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Abstract—As existing works on federated learning (FL)
have not typically shared their implementations as open-
source, and existing open-source FL frameworks fell short
of evaluating FL mechanisms appropriately, in the past two
years, we have designed and implemented PLATO, a new
open-source research framework for scalable federated
learning research from scratch. Development on PLATO
started in November 2020, and so far involved more
than 50 person-month of research and development time.
PLATO is designed and built with several key objectives
in mind: it is scalable to a large number of clients;
extensible to accommodate a wide variety of datasets,
models, and FL algorithms; and agnostic to deep learning
frameworks such as TensorFlow and PyTorch. In PLATO,
clients communicate with servers over industry-standard
WebSockets, while servers may either run in the same
GPU-enabled physical machine as its clients — suitable
for an emulation research testbed — or deployed in a
cloud datacenter. We provided a large variety of popular
datasets and models, as well as algorithms proposed in the
literature as examples.

I. INTRODUCTION

In reviewing the literature in federated learning (FL),
it is hard to overlook the fact that there does not
exist a federated learning framework that is the de
facto standard on evaluating the performance of newly
proposed mechanisms. Each proposed work typically
used its own proprietary testbed for the purpose of
performance evaluations, and did not typically share their
testbed implementation as open source, making it almost
impossible to reproduce their experimental results. But
such a glaring lack of reproducibility is not the only issue
outstanding in the existing works: they have not been
compared using a consistent set of performance metrics.
Various performance metrics, such as the number of
transmitted local updates or communication rounds till
convergence or reaching a target accuracy, have been
employed in previous studies. Nevertheless, none of
them were shown to be sufficiently representative when

The research was supported in part by a RGC RIF grant under the
contract R6021-20.

it comes to the two fundamental metrics of convergence:
the amount of time it takes for the global model to
converge, and the validation accuracy that the global
model converged to.

These problems motivated us to design and implement
a new open-source FL research framework that is easy
to run, scalable to an unlimited number of clients, easy
to extend to new FL mechanisms, and accessible to a
wide variety of existing machine learning models. In
the past two years, we invested over 50 person-months
of research time, and designed PLATO, a new open-
source research framework for scalable FL research,
from scratch. It is currently available as open-source
(under the Apache 2.0 license) at https://github.com/
TL-System/plato.

II. PLATO: DESIGN OBJECTIVES

With over two years of intensive work on PLATO,
we have succeeded to achieve the following design
objectives:

Scalable to an unlimited number of clients. To scale
up the number of clients that can be emulated with a
limited amount of GPU memory, our implementation
runs clients in batches, and each client’s training loop
is executed in its own process, so that GPU memory is
guaranteed to be released after the process completes
a round of training. PLATO is also able to take full
advantage of multiple GPUs to further improve the level
of concurrency.

Extensible to accommodate a wide variety of mod-
els, datasets, and FL methods. PLATO provides access
to a wide variety of existing machine learning models
and datasets, including image classification and natural
language processing. Moreover, all possible elements of
a new FL mechanism — algorithms, clients, servers,
model trainers, data sources, and data samplers — are
implemented as extensible classes following the same
design patterns of inheritance and callbacks, so that new
mechanisms can be easily implemented.

https://github.com/TL-System/plato
https://github.com/TL-System/plato
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(a) Selected algorithms with CIFAR-10.
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(b) Selected algorithms with CINIC-10.
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(c) Selected algorithms with
Tiny-Shakespeare.

Fig. 1. Port, FedBuff, FedAsync and federated averaging with the CIFAR-10, CINIC-10 and Tiny-Shakespeare, and a mild non-i.i.d. Dirichlet
data distribution.

Agnostic to multiple machine learning frameworks.
So far, PLATO supports three widely used machine learn-
ing frameworks, PyTorch, TensorFlow, and MindSpore.

Real-world system implementations, not just emu-
lations. In PLATO, communication between the central
server and clients in two-layer FL, as well as between the
central server and edge servers and between edge servers
and clients in three-layer FL, is over industry-standard
WebSockets, which provide options to conduct not only
emulations but also experiments with real-world system
implementations, depending on where the central server
runs. The servers can run on either a cloud datacenter in a
production system, or in the same GPU-enabled physical
machine along with its clients, which is suitable as an
emulation research testbed. An advantage of such an
implementation is that actual wall-clock time it takes to
complete a training session can be accurately measured,
including all the time required for communication.

Reproducibility in FL experiments. In FL experi-
ments, random number generators are used for sam-
pling participating clients and local datasets. For fair
comparisons across different FL mechanisms, improv-
ing the reproducibility of our experiments by seeding,
saving, and restoring our random number generators is
critically important. In PLATO, we can not only specify
random seeds but also use random.getstate() and
random.setstate() to protect random number gener-
ation from the effects of third-party frameworks.

III. PLATO: AN EXAMPLE

For fair comparison studies, a large number of ex-
amples were included in the PLATO GitHub repository,
which implemented popular existing algorithms in the
literature. When comparing existing algorithms, we fo-
cus on two performance metrics: (1) Wall-clock time.
The number of communication rounds is not a suitable

performance metric in production FL, since different
rounds would take substantially different durations in
wall-clock time. Instead, the wall-clock time elapsed be-
fore converging to a target accuracy is the most suitable
performance metric that should be evaluated when evalu-
ating new mechanisms. (2) Accuracy. The accuracy after
convergence is arguably one of the important metrics as
well.

As an example, PLATO is used to evaluate in the
context of asynchronous federated learning PORT [1],
a recently proposed asynchronous FL algorithm. Three
datasets have been used for a comparison study:
CIFAR-10, CINIC-10 and Tiny Shakespeare. Three
baseline algorithms, including Federated Averaging as a
synchronous algorithm, as well as Fedbuff and FedAsync
as asynchronous algorithms, were used for comparisons.
Fig. 1 illustrates our experimental results obtained with
PLATO, with a total number of 100 clients and non-
i.i.d. settings, and using the elapsed wall-clock time
and accuracy as the performance metrics in production
FL. PLATO natively supports measuring the wall-clock
times even in its emulation mode running clients in
batches with limited GPU memory, using sophisticated
mechanisms such as priority queues to sort clients by
their finish times after multiple batches finish in the
same communication round. It is also straightforward to
generate non-i.i.d. distributions of data across clients, or
to simulate varying training speeds across heterogeneous
clients: all one needs to do is specify parameter settings
using a configuration file.
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