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Abstract— In civilian applications of ad hoc networks, a 
“virtual currency” is used to provide an incentive for 
cooperation by having a node to send its traffic at a given 
cost, while allowing it to profit every time it forwards 
others’ traffic.  However, there are situations when a node 
could run out of virtual currency, and enter a broke state. 
In this paper, we propose a self-organized mechanism 
called the Broke Service, which allows for a broke node to 
use the network to transmit its traffic, in addition to 
providing an incentive to stimulate non-broke nodes to 
cooperate with broke ones. We show that the proposed 
scheme delivers a reasonable quality of service under a 
wide range of network traffic. 
 

I. INTRODUCTION 

d Hoc networks represent a challenging minimalist 
approach to network design, one that requires no 

infrastructure. As a result, providing network connectivity in 
civilian ad hoc networks requires cooperation among a large 
number of ‘strangers’. In such cases, there are strong urges 
for individual users not wanting to cooperate with others and 
to remain ‘selfish’ [1]. In other words since routing the traffic 
of other nodes consumes considerable amount of bandwidth 
and processing power, each node could choose to send its 
own traffic at all times, and this has been shown to seriously 
affect the network throughput [2]. 

To enforce cooperation, two distinct approaches have been 
suggested. The first, which is the basis of this paper, is that of 
providing an incentive for cooperation. In [2], Buttyan and 
Hubaux, suggest the use of an incentive referred to as 
“nuglets”, which materializes the universal cooperation 
concept of allowing for gaining a profit, versus having to pay 
a cost, associated respectively with routing for others, and 
with sending ones own traffic. In other words, a node is 
allowed to accumulate nuglets, which can later be used to pay 
for the cost of routing of its traffic. To police this process, 
nuglets will reside within a counter protected by security 
modules (SM), which are tamper-proof. They assume that 
each node uses a secure nuglet counter, which is increased by 
one every time the node routes a packet for other nodes, and 
is decreased by an estimate of the number of the intermediate 
hops (between the node and its destination), whenever the 
node sends its own traffic. Specifically, authorization for 
nuglet addition to counters is made without any possibility for 

 
 

user intervention and strictly through the communication 
between the SM’s. 

The second approach to ensuring cooperation is suggested 
in [3] and [4], which are based on detecting malicious (non-
cooperative) nodes, and in the latter, also on isolating them 
from the network. The difference between [2] and these 
approaches is that, whereas the former thrives at reaching an 
optimal point of functionality via discouraging non-
cooperative behavior (since no cooperation means no profit), 
the latter ensures the survivability of the cooperative nodes, 
by threatening to leave out or to downgrade the service level 
of the non-cooperative ones. Though this approach promises a 
less complex security component, the first method is a more 
logical starting point, since it truly provides a simple tangible 
incentive for cooperation (encouraging nodes to maximize 
their profit), and if ever required, the second approach should 
only be used as a complement to the first.  

A crucial problem addressed in this paper is that of how to 
provide network connectivity (the ability to transmit over an 
ad hoc network), when a particular node runs out of nuglets. 
A node could run out of nuglets due to poor network 
conditions such as the requirement for retransmission of 
packets due to a faulty wireless channel, which can quickly 
drain a node out of nuglets. In fact, this problem, also pointed 
out in [5], occurs with any system that uses an incentive for 
cooperation, and is particularly crucial for ‘urgent traffic’, 
where the users require immediate network connectivity and 
cannot afford the wait associated with accumulation of 
nuglets. We refer to such node as a broke node, and the 
required network service as the Broke Service.  

II. BROKE SERVICE 

The original contribution of this work is to improve the 
connectivity of broke nodes in a pure ad-hoc network. We 
consider and propose our solution within the nuglet-based 
framework of [2]. The proposed solution is that of loaning, 
which is particularly interesting since it can be performed 
‘on-the-fly’ by the nodes’ systems, and is hence suitable for 
the conditions of ad-hoc networks since it allows for nodes to 
remain self-organized. The scheme stimulates nodes to 
actively participate in the network, while allowing the broke 
nodes to experience less delay when urgent transmission is 
desired. The Broke Service is made up of two stages: loaning 
and payback. 

The loaning stage itself involves two events: negotiation 
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and authorization. In the beginning, a broke node sends a 
signal to all its neighbors indicating that it needs to use the 
Broke Service to send data, piggybacking L, the estimated 
number of nuglets that it will require (i.e. the loan value), λ, 
the arriving traffic rate to the Broke node’s counter per unit 
time, and Expiry Count, EC, which is a measure of number of 
times a node has failed to payback its loans in the past. As 
explained later in the paper, the amount to be borrowed L is 
checked to ensure that it does not encourage begging in the 
network. 

Upon receiving the broadcast, the neighbors (assuming that 
they have the Broke Service enabled), check the number of 
nuglets that the broke node is asking against a lender specific 
parameter, the Min_Threshold, and determine whether or not 
they can afford to lend to the broke node the full required 
amount. If the amount is feasible then the lenders send the 
expected rate of return α, which is a per transaction system 
parameter with an upper bound chosen depending on the 
current amount of risk associated with loaning, as explained 
later α is determined from the value of probability of success 
of the entire investment. Finally, when the broke node 
receives α, it checks to see if the rate of return is feasible and 
if it is, it sends a final acknowledgment, and the process of 
‘negotiation’ is thereby completed. At this point, via signaling 
the broke nodes security module, the lender authorizes the 
addition of nuglets to the broke nodes counter giving it 
permission to send its traffic. 

Fig. 1 summarizes the loaning process in a chronological 
order. The prefixes ‘Broke’ and ‘Lender’, at each stage refer 
to the party which takes the action, and c is the current value 
of the counter in lender’s SM. Prior to broadcasting, the 
Broke node’s loan value needs to be checked to ensure that 
following the receipt of the loan the node is not encouraged to 
stop cooperating with the network. This is referred to as the 
‘Beggar-Proof’ mechanism, which basically, performs the 
function of checking the loan value against a maximum 
allowable limit. 
 
1 Broke: Choose L (the number of required nuglets)  

2 Broke:  if (L is Beggar-Proof & no outstanding Break-

Even) then Broadcast L , λ & EC 

3 Broke:  else Decrease L first (if possible) 

4 Lender: if (c - L > Min_Threshold) 

5 Lender:  then Lookup the Risk Management table and 

send the corresponding value of α 

6 Broke:  if α is feasible then send acknowledgement 

7 Lender: Upon receiving ACK, authorize L nuglet additions 

to the broke node’s counter  

8 Broke:  Immediately use the L nuglets to send data  

Figure 1:  Loaning process in Broke Service - Negotiation and Authorization 

As it can be seen above, a key feature of the loaning 
process of the Broke Service is ‘Risk Management’, which is 
the function of assesing whether a lender should participate in 
the Broke Service. To enable lenders make such decision, 
provided a Broke node has no outstanding loans, the broke 
node sends three parameters to the lender. Having the three 
parameters L, λ, and EC, the lender's system will be able to 
predict how likely it is for it to receive its entire investment 
on the initial L value lent. A probability of success is assigned 
to the investment to be made, and this probability is later used 
to come up with a rate of return α, proportional to which a 
broke node commits to payback ‘interest’ on its loan. The 
mapping of the probability of success to the rate of return can 
be accomplished through a universally consistent risk 
management table provisioned onto every node's system by 
the manufacturers.  

The second stage of the Broke Service is nuglet payback. 
Once the broke node has accumulated enough nuglets it will 
be required to payback its loan plus ‘interest’ in multiple 
portions to guarantee a higher probability of success for 
payback of the principal. Also as shown in the next section, 
payment values of L each are used since they obtain 
reasonable performance. The broke node is required not to 
send its own traffic until it has made the first payback (ie., the 
principal) during the time referred to as the Break-Even 
period. Thereafter, it will be able to send its traffic at a 
degraded level of service compared to the normal mode until 
it has paid its debt in full, this time period is referred to as the 
return on investment, ROI, period.  

In addition, the Broke Service incorporates a Broke 
Avoidance mechanism ensuring that the broke node is 
protected against becoming broke, even after it is finished 
using the Broke Service. The key to this mechanism as shown 
in the next section is enforcing the counter of a broke node to 
remain above a Broke Avoidance Margin (BAM), for the 
duration of time when the Broke Service is in use. Fig. 2 
summarizes the payback process in a chronological order. 

  
1 payback ← 0   

2 for [payback < (α+1)L] do  

3 if (c > L + BAM), then signal the lender then 

4 if [(α+1)L – payback] >=L (after receiving lender’s 

acknowledgment) 

5 Authorize L nuglet additions to lender’s counter 

6 payback ← payback + L 

7 else  

8 authorize [(α+1)L – payback] nuglet additions to  

lender’s counter 

9 payback ← (α+1)L 

Figure 2: Payback process within Broke Node’s Security Module  
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Finally, the security of the Broke Service is ensured using 
security modules, and the Broke Service is hence tamper-
proof, and also integrates well with the cooperation system 
suggested in [2].  

III. PERFORMANCE ANALYSIS 

In this section we analyze the practicality of the Broke 
Service and show that in its proposed form it delivers a 
superior quality of service. To see this, we again break the 
function of Broke Service payback into two parts: Break-
Even and ROI, and show that following our ‘send-wait’ 
mechanism, the Broke Service could be used with a 
reasonably low additional delay, when compared to the ‘wait-
send’ approach implied in [2]. 

First, when using the Broke Service in an Ad-Hoc network, 
Break-Even can be achieved in a reasonable time within a 
flexible range of network traffic flows. For example, Fig. 3 
shows the time for which a Broke node has to wait in order to 
accumulate enough nuglets to transmit 50 equal-sized packets 
to an average destination of 5 hops away from it. The 
robustness of the scheme can be seen by observing that if an 
appropriate BAM value is chosen, and when the incoming 
traffic is on average in the broad range of 1.8 to 5.3 
packets/seconds, then a broke node that should have waited 
for at least 15 seconds in the previous schemes, can send its 
traffic ‘immediately’. Afterwards, the node has to wait for 
only a maximum of up to 60 seconds to accumulate enough 
nuglets to payback its loan, with the additional peace of mind 
for knowing that the node will not become broke again after 
sending its traffic.  

Once Break-Even is achieved, the ROI on loans made 
through the Broke Service can also be achieved in a 
reasonable time provided that the borrower does not send its 
own traffic excessively. For example, Fig. 4 depicts a similar 
scenario to Fig. 3, where various values of α, (ie., returns on 
the initial 50 packet investments) is desired. It can be seen 
that up to 300% net profit can be accommodated in less than 2 
minutes, provided that the lower limit of the traffic range is 
increased slightly to 2.2 packets/seconds. On the other hand, 
if up to a maximum of 200% net profit (ie., α = 2) is desired, 
then the lender can expect the profit to be attainable even 
within the same range of traffic as in Fig. 3.  

Note that the ROI cases considered above are probably not 
going to be the most frequent scenarios encountered, and in a 
more realistic example, where a lender aims for a reasonable 
100% or less return on its investment, it only has to wait up to 
a maximum of 90 seconds before it receives its entire 
investment.  That being said, it is natural to expect that the 
more the Broke Service is used within the network, the less 
ROI is required to justify its usage by lenders, and the delay 
will also be further improved.  

 
Figure 3: Break-Even Time vs. Traffic Levels for various BAM values 

Figure 4: ROI Time vs. Traffic Levels for various α values  
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