

1

Abstract— In civilian applications of ad hoc networks, a
“virtual currency” is used to provide an incentive for
cooperation by having a node to send its traffic at a given
cost, while allowing it to profit every time it forwards
others’ traffic. However, there are situations when a node
could run out of virtual currency, and enter a broke state.
In this paper, we propose a self-organized mechanism
called the Broke Service, which allows for a broke node to
use the network to transmit its traffic, in addition to
providing an incentive to stimulate non-broke nodes to
cooperate with broke ones. We show that the proposed
scheme delivers a reasonable quality of service under a
wide range of network traffic.

I. INTRODUCTION

d Hoc networks represent a challenging minimalist
approach to network design, one that requires no

infrastructure. As a result, providing network connectivity in
civilian ad hoc networks requires cooperation among a large
number of ‘strangers’. In such cases, there are strong urges
for individual users not wanting to cooperate with others and
to remain ‘selfish’ [1]. In other words since routing the traffic
of other nodes consumes considerable amount of bandwidth
and processing power, each node could choose to send its
own traffic at all times, and this has been shown to seriously
affect the network throughput [2].

To enforce cooperation, two distinct approaches have been
suggested. The first, which is the basis of this paper, is that of
providing an incentive for cooperation. In [2], Buttyan and
Hubaux, suggest the use of an incentive referred to as
“nuglets”, which materializes the universal cooperation
concept of allowing for gaining a profit, versus having to pay
a cost, associated respectively with routing for others, and
with sending ones own traffic. In other words, a node is
allowed to accumulate nuglets, which can later be used to pay
for the cost of routing of its traffic. To police this process,
nuglets will reside within a counter protected by security
modules (SM), which are tamper-proof. They assume that
each node uses a secure nuglet counter, which is increased by
one every time the node routes a packet for other nodes, and
is decreased by an estimate of the number of the intermediate
hops (between the node and its destination), whenever the
node sends its own traffic. Specifically, authorization for
nuglet addition to counters is made without any possibility for

user intervention and strictly through the communication
between the SM’s.

The second approach to ensuring cooperation is suggested
in [3] and [4], which are based on detecting malicious (non-
cooperative) nodes, and in the latter, also on isolating them
from the network. The difference between [2] and these
approaches is that, whereas the former thrives at reaching an
optimal point of functionality via discouraging non-
cooperative behavior (since no cooperation means no profit),
the latter ensures the survivability of the cooperative nodes,
by threatening to leave out or to downgrade the service level
of the non-cooperative ones. Though this approach promises a
less complex security component, the first method is a more
logical starting point, since it truly provides a simple tangible
incentive for cooperation (encouraging nodes to maximize
their profit), and if ever required, the second approach should
only be used as a complement to the first.

A crucial problem addressed in this paper is that of how to
provide network connectivity (the ability to transmit over an
ad hoc network), when a particular node runs out of nuglets.
A node could run out of nuglets due to poor network
conditions such as the requirement for retransmission of
packets due to a faulty wireless channel, which can quickly
drain a node out of nuglets. In fact, this problem, also pointed
out in [5], occurs with any system that uses an incentive for
cooperation, and is particularly crucial for ‘urgent traffic’,
where the users require immediate network connectivity and
cannot afford the wait associated with accumulation of
nuglets. We refer to such node as a broke node, and the
required network service as the Broke Service.

II. BROKE SERVICE

The original contribution of this work is to improve the
connectivity of broke nodes in a pure ad-hoc network. We
consider and propose our solution within the nuglet-based
framework of [2]. The proposed solution is that of loaning,
which is particularly interesting since it can be performed
‘on-the-fly’ by the nodes’ systems, and is hence suitable for
the conditions of ad-hoc networks since it allows for nodes to
remain self-organized. The scheme stimulates nodes to
actively participate in the network, while allowing the broke
nodes to experience less delay when urgent transmission is
desired. The Broke Service is made up of two stages: loaning
and payback.

The loaning stage itself involves two events: negotiation

A Self-Organized Approach for Stimulating
Cooperation in Mobile Ad Hoc Networks

Borzoo Shadpour, Shahrokh Valaee, and Baochun Li

Department of Electrical and Computer Engineering, University of Toronto

 A

2

and authorization. In the beginning, a broke node sends a
signal to all its neighbors indicating that it needs to use the
Broke Service to send data, piggybacking L, the estimated
number of nuglets that it will require (i.e. the loan value), λ,
the arriving traffic rate to the Broke node’s counter per unit
time, and Expiry Count, EC, which is a measure of number of
times a node has failed to payback its loans in the past. As
explained later in the paper, the amount to be borrowed L is
checked to ensure that it does not encourage begging in the
network.

Upon receiving the broadcast, the neighbors (assuming that
they have the Broke Service enabled), check the number of
nuglets that the broke node is asking against a lender specific
parameter, the Min_Threshold, and determine whether or not
they can afford to lend to the broke node the full required
amount. If the amount is feasible then the lenders send the
expected rate of return α, which is a per transaction system
parameter with an upper bound chosen depending on the
current amount of risk associated with loaning, as explained
later α is determined from the value of probability of success
of the entire investment. Finally, when the broke node
receives α, it checks to see if the rate of return is feasible and
if it is, it sends a final acknowledgment, and the process of
‘negotiation’ is thereby completed. At this point, via signaling
the broke nodes security module, the lender authorizes the
addition of nuglets to the broke nodes counter giving it
permission to send its traffic.

Fig. 1 summarizes the loaning process in a chronological
order. The prefixes ‘Broke’ and ‘Lender’, at each stage refer
to the party which takes the action, and c is the current value
of the counter in lender’s SM. Prior to broadcasting, the
Broke node’s loan value needs to be checked to ensure that
following the receipt of the loan the node is not encouraged to
stop cooperating with the network. This is referred to as the
‘Beggar-Proof’ mechanism, which basically, performs the
function of checking the loan value against a maximum
allowable limit.

1 Broke: Choose L (the number of required nuglets)

2 Broke: if (L is Beggar-Proof & no outstanding Break-

Even) then Broadcast L , λ & EC

3 Broke: else Decrease L first (if possible)

4 Lender: if (c - L > Min_Threshold)

5 Lender: then Lookup the Risk Management table and

send the corresponding value of α

6 Broke: if α is feasible then send acknowledgement

7 Lender: Upon receiving ACK, authorize L nuglet additions

to the broke node’s counter

8 Broke: Immediately use the L nuglets to send data

Figure 1: Loaning process in Broke Service - Negotiation and Authorization

As it can be seen above, a key feature of the loaning
process of the Broke Service is ‘Risk Management’, which is
the function of assesing whether a lender should participate in
the Broke Service. To enable lenders make such decision,
provided a Broke node has no outstanding loans, the broke
node sends three parameters to the lender. Having the three
parameters L, λ, and EC, the lender's system will be able to
predict how likely it is for it to receive its entire investment
on the initial L value lent. A probability of success is assigned
to the investment to be made, and this probability is later used
to come up with a rate of return α, proportional to which a
broke node commits to payback ‘interest’ on its loan. The
mapping of the probability of success to the rate of return can
be accomplished through a universally consistent risk
management table provisioned onto every node's system by
the manufacturers.

The second stage of the Broke Service is nuglet payback.
Once the broke node has accumulated enough nuglets it will
be required to payback its loan plus ‘interest’ in multiple
portions to guarantee a higher probability of success for
payback of the principal. Also as shown in the next section,
payment values of L each are used since they obtain
reasonable performance. The broke node is required not to
send its own traffic until it has made the first payback (ie., the
principal) during the time referred to as the Break-Even
period. Thereafter, it will be able to send its traffic at a
degraded level of service compared to the normal mode until
it has paid its debt in full, this time period is referred to as the
return on investment, ROI, period.

In addition, the Broke Service incorporates a Broke
Avoidance mechanism ensuring that the broke node is
protected against becoming broke, even after it is finished
using the Broke Service. The key to this mechanism as shown
in the next section is enforcing the counter of a broke node to
remain above a Broke Avoidance Margin (BAM), for the
duration of time when the Broke Service is in use. Fig. 2
summarizes the payback process in a chronological order.

1 payback ← 0

2 for [payback < (α+1)L] do

3 if (c > L + BAM), then signal the lender then

4 if [(α+1)L – payback] >=L (after receiving lender’s

acknowledgment)

5 Authorize L nuglet additions to lender’s counter

6 payback ← payback + L

7 else

8 authorize [(α+1)L – payback] nuglet additions to

lender’s counter

9 payback ← (α+1)L

Figure 2: Payback process within Broke Node’s Security Module

3

Finally, the security of the Broke Service is ensured using
security modules, and the Broke Service is hence tamper-
proof, and also integrates well with the cooperation system
suggested in [2].

III. PERFORMANCE ANALYSIS

In this section we analyze the practicality of the Broke
Service and show that in its proposed form it delivers a
superior quality of service. To see this, we again break the
function of Broke Service payback into two parts: Break-
Even and ROI, and show that following our ‘send-wait’
mechanism, the Broke Service could be used with a
reasonably low additional delay, when compared to the ‘wait-
send’ approach implied in [2].

First, when using the Broke Service in an Ad-Hoc network,
Break-Even can be achieved in a reasonable time within a
flexible range of network traffic flows. For example, Fig. 3
shows the time for which a Broke node has to wait in order to
accumulate enough nuglets to transmit 50 equal-sized packets
to an average destination of 5 hops away from it. The
robustness of the scheme can be seen by observing that if an
appropriate BAM value is chosen, and when the incoming
traffic is on average in the broad range of 1.8 to 5.3
packets/seconds, then a broke node that should have waited
for at least 15 seconds in the previous schemes, can send its
traffic ‘immediately’. Afterwards, the node has to wait for
only a maximum of up to 60 seconds to accumulate enough
nuglets to payback its loan, with the additional peace of mind
for knowing that the node will not become broke again after
sending its traffic.

Once Break-Even is achieved, the ROI on loans made
through the Broke Service can also be achieved in a
reasonable time provided that the borrower does not send its
own traffic excessively. For example, Fig. 4 depicts a similar
scenario to Fig. 3, where various values of α, (ie., returns on
the initial 50 packet investments) is desired. It can be seen
that up to 300% net profit can be accommodated in less than 2
minutes, provided that the lower limit of the traffic range is
increased slightly to 2.2 packets/seconds. On the other hand,
if up to a maximum of 200% net profit (ie., α = 2) is desired,
then the lender can expect the profit to be attainable even
within the same range of traffic as in Fig. 3.

Note that the ROI cases considered above are probably not
going to be the most frequent scenarios encountered, and in a
more realistic example, where a lender aims for a reasonable
100% or less return on its investment, it only has to wait up to
a maximum of 90 seconds before it receives its entire
investment. That being said, it is natural to expect that the
more the Broke Service is used within the network, the less
ROI is required to justify its usage by lenders, and the delay
will also be further improved.

Figure 3: Break-Even Time vs. Traffic Levels for various BAM values

Figure 4: ROI Time vs. Traffic Levels for various α values

REFERENCES

[1] L. Blazevic, C. Buttyan, S. Capkun, S. Giordano, J.-P.
Hubaux, and J.-Y Le Boudec, “Self organization in mobile
ad hoc networks: the approach of Terminodes,” IEEE
Communications Magazine, vol. 39, no. 6, June 2001.

[2] L. Buttyan and J.-P Hubaux, “Stimulating Cooperation in
Self-Organizing Mobile Ad Hoc Networks”, ACM/Kluwer
Mobile Networks and Applications, 8(5), October 2003.

[3] S. Marti, T. Giuli, K. Lai, and M. Baker. “Mitigating routing
misbehavior in mobile ad hoc networks”. In Proc. Of the 6th
Ann. Int’l Conf. on Mobile Computing and Networking
(Mobicom ’00), August 2000.

[4] S. Buchegger and J.-Y Le Boudec. “Performance Analysis
of the CONFIDANT Protocol (Co-operation of Nodes –
Fairness in Distributed Ad-Hoc Networks)”. In Proceedings
of the ACM Symposium on Mobile Ad Hoc Networking and
Computing (MobiHOC), Lausanne, Switzerland, June 2002.

[5] S. Zhong, J. Chen, Y. R. Yang, “Sprite: A Simple, Cheat-
Proof, Credit-Based System for Mobile Ad-Hoc Networks”,
Proceedings of IEEE INFOCOM 2003.

