
ON OPTIMAL PEER-TO-PEER TOPOLOGY CONSTRUCTION WITH MAXIMUM PEER
BANDWIDTH CONTRIBUTIONS

Tara Small, Baochun Li and Ben Liang

Department of Electrical and Computer Engineering
University of Toronto

{tsmall, bli}@eecg.toronto.edu, liang@comm.toronto.edu

ABSTRACT

As the number of participating peers scales up, multimedia
streaming applications use amount of bandwidth from media
streaming servers. As in previous works, we employ peer-
to-peer (P2P) networks to mitigate unnecessary burden on
the servers by using the upload bandwidth of peers to serve
other peers. We formulate the network topology optimization
problem as a minimization of server bandwidth cost, which
leads to scalability of the system with respect to the number
of peers participating in the session. We analytically design
a topology that achieves this optimum, and a corresponding
algorithm that generates it in practice. Using a simulation-
based comparison study, we show that the optimization is
achieved in a high-churn peer-to-peer network with realistic
peer uplink capacities and link delays.

1. INTRODUCTION

Due to the high bandwidth demands of multimedia streams,
deployment of multimedia services to support large numbers
of users can be extremely expensive for the service provider.
Peer-to-peer networks can be used in these scenarios because
they rely not only on a small number of streaming servers to
receive their data messages, but also on the uplink bandwidth
of the participating peers themselves. Each participating peer
contributes its uplink bandwidth to serve other peers, reliev-
ing the burden that would otherwise be imposed on dedicated
servers. The most significant disadvantage of the peer-to-peer
technology is that the peers are free to leave the network at
any time; however, as the number of peers becomes large, the
advantage of reduced server load clearly outweighs the disad-
vantage of transient peers.Peer-to-peer streaming offers com-
pelling benefits to be implemented in real-world applications.

Although existing works in peer-to-peer streaming acknowl-
edge the importance of scalability, they fail to offer suffi-
cient insights towards the construction of peer-to-peer overlay
topologies that maximize peer bandwidth contributions, and
consequently minimize the load on dedicated servers. In this
paper, we develop a rigorous analytical framework that min-
imizes server bandwidth cost in an environment where any

pair of nodes have the potential to communicate.1 By keep-
ing a large set of potential connections available, we analyze
an upper bound for the best case server bandwidth utilization
(lowest server cost) in a peer-to-peer network for a given set
of network characteristics. Based on our analytical insights,
we design an algorithm to place new peers into the topology
so that all peers contribute maximal bandwidth at any time
and attain the objective of scalability. Furthermore, the op-
timized topology is resilient to churn with arbitrary distribu-
tions of peer lifetimes.

2. RELATED WORK

We categorize existing work towards topology construction
for peer-to-peer streaming into two broad categories: tree-
based and gossip-based topologies.

Tree-based topologies are rooted at the multimedia source,
and the source manages all information for the construction
and maintenance as peers are added and removed from the
network (e.g. Coopnet [1], Splitstream [2]). Since all of the
construction information is centralized, algorithms can poten-
tially be very efficient; however, the removal of nodes close
to the root of the tree can cause severe disruptions since a de-
parture (or loss) of one peer affects all of its children. As a
result, these topologies are vulnerable to high “churn” (depar-
ture) rates of peers. Maintenance algorithms for these topolo-
gies are complicated, do not scale well, and may not be effec-
tive in a high-churn environment. Due to the transient nature
of participating peers in a streaming session, we believe that
tree-based topologies are not particularly suitable for peer-to-
peer streaming.

Mesh-based topologies, such as Bullet [3], are built on
tree topologies, but disjoint sets of data are sent to different
parts of the network so that less loss occurs when nodes leave
the network, and information can be downloaded in parallel.
The nodes in these topologies receive some of the media from
their parents in the underlying tree, but are responsible for
finding the remaining packets themselves. Any parent node

1This assumption is practical in a P2P network that is streaming over the
Internet.

will attempt to serve its peers with as much spatial diversity as
possible. We concur that mesh-based topologies are superior
with respect to the total available uplink capacities, though
they are still quite rigid, as they are based on trees.

Gossip-based or data-driven protocols, such as CoolStream-
ing [4], GridMedia [5], and Chunkyspread [6], have been pro-
posed to “spread” data to M randomly chosen neighbors, us-
ing either “push” or “pull” techniques. Each data message
received by a peer is forwarded to a random set of other peer
nodes. The uniform random choice of peers to serve has been
proven robust to dynamic changes (churn); however, peer uti-
lization only improves using limited local information. Gos-
siping strategies do not choose neighbors to globally optimize
any particular metric, such as bandwidth costs at the servers.

Unlike some of the previous works (e.g. [7]), we firmly
believe that peers have asymmetric uplink and downlink band-
width capacities (with considerably smaller uplink capacities),
as they are mostly served by ADSL or cable broadband con-
nections. In particular for very high-bandwidth applications,
nodes may receive data from multiple upstream peers, and the
gap between the total available download and upload capaci-
ties in the streaming session should be bridged by dedicated
streaming servers.2 Alternatively for lower quality streaming
where the playback rate is lower than the uplink capacities of
the peers, it is possible for a single peer to serve another peer.3

Our objective is to minimize the bandwidth required from the
dedicated multimedia servers.

3. PEER CONTRIBUTIONS IN OVERLAY
TOPOLOGIES

Let us assume that the peer-to-peer network considered here
consists of one multimedia source (known as “the server”)
and N −1 peers. Note that having multiple streaming servers
in the network is functionally equivalent to having one server
with the same total uplink bandwidth. The dedicated stream-
ing server continuously generates data messages that form the
multimedia stream, to be served to all peer nodes in the net-
work. Peers can relay the stream at a random upload rate U ,
and the media must be played back at a fixed rate p. When-
ever possible, each peer receives the media stream forwarded
from (possibly several of) their peers. If the serving peers
are unable to jointly send messages at the bit rate p, either
because they have not yet received the packets required by
their neighbors or because they have used all of their upload-
ing bandwidth, the remaining unserved rate is served from the
dedicated server. Hence, the choice of topology has a signifi-
cant effect on the bandwidth cost to the server.

Tree-based peer-to-peer topologies are constructed at the
multimedia source in a centralized manner, with maintenance
algorithms to keep the global server cost low. Gossip-based
topologies require each peer, including the server, to choose

2Such views are shared by PROMISE [8] and PALS [9].
3This perspective is suggested by CoolStreaming [4].

M random peers as “partners” that could potentially serve the
media stream, so the network is robust to churn; however, the
topology is not globally optimized. We wish to take the posi-
tive aspects of these different topologies to construct the best
possible topologies to minimize server bandwidth costs with-
out causing unreasonable delays for reception at the peers.
For example, if p is greater than the peer upload bandwidth
U then there are opportunities for each peer to be served by
multiple other peers in the session, while using the entire up-
load bandwidth of those peers. We construct a topology that
uses all upload bandwidth for all peers.

First consider a peer l, the peer that receives the data stream
at the latest time. The upload bandwidth at peer l is necessar-
ily idle because all other peers would already have received
the data. We choose a set of peers to serve l such that the
combined upload capacity of the peers is as close as possible
to p (but not greater). These peers are referred to as the (l−1)-
peers. In a similar fashion, we assign a collection of peers to
serve each of the (l − 1)-peers; however, we allow some of
the excess peer upload bandwidth to serve the small unserved
portion of peer l. This process is repeated until all peers are
filled into positions in the topology, and any remaining peer
that is not served by other peers is served by the server. We
refer to the set of peers served by the server as 1-peers, the
peers they serve as 2-peers, ...

The server bandwidth cost in a peer-to-peer topology is
the difference between the bandwidth required by the peers
to stream the data messages and the uplink bandwidth con-
tributed by the peers. Therefore since, by construction, this
topology uses the most possible upload bandwidth from the
peers, it imposes minimal server bandwidth cost. To achieve
this topology in a dynamic environment, we add peers ac-
cording to Algorithm 1 when they request insertion into the
network.

Algorithm 1. Immediately before a new peer joins the
streaming session, let the bandwidth difference between the
k- and (k + 1)-peers be

δk :=




(
∑

j∈k-peers ej) − (|(k + 1)-peers| ∗ p

−∑
m∈(k + 1)-peers sm) for 1 ≤ k < l∑

j∈l-peers uj for k = l,

where p is the playback rate of the media, uj is the total up-
load bandwidth of peer j, ej is the unused (excess) upload
bandwidth of peer j, and sm is the bandwidth served to peer
m from other peers. Let k∗ = max arg

k
{|δk|}. If δk∗ < 0,

the new peer is inserted as a k∗-peer, which can potentially be
served by any (k∗ − 1)-peer and to help serve any (k∗ + 1)-
peers. If δk∗ > 0, the new peer is inserted as a (k∗ + 1)-peer,
to be served by the k∗-peers and to serve the (k∗ + 2)-peers.

Algorithm 1 places peers in a directed graph such that the
server cost is increased as little as possible each time a new
peer is inserted by using as much bandwidth as possible from

the peers in the network. Although this is a centralized algo-
rithm, new nodes could be placed in a distributed network if
the peers could approximate δk using local information. Since
any peer that has idle upload bandwidth can potentially serve
any new peer at any time, the server cost is not only mini-
mized in a local sense, but also in a global sense because the
placement of a peer at an early stage will never hamper peer
placements at later stages.

This topology construction employs structure in the topol-
ogy, as for tree-based topologies, to strive for global optimal-
ity of server cost. At the same time, it can borrow the robust-
ness of the gossiping strategies to choose the serving peers, by
allowing each (k+1)-node to sample from any of the k-nodes
at random to serve it. We have incorporated both global opti-
mality and resilience to the churn of a peer-to-peer network.

4. PERFORMANCE EVALUATION

We compare the performance of the optimized topology to
the topologies from previous works in the presence of churn
using a simulation-based study. In particular, we consider
a bandwidth-optimized tree topology, with four peers con-
nected directly to the server and the other peers forming chains
down from those four. We also compare to a binary tree.
Though tree topologies typically react poorly to churn, we
wish to compare the wasted upload bandwidth of the peers in
the topology rather than their resilience to churn. Therefore,
we assume that the trees can be immediately reconstructed if
any peer leaves.

Gossiping-based topologies are also evaluated in the com-
parison study. Each peer connects to M random neighbors
(serving peers) and, again since we want to compare the peer
bandwidth contributions rather than the recovery mechanism,
each peer finds a new partner immediately if one of its neigh-
bors goes offline. We assume that the our proposed scheme
constructs its topology as described in Algorithm 1.

The results of our evaluation are shown in Fig. 1. In this
set of tests, we assume each link has normalized length 1,
play rate p = 225 [kbps], and an upload capacity is cho-
sen from a Zipf distribution with mean u = 100 [kbps].4

The lifetimes of the peers are also chosen from a Zipf dis-
tribution,5 where there is high probability of smaller lifetimes
and low probability of long lifetimes. We truncate the Zipf
distribution so that the mean is 270 time-steps (45 minutes).
The insertion process is Poisson, with rate oscillating slowly
between 6 peers/time-step and 0.25 peers/time-step, for 10-
second time-steps to represent times when there are more and
fewer peers online.6 Note that the connections of points in

4By using this distribution, we are attempting to take into account that
peers have different inherent upload capacities and that the peers are likely
multitasking and using some of their uplink bandwidth for other purposes.

5The Zipf distribution has been shown to represent the online lifetimes of
human users [10].

6For example, there may be more peers streaming multimedia in the

the curves indicate points adjacent in time in the simulation.
When the rate of insertion of nodes in the network is large, we
see points closer to the right side of the curves. When the rate
of insertion is lower, then more nodes are expiring than are
being introduced; so we see the points of the curve moving
toward the left. Since there is no preference for which nodes
expire, the topology may become less optimal. We see from
the Fig. 1 that Algorithm 1 is able to insert new nodes without
getting trapped in local minima, so the network recovers well
and achieves stability even though there is churn in the net-
work. We assess three metrics: (1) the average distance from
a peer to the streaming server; (2) the serving bit rate from the
server; and (3) the total idle upload bandwidth at the peers.

Fig. 1(a) compares the average distance to the server (data
delay) as a function of the number of peers in the system,
which varies due to the rates of insertion and removal. Since
U < p, the proposed peer-bandwidth-optimized topology keeps
many peers close to the server, and the time from transmission
from the server to reception at the peers is very short on av-
erage. Normally, one would expect that lowering the delay of
packet reception would increase the cost to the media server;
however Fig. 1(b) shows that the opposite is true, even with
conservative assumptions for recovery in the gossip-based and
the tree topologies! Our topology achieves lower delay than
either the binary tree or the gossip-based topologies, while
using less server bandwidth. On the other hand, the server
cost for the centralized tree with four chains achieves simi-
lar cost since the peer uplink is also almost completely uti-
lized, as shown in Fig. 1(c). However, we assumed that the
tree topology with four chains would be able to immediately
adapt to changing topologies, which is not true in practice.
The bandwidth-optimized topology reacts to the change and
its bandwidth may oscillate while it samples from the remain-
ing nodes that could potentially serve, but this topology is
practical and has also shown considerably less delay.

5. CONCLUSION

In this paper, we have constructed a network topology that
maximizes peer-to-peer uplink bandwidth resources and fa-
cilitates scalability in multimedia streaming. This topology
adapts and loosens the idea of structure from tree topologies
that perform poorly in high-churn environments, but is able
to achieve global optimization. By keeping a small amount
of structure, namely the number of hops from the source, and
also incorporating gossiping to select neighbors from a subset
of peers, we are able globally minimize the cost to the server
and also be resilient to churn.

Our optimized topology is based on an analytical mini-
mization for an idealistic model, but we have shown that it is
also flexible. This topology achieves better performance than
previous topologies in systems where peers have realistic dis-

evenings or on the weekends.

 (a) Average delay at peers (b) Total bandwidth cost at the server

 (c) Total idle upload bandwidth from any peer

Four-chain tree
Binary tree

Gossip-based (M=3)
Peer-BW optimized

 100

 50

 20

 10

 5

 1
 200 300 400 500 600

D
is

ta
nc

e
fr

om
 s

er
ve

r
[h

op
s]

Number of peers, N

 10
 8

 6
 5
 4

 3

 2

 200 300 400 500 600

Se
rv

in
g

ra
te

 f
ro

m
 s

er
ve

r
[M

bp
s]

Number of peers, N

 3

 1
 0.5

 0.1
 0.05

 0.01
 200 300 400 500 600

Id
le

 B
W

 a
t p

ee
rs

 [
M

bp
s]

Number of peers, N

Fig. 1. Performance metrics using different peer-to-peer topologies with peer uplink bandwidth capacities and lifetimes follow-
ing Zipf distributions.

tributions for peer lifetimes and uplink capacities, and that
the uplink capacities may be lower than the playback bit rate.
While encouraging peers to utilize their uplink bandwidth as
completely as possible, this topology allows applications to
scale to larger network sizes that may previously have over-
whelmed a multimedia source and at the same time achieves
low latencies.

6. REFERENCES

[1] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanid-
kulchai, “Distributing streaming media content using
cooperative networking,” in Proc. 12th International
Workshop on Network and Operating Systems Support
for Digital Audio and Video, May 2002.

[2] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh, “SplitStream: High-
bandwidth content distribution in a cooperative environ-
ment,” in Proc. 2nd International Workshop on Peer-to-
Peer Systems, February 2003.

[3] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat,
“Bullet: high bandwidth data dissemination using an
overlay mesh,” in Proc. 19th ACM Symposium on Op-
erating Systems Principles, October 2003.

[4] X. Zhang, J. Liu, B. Li, and T. P. Yum, “CoolStream-
ing/DONet: A Data-Driven Overlay Network for Effi-

cient Live Media Streaming,” in Proc. INFOCOM 2005,
March 2005.

[5] M. Zhang, L. Zhao, J. Luo Y. Tang, and S. Yang, “Grid-
Media: A Peer-to-Peer Network for Streaming Multi-
cast Through the Internet,” in Proc. ACM Multimedia
2005, November 2005.

[6] V. Venkatraman and P. Francis, “ChunkySpread Over-
lay Multicast,” in Proc. 2nd Symposium on Networked
Systems Design and Implementation, May 2005.

[7] B. Cohen, “Incentives Build Robustness in BitTorrent,”
in Proc. Workshop on Economics of Peer-to-Peer Sys-
tems, June 2003.

[8] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhar-
gava, “PROMISE: peer-to-peer media streaming using
CollectCast,” in Proc. ACM Multimedia 2003, Novem-
ber 2003.

[9] R. Rejaie and A. Ortega, “PALS: Peer-to-Peer Adap-
tive Layered Streaming,” in Proc. 13th International
Workshop on Network and Operating Systems Support
for Digital Audio and Video, June 2003.

[10] K. Sripanidkulchai, A. Ganjam, B. Maggs, and
H. Zhang, “The Feasibility of Supporting Large-Scale
Live Streaming Applications with Dynamic Application
End-Points,” in Proc. SIGCOMM‘04, September 2004.

