two systems remains under 10 tx/s if the number of

transactions and nodes are set as the same. Particularly, when

the number of nodes increases to a certain extent (e.g., the

number of organizations is 6, and the number of nodes is

24), the system TPS with or without dependency peaks at

around 352 tx/s and 355 tx/s, respectively. Therefore, we

can conclude that the dependency has negligible impacts on

the overall system performance.

D. Storage Overhead

To evaluate the storage overhead, we design two groups of

experiments, each of which contains a different number of

organizations/blockchains. Concretely speaking, one group

has only 3 organizations (org1, org2, org3) participating

in the data provenance. org1 and org2 are the upstream

organizations, org3 is downstream of them. The other group

contains 7 organizations org1-org7. The upstream organiza-

tions include org1, org2, org3, and org4. org5 and org6 are in



org1 org2 org3

Organization

0

1000

2000

3000

S
to
ra
g
e
(M

B
)

w dependency

w/o dependency

(a) Tx storage with 3 orgs

org1 org2 org3 org4 org5 org6 org7

Organization

0

1000

2000

3000

S
to
ra
g
e
(M

B
)

w dependency

w/o dependency

(b) Tx storage with 7 orgs

org1 org2 org3

Organization

0

1000

2000

3000

S
to
ra
g
e
(M

B
)

w dependency

w/o dependency

(c) Tx storage with 2 depths

org1 org2 org3 org4 org5 org6 org7

Organization

0

1000

2000

3000

S
to
ra
g
e
(M

B
)

w dependency

w/o dependency

(d) Tx storage with 3 depths

org1 org2 org3

Organization

0

50

100

150

200

250

300

S
to
ra
g
e
(K
B
)

(e) Dpd storage with 3 orgs

org1 org2 org3 org4 org5 org6 org7

Organization

0

50

100

150

200

250

300

S
to
ra
g
e
(K
B
)

(f) Dpd storage with 7 orgs

org1 org2 org3

Organization

0

50

100

150

200

250

300

S
to
ra
g
e
(K
B
)

(g) Dpd storage with 2 depths

org1 org2 org3 org4 org5 org6 org7

Organization

0

50

100

150

200

250

300

S
to
ra
g
e
(K
B
)

(h) Dpd storage with 3 depths

Figure 8. Comparison of the storage overhead of transaction (tx) and dependency (dpd), with different number of organizations (org) and different depths
of dependency. (a), (b), (e), and (f) are evaluated with single-dependency, while (c), (d), (g), and (h) are evaluated with multiple-dependency.

the middle, while org7 is the downstream organization. We

test each organization’s storage overhead in these two groups

with two kinds of dependency, namely single-dependency

and multi-dependency. The experimental results are shown

in Figure 8.

With regard to the experiments with single-dependency,

based on the assumption we make in Sec. V, the largest

storage overhead should be the downstream organization

(i.e., org3 in Figure 8(a) and org7 in Figure 8(b)). As

can be seen from the figures, the storage overhead in the

downstream organization reaches 1052 MB and 2500 MB

respectively, which is close to the solution without the

dependency. The reason for it is that, without cross-chain

dependency, participators need to store the data of all the

blockchains to guarantee the result completeness. Besides,

each organization will store a small number of the cross-

chain dependency recorded in the TB. However, as shown

in Figure 8(e) and Figure 8(f), the storage overhead caused

by the dependency in TB accounts for less than 1‰ of the

total storage.

As for the experiments with multi-dependency, we con-

sider the same condition as assumed before. When the depth

is 2 as Figure 8(c), org3 has the largest storage overhead,

which is 3× higher than that of org1 or org2. However,

it is also close to the solution without the dependency.

When the depth is 3 in Figure 8(d), we can draw a similar

conclusion that Vassago brings a similar overhead in the

downstream party and less overhead in the middle/upstream

parties. Besides, as shown in Figure 8(g) and Figure 8(h), the

dependency storage overhead is 76 KB and 116 KB when

the depth is 2 and 3 respectively, which also demonstrates

the lightweight of the dependency.

To sum up, with the aid of dependency, Vassago reduces

the storage overhead of the upstream and middle parties

largely, and keeps the similar storage overhead to that

without dependency.

VII. RELATED WORK

Blockchain-based data query has generated increasing

interest in different applications. This section briefly presents

the most related state-of-the-art: 1) atomic cross-chain trans-

action execution, and 2) blockchain data query.

A. Atomic Cross-chain Transaction Execution

Much effort has been made to ensure atomicity and

consistency of cross-chain transaction execution between

two blockchains. Some recent researches use hash time-locks
contracts (HTLCs) to execute atomic cross-chain transac-

tions [5], [9], [10]. To be more specific, the receiver of

a transaction needs to commit to the payment prior to a

deadline set via smart contracts by providing the payer

a cryptographic proof. Otherwise, the payment will return

to the payer. HTLCs are mainly adopted in cross-chain

swaps [9] and payment channels [11]. Another way to

ensure the transaction atomicity between two parties is the

side chain, which is detailed described in Section II. The

side chain method harnesses a two-way peg mechanism to

atomically conduct cross-chain asset transfer between the

main chain and the side chain [12], [13]. Unfortunately, all

the above approaches are only applicable to handle cross-

chain transactions that happened between two parties. Due to

the lack of a complete view of the cross-chain provenance

dependency among multiple parties, each adopts different

blockchain systems. They can hardly guarantee the correct

execution order of cross-chain transactions in the multiple-

chain scenarios. This will substantially affect the authenticity

of data provenance query results. Focusing on the cross-

chain interaction between two parties obviously cannot



meet the demands of practical application scenarios. More

recently, there is an increasing focus on ensuring the atomic

execution of multi-party cross-chain transactions. Herlihy et

al. adopt an intermediary chain shared by all nodes to record

cross-chain transaction information, prompting all parties

involved in the cross-chain deal to reach a consensus on

the deal execution results [10]. Zakhary et al. use a directed

graph to model each cross-chain transaction and design a

witness blockchain to coordinate the cross-chain transaction

execution [14]. The smart contract in the witness blockchain

can control and change the state of smart contracts deployed

in all the participated blockchains. HyperService [5] consid-

ers the cross-chain transaction relationship. However, their

solution ignores query requirements. It abstracts all transac-

tions on the middle-layer blockchain. This solution is costly

in the middle-chain while could not provide effective parallel

queries. These solutions can guarantee the atomic execution

of cross-chain transactions among multiple parties. Still,

they essentially use the form of a relay chain to record or

manage the execution of cross-chain transactions. However,

the relay chain mechanism lacks scalability when the cross-

chain interactions grow a lot (i.e., performance bottleneck).

More importantly, the relay chain cannot authenticate cross-

chain queries efficiently due to the lack of trusted cross-chain

provenance dependencies.

B. Blockchain-based Data Provenance

We can divide the current blockchain query into on-chain

and off-chain, both of them focus on providing more avail-

ability in blockchain queries. Because current blockchains

use LevelDB, a query-unfriendly database to store data, off-

chain query strategies rearrange data for effective queries so

that users can perform read and write operations as common

databases. Judged by how to store data, off-chain query

methods can divide into two types. The first is designing

a new database to replace LevelDB [15]–[17]. They chal-

lenge the LevelDB performance and develop new database

engines to solve the problems. Another solution is seeing

blockchain as a store layer then adds a middle engine above

the blockchain [18]–[20]. They act as translators between

blockchain data and users’ queries. On the other hand, on-

chain query strategies focus on provide remote query more

functions with trusted proofs. The first type of on-chain

query optimization is data-orient [21]–[26]. They elaborately

rearrange data, calculate the hash of the data under the

arranged structure and then store the hash root on each

blockhead, waiting for remote query nodes which do not

have the original data. The second on-chain query strategy

is operation-orient [27], [28]. They use smart contracts to

maintain the designed structure as transactions’ state. When

a new transaction comes, it will trigger the smart contract

to change the state. The query will perform on the state

with specific query functions. Both on-chain and off-chain

queries focus on a single blockchain, so they do not consider

the cross-chain provenance dependency. In summary, the

literature on on-chain provenance query techniques tailor

for multiple blockchain scenarios still remains a vacuum.

It motivates us to design Vassago that aims at providing

an efficient and authenticated cross-chain data provenance

mechanism.

VIII. DISCUSSION

Security: Since the nodes are divided into small groups,

it is more vulnerable for malicious nodes to manipulate the

blockchain. In particular, the cross-chain smart contract may

be modified, resulting in an unguaranteed authenticity of

the provenance query. Though our current design does not

address this problem, it can be solved by adding a Trusted
Execution Environment (TEE) [29]. Except for this, any

other eligible modification of the smart contract can only

be performed when all nodes participating in DB reach an

agreement.

Scalability: Single-chain data provenance mechanism falls

short in a multi-party supply chain scenario, due to sig-

nificant storage overhead and inefficient provenance query

performance. By dividing the nodes into different groups,

Vassago performs much better in scalability and can be

easily applied in large-scale scenarios.

Usability: In this paper, we focus on the data provenance

for cross-chain transactions. However, Vassago is a general

framework and can be used in many other use cases where

cross-chain data queries are required.

IX. CONCLUSION

Blockchain technology has shown its promises for trace-

able and transparent data provenance in an untrusted envi-

ronment. Today’s single-chain provenance query has been

developed with increasing prevalence. However, it can nei-

ther support data authenticity of cross-chain transactions

across multiple blockchains, nor efficient performance on

different underlying blockchains. To that end, we introduce

Vassago, which exploits the dependencies of cross-chain

transactions to solve those problems in a multi-chain sce-

nario. To our knowledge, Vassago is the first efficient and

authenticated cross-chain provenance query mechanism. Our

experimental results demonstrate Vassago can provide high

efficiency without harming either throughput and storage in

the worst case.

ACKNOWLEDGMENT

This work was supported by Key-Area Research and De-

velopment Program of Guangdong Province under Grant No.

2020B0101090005 and National Nature Science Foundation

of China under Grant No. 62072197. Jiang Xiao is the

corresponding author of the paper.



REFERENCES

[1] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Chris-
tidis, A. De Caro, D. Enyeart, C. Ferris, G. Laventman,
Y. Manevich, W. Cocco, Sharon, and J. Yellick, “Hyper-
ledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of EuroSys conference, 2018,
pp. 1–15.

[2] Btcrelay. [Online]. Available: http://btcrelay.org/

[3] lisk. [Online]. Available: https://lisk.io//

[4] elements. [Online]. Available: https://elementsproject.org/

[5] Z. Liu, Y. Xiang, J. Shi, P. Gao, H. Wang, X. Xiao,
B. Wen, and Y.-C. Hu, “Hyperservice: Interoperability and
programmability across heterogeneous blockchains,” in Pro-
ceedings of ACM Conference on Computer and Communica-
tions Security. ACM, 2019, pp. 549–566.

[6] M. J. Amiri, D. Agrawal, and A. E. A. Shrira, “Caper: A
cross-application permissioned blockchain,” in Proceedings
of the VLDB Endowment, vol. 12, no. 11, 2019, pp. 549–566.

[7] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain:
Scaling blockchain via full sharding,” in Proceedings of
ACM Conference on Computer and Communications Security.
ACM, 2018, pp. 931–948.

[8] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, and
J. Wang, “Untangling blockchain: A data processing view of
blockchain systems,” IEEE Transactions on Knowledge and
Data Engineering, vol. 30, no. 7, pp. 1366–1385, 2018.

[9] M. Herlihy, “Atomic cross-chain swaps,” in Proceedings of
ACM Symposium on Principles of Distributed Computing.
ACM, 2018, pp. 245–254.

[10] M. Herlihy, B. Liskov, and L. Shrira, “Cross-chain deals
and adversarial commerce,” in Proceedings of the VLDB
Endowment, vol. 13, no. 2, 2019, pp. 100–113.

[11] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable
off-chain instant payments,” 2016. [Online]. Available:
https://lightning.network/lightning-network-paper.pdf

[12] A. Singh, K. Click, R. M. Parizi, Q. Zhang, A. Dehghantanha,
and K.-K. R. Choo, “Sidechain technologies in blockchain
networks: An examination and state-of-the-art review,” Jour-
nal of Network and Computer Applications, vol. 149, p.
102471, 2020.

[13] Rootstock. [Online]. Available: https://www.rsk.co/

[14] V. Zakhary, D. Agrawal, and A. El Abbadi, “Atomic com-
mitment across blockchains,” in Proceedings of the VLDB
Endowment, vol. 13, no. 9, 2020, p. 1319–1331.

[15] S. Wang, T. T. A. Dinh, Q. Lin, Z. Xie, M. Zhang, Q. Cai,
G. Chen, W. Fu, B. C. Ooi, and P. Ruan, “Forkbase: An
efficient storage engine for blockchain and forkable appli-
cations,” in Proceedings of the VLDB Endowment, vol. 11,
no. 10, 2018, pp. 1137–1150.

[16] S. Nathan, C. Govindarajan, A. Saraf, M. Sethi, and P. Jay-
achandran, “Blockchain meets database: Design and imple-
mentation of a blockchain relational database,” in Proceedings
of the VLDB Endowment, vol. 12, no. 11, 2019, pp. 1539–
1552.

[17] Y. Zhu, Z. Zhang, C. Jin, A. Zhou, and Y. Yan, “Sebdb:
Semantics empowered blockchain database,” in Proceeding of
IEEE International Conference on Data Engineering. IEEE,
2019, pp. 1820–1831.

[18] M. El-Hindi, C. Binnig, A. Arasu, D. Kossmann, and
R. Ramamurthy, “Blockchaindb: A shared database on
blockchains,” in Proceedings of the VLDB Endowment,
vol. 12, no. 11, 2019, pp. 1597–1609.

[19] Y. Li, K. Zheng, Y. Yan, Q. Liu, and X. Zhou, “Etherql: a
query layer for blockchain system,” in Proceedings of the
International Conference on Database Systems for Advanced
Applications. Springer, 2017, pp. 556–567.

[20] F. M. Schuhknecht, A. Sharma, J. Dittrich, and D. Agrawal,
“Chainifydb: How to get rid of your blockchain and use
your dbms instead,” in Proceeding of Annual Conference on
Innovative Data Systems Research, 2021.

[21] T. Abdessalem and G. Jomier, “Vql: Providing query ef-
ficiency and data authenticity in blockchain systems,” in
Proceedings of International Conference on Data Mining
Workshops. IEEE, 2019, pp. 1–6.

[22] X. Dai, J. Xiao, W. Yang, C. Wang, J. Chang, R. Han,
and H. Jin, “Lvq: A lightweight verifiable query approach
for transaction history in bitcoin,” in Proceedings of IEEE
International Conference on Distributed Computing Systems.
IEEE, 2020, pp. 1020–1030.

[23] C. Xu, C. Zhang, and J. Xu, “Vchain: Enabling verifiable
boolean range queries over blockchain databases,” in Pro-
ceedings of ACM Special Interest Group on Management of
Data. ACM, 2019, pp. 141–158.

[24] D. Liu, J. Ni, C. Huang, X. Lin, and X. S. Shen, “Se-
cure and efficient distributed network provenance for iot: A
blockchain-based approach,” IEEE Internet of Things Journal,
vol. 7, no. 8, pp. 7564–7574, 2020.

[25] M. Sigwart, M. Borkowski, M. Peise, S. Schulte, and S. Tai,
“A secure and extensible blockchain-based data provenance
framework for the internet of things,” Personal and Ubiqui-
tous Computing, vol. 6, no. 8, pp. 1–15, 2020.

[26] P. Cui, J. Dixon, U. Guin, and D. Dimase, “A blockchain-
based framework for supply chain provenance,” IEEE Access,
vol. 7, pp. 157 113–157 125, 2019.

[27] C. Zhang, C. Xu, J. Xu, Y. Tang, and B. Choi, “Gem*2-
tree: A gas-efficient structure for authenticated range queries
in blockchain,” in Proceedings of IEEE International Confer-
ence on Data Engineering. IEEE, 2019, pp. 842–853.

[28] P. Ruan, G. Chen, T. T. A. Dinh, Q. Lin, B. C. Ooi, and
M. Zhang, “Fine-grained, secure and efficient data provenance
on blockchain systems,” in Proceedings of the VLDB Endow-
ment, vol. 12, no. 9, 2019, p. 975–988.

[29] S. Pang, Q. Shao, Z. Zhang, and C. Jin, “Authqx: Enabling
authenticated query over blockchain via intel sgx,” in Pro-
ceedings of International Conference on Database Systems
for Advanced Applications. Springer, 2020, pp. 727–731.


