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Abstract— The metaverse is a virtual world that exists entirely
in a computer-generated environment, and it offers a new frontier
for machine learning. One of the major challenges for using
machine learning in the metaverse is MLOps (Machine Learning
Operations), an emerging field that focuses on deploying and
managing machine learning models in production. It has been
widely acknowledged that machine learning models require a
large amount of data to learn and make accurate predictions, and
such data is generated progressively in real-time as human users
interact with the metaverse. Due to the human-centric nature of
the metaverse, it goes without saying that, once deployed, models
need to be able to adapt to the constantly changing interactive
environment and still make accurate predictions. Borrowing a
page from software engineering, in this paper, we explore the
design space of human-centric continuous integration in meta-
verse environments, where labeled data samples accumulated
with explicit human interactive behavior (e.g., using virtual
reality or augmented reality headsets) are used for fine-tuning a
deployed deep learning model over a sustained period of time.
We propose SPIN, a new mechanism that efficiently utilizes data
samples collected from a large number of participating human
users over time to fine-tune a deployed model that is shared across
all the users. In an extensive array of experimental results using
image classification and state-of-the-art YOLOv8 object detection
models as case studies, we show that SPIN outperforms FedBuff,
a state-of-the-art asynchronous FL mechanism from conventional
federated learning, by a substantial margin.

Index Terms— Continuous integration, MLOps, federated
learning, metaverse.

I. INTRODUCTION

AS AN emerging technological trend, the metaverse is
an interactive digital environment that is expected to

revolutionize the way people interact by enabling real-time,
immersive communication via digital avatars [1]. Needless to
say, the implementation of engaging features in the metaverse
requires the assistance of machine learning models on a wide
variety of tasks, such as object detection, in real-time. As such,
machine learning will become a fundamental building block in
many metaverse applications. Most of these applications will
use pretrained models in their deployment in the metaverse,
and such deployed models need to be monitored and fine-tuned
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to ensure that they are performing as expected, taking into
account the constantly changing environment in the metaverse
due to human interactions. Generally referred to as MLOps
(Machine Learning Operations), applications need to have
a process in place to manage the lifecycles of its models,
including version control due to model fine-tuning, testing,
and retraining.

As challenging as MLOps are in general-purpose production
environments, we argue that the challenges MLOps pose in
the metaverse are unique and require special attention. In the
metaverse, due to its unique interactive nature involving human
participants, human decisions and behavior produce data inter-
actively and progressively over a sustained period of time,
sometimes days or even weeks. Such data, which is generated
through sporadic human interactions in the metaverse, can be
collected and utilized for various purposes. For instance, users
can label objects in a sequence of images from a live video
feed using their headsets and over-the-air gestures from time
to time. This data can then be employed to train an object
detection model or easily fine-tune an image classification
model in a specific area. For example, members in a family can
harness devices in the metaverse to accumulate their own data,
which can subsequently be used to train a personalized butler
system exclusively catering to the needs of the family members
within their house. As new data that reflect and arise from
human intervention in the metaverse are therefore produced
in a sporadic fashion, they could — and should — be utilized
to fine-tune and improve the quality of deployed models, as an
important feature of MLOps in the metaverse.

Yet, due to the human-centric and sporadic nature of data
generation over the prolonged period of time, it is non-trivial
to utilize such data for fine-tuning deployed models in the
metaverse. For example, given that the metaverse involves
sensitive personal information, it is crucial to guarantee the
privacy of user-generated data in a decentralized metaverse
environment [2]. In the literature, federated learning (FL) [3]
has been long used for preserving such data privacy gener-
ated by human users on the edge devices. Conventionally,
federated learning is a distributed learning paradigm where
multiple edge devices, such as smartphones or IoT devices,
collaboratively train a shared machine learning model without
sharing their raw data with each other or with the central
server. Though it is not perfect in preserving data privacy
and several challenges still persist, federated learning has been
widely acknowledged to reduce the risk of exposing sensitive
user data.
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There are, however, a number of challenges that we need
to address when utilizing the conventional FL paradigm for
fine-tuning deployed models in a human-centric metaverse.
As human users interact with the metaverse, labeled data
samples used for such fine-tuning are produced sporadically
and unpredictably over time. Such a human-centric paradigm
is remarkably different from typical assumptions used in
conventional FL, where client data is assumed to be readily
available in each communication round that the client is
selected by the server. In the conventional FL literature,
data is assumed to be heterogeneous and not independent
and identically distributed (non-i.i.d.), which remains a valid
assumption in the metaverse. However, the literature has not
considered the timing when data samples are produced, and
has not studied the cases where private data from human users
arrives over time sporadically. Additionally, local data samples
in human-centric metaverse environments may no longer be
produced in the hundreds of thousands and in batches, but
rather are only generated sporadically in small increments.
In such cases, conventional FL may not operate effectively,
simply because clients may not have the data needed for
fine-tuning a deployed model when they are selected by the
server, and conversely, when data is produced on a client due
to human interactions, the server may not be selecting it in a
timely fashion. This can significantly impact the performance
of fine-tuning a deployed model.

In this paper, we propose SPIN, a new mechanism designed
specifically to fine-tune globally deployed models by taking
full advantage of data samples generated sporadically in a
human-centric metaverse. Borrowing a page from modern
software engineering, SPIN adopts the design principles of
continuous integration (CI), which is a software engineering
practice that involves integrating code changes frequently
and automating the build and deployment processes. Similar
to how continuous integration promotes collaboration across
team members frequently rather than waiting till the end of
a development cycle, SPIN recognizes the fact that data is
generated unpredictably and sporadically over time, and is
designed to incorporate recently produced data in a timely
fashion rather than waiting till a future communication round,
so that human users can collaborate in the model fine-tuning
process.

SPIN is designed for MLOps in the metaverse, in the
sense that it targets fine-tuning deployed models that have
been pretrained, rather than training models from scratch as
in conventional FL. Similar to conventional FL, the server
aggregates the push updates from clients after their local
training is completed and a new version of the deployed
model is produced. Rather than waiting for server selection in
conventional FL, however, clients — who are human users in
the metaverse — proactively request the deployed model from
the server whenever a sufficient amount of new data becomes
available. We call these explicit requests pull requests, as the
globally deployed model will be sent only when a client
requests it. Just like in software engineering, SPIN deals with
potential conflicts between pull requests from some clients and
push updates from other clients. When resolving such clients,
we must decide whether we should send the current model

immediately to reduce the response time, or wait for the push
updates to be received so that a newer version of the model can
be used for training. For privacy protection, just like in conven-
tional FL, all user data remains local to the device, and only
model parameters are transmitted between the server and users.

Our original contributions to this paper are three-fold.
First, we are the first to consider MLOps and continuous
integration in the metaverse, and bring “human-in-the-loop”
into the fine-tuning process of pretrained models that have
been deployed. Second, we propose SPIN, a new mechanism
that integrates the data privacy benefits of conventional FL
and the timeliness of continuous integration for sporadically
generated data in the metaverse with human interactions over
time. In particular, SPIN resolves potential conflicts between
pull requests from some clients and push updates from others,
with the design objective of improving the convergence perfor-
mance by considering the staleness of models sent to clients
in response to their pull requests. With a mathematically
rigorous analysis of its convergence behavior, we prove that
convergence is guaranteed with our proposed mechanism.
Finally, we have implemented SPIN in the PLATO FL research
framework, and present a comprehensive evaluation of its
performance. Our evaluations start with image classification
tasks with LeNet-5 and ResNet-18 models as bench-
marks, using CIFAR-10 and EMNIST datasets. The upshot
of our experimental evaluation is its use of the state-of-the-
art YOLOv8 object detection model to best reflect real-world
human-centric tasks, in which human users label new objects
in their headset’s video feeds, using paired virtual keyboards
and over-the-air gestures. Our experimental results show that
SPIN converges efficiently when fine-tuning pretrained models
with sporadic and small-sized data generated by human behav-
ior, and outperformed FedBuff [4], a state-of-the-art asyn-
chronous FL mechanism, across all datasets and models. For
the best possible reproducibility, our experimental settings and
source code will be made open-source as published examples
in the git repository for the PLATO FL research framework.

II. PRELIMINARIES

A. Machine Learning Operations in the Metaverse

The metaverse, a virtual world where users can interact with
each other and digital objects, is rapidly growing in popularity
and complexity. As the metaverse becomes more sophisticated,
the need for intelligent systems that can adapt and learn from
user behavior increases. Machine learning is a powerful tool
that can be used to enhance various aspects of metaverse
applications.

One of the primary ways that machine learning can be used
in metaverse applications is to improve the user experience.
By analyzing user behavior, machine learning algorithms can
learn patterns and preferences, allowing metaverse applications
to tailor their experiences to individual users. For example,
machine learning algorithms can analyze user interactions
with virtual objects, such as avatar movements, and use this
data to improve animations or suggest new virtual objects to
users. As another example, machine learning can be used to
optimize the performance of metaverse applications, allowing
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for smoother gameplay and more immersive experiences. Such
applications of machine learning could aid in creating more
engaging and realistic experiences for users in the meta-
verse [5], [6]. Overall, machine learning has a crucial role
to play to allow for more personalized and immersive user
experiences in the metaverse, and to create new opportunities
for users and developers alike [7], [8], [9], and [10].

Existing research related to enabling users to participate
in training machine learning models in the metaverse is
primarily focused on three challenges: resource allocation,
privacy protection, and incentive mechanisms. With respect
to allocating resources, Cong et al. [11] proposed a resource
allocation framework that minimized the cost of a virtual
service provider, using a two-stage stochastic integer pro-
gramming technique. The framework incorporated uncertainty
when modeling user demands, allowing the virtual service
provider to make informed decisions under unpredictable
conditions. Yue et al. [12], on the other hand, proposed
a dynamic resource allocation approach using evolutionary
game theory. In addition, Nguyen et al. [13] was proposed
as a blockchain-based framework that efficiently managed
resources and encouraged user contribution for the metaverse,
utilizing smart contract mechanisms and a sharding scheme to
enable automated interactions between the metaverse service
provider and its users.

Unfortunately, none of the existing works have investigated
the core challenge involved with MLOps in the metaverse, i.e.,
when machine learning models are deployed and need to be
fine-tuned over time. Such fine-tuning is necessary to adapt
to a human-centric metaverse environment, and relies upon
data samples progressively generated by the human user over
a prolonged period of time. In this paper, we propose to adopt
the design principles of continuous integration from software
engineering, and design a new mechanism, SPIN, to facilitate
such a fine-tuning process.

B. Federated Learning

There exists a vast amount of literature on conventional
federated learning (FL) [3], a distributed machine learning
paradigm proposed to address privacy concerns by training
on client devices only and aggregating updates on the server.
Starting from its inception, conventional FL is designed with
one core mechanism as its foundation: in each communication
round, the server selects its clients from all available devices
using a client selection algorithm, and sends its current global
model to the selected clients only. Such a core mechanism in
conventional FL naturally assumes that if a client is selected,
its local data samples are readily available to commence local
training immediately. Unfortunately, this is not suitable for our
design objective of continuous integration when fine-tuning
deployed models for MLOps in the metaverse, as data samples
on each client are produced due to human behavior, and such
events are both sporadic and unpredictable in nature.

One may argue that the asynchronous design of conven-
tional FL, first proposed in FedAsync [14] and then tested and
validated with large-scale experiments in FedBuff [4], may be
a more suitable design for our design objective of continuous

integration. Asynchronous FL proposes to start aggregating
client updates on the server after a minimum number of client
updates arrives, yet before receiving all the updates from
selected clients. This is typically advantageous in situations
where clients have heterogeneous training capabilities, and
some slower clients may finish local training at a much later
time. However, as the server still selects new clients in the
next round of communication in asynchronous FL, it would
still not be ideal for the human-centric fine-tuning task we are
considering in the metaverse, since the selected clients may
not have data readily available at all times.

Yang et al. [15] proposed AFL, which allowed clients to
participate in the FL training process by pulling the global
model proactively from the server with the local timestamp.
This is a much more suitable design for our human-centric
fine-tuning task, but it misses several design elements in the
MLOps fine-tuning process we study in this paper. First,
it does not consider sporadic arrivals of events when client
data becomes readily available, and how such arrival processes
affect convergence behavior. Second, just like the conven-
tional FL literature, it does not specifically consider the task
of fine-tuning deployed models that have been pretrained.
Finally, it does not consider the potential conflicts between
pull requests from some clients and push updates from others
to the server, or how such conflicts should be best resolved.
In contrast, SPIN is designed specifically for our human-centric
fine-tuning task in the metaverse, and used a state-of-the-art
object detection model, YOLOv8, to validate its effectiveness
in the metaverse.

Last but not least, the task of fine-tuning pretrained models
has been empirically and theoretically investigated in the
recent FL literature. Nguyen et al. [16] empirically studied
the impact of starting from a pretrained model in federated
learning using several benchmark datasets, and showed that
not only did it reduce the training time, but it also led to
more accurate models as compared to starting from random
initialization. It was also found that starting from a pretrained
model reduced the effect of both data and system hetero-
geneity. From a more theoretical perspective, Tan et al. [17]
proposed a mechanism for clients to jointly learn to fuse the
representations generated by multiple fixed pre-trained models,
rather than training a large-scale model from scratch, so that
clients with lower computational resources can still participate.
In this paper, we recognize the fact that clients may have much
lower computational resources than typical servers, which are
only sufficient for fine-tuning a deployed global model using
a small amount of data samples. In addition, we focus on
the more practical situation that data samples are generated
by human users, and can only arrive sporadically over a
long period of time. SPIN is designed to take advantage of
such sporadically generated data for fine-tuning a pretrained
model in the metaverse, using client devices that have low
computational resources.

III. SPIN: PROBLEM FORMULATION AND ALGORITHM
DESIGN

In this section, we begin by formulating the problem of
continuous integration and fine-tuning deployed models in the
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context of MLOps in the metaverse. We then present the
technical details of SPIN, our new algorithm designed to solve
our formulated problem in the metaverse context.

A. Problem Formulation

The metaverse is a virtual world that exists entirely within
computer simulations, and as such, human users interact with it
using their virtual reality headsets, augmented reality glasses,
and other suitable input devices such as virtual keyboards
and over-the-air gestures. Consider an MLOps scenario that a
state-of-the-art object detection model, such as the Ultralytics
YOLOv8, is already pretrained and readily deployed. It is,
however, pretrained using data that is not necessarily inclusive
of the type and shape of objects that a human user interacts
with in its metaverse, and as a result the deployed model may
not be accurate detecting and classifying objects that a human
user is interested in.

In this scenario, developers can design the metaverse appli-
cation accordingly and ask human users to manually identify
and label these objects that the object detection model is not
trained on. As such manually labeled data samples accumulate
at each user, our objective in this paper is a matter of MLOps
in the metaverse context: how do we properly utilize these data
samples to fine-tune the globally deployed model that is shared
across all users in the metaverse, yet without compromising
data privacy?

Conceptually, though its efficiency may be questionable,
conventional federated learning (FL) can be used to achieve
such an objective. In order to design a new algorithm that
best achieves such an objective in general, we define several
research objectives that are more specific:
♢ Convergence. Just like in conventional FL, the fine-tuning

process must converge to a steady state with respect to
the validation accuracy of the globally deployed model.

♢ Efficiency. One of the key challenges in fine-tuning a
globally deployed model is how decentralized data sam-
ples produced by different users can be utilized efficiently
in the training process.

♢ Timeliness. As data is only produced sporadically over
a long period of time, it is important to ensure that
once data samples have been generated through human
interaction in the metaverse, they are utilized as quickly
as possible.

With these objectives in mind, we are now ready to present
the technical details of SPIN, our new mechanism designed
for continuous integration in the MLOps fine-tuning process.

B. SPIN: Algorithm Design

1) Continuous Integration: Continuous integration (CI) is
a software engineering practice that involves integrating code
changes in a fully automated way into a shared repository,
so that all changes can be incrementally tested without waiting
till the end of a development cycle. Borrowing the general
design philosophy of continuous integration, and given the
objective of timeliness for integrating the data samples pro-
duced by human intervention, we also wish to utilize data
samples as soon as possible after they are produced over time.

Fig. 1. An overview of data generation events, pull requests and push updates
in SPIN.

As its foundation, SPIN inherits the design principles of
both continuous integration and conventional FL. We assume
a large number of human users in the metaverse, all of whom
interact with the metaverse and produce labeled data samples
in a sporadic fashion. As the number of potential clients is
large, conventional FL opts to select a subset of clients in
each communication round and to send the global model to
the selected clients only. In SPIN, rather than actively selecting
clients in each round, the server responds to pull requests,
as we elaborate next.

2) Client Pull Requests: Similar to workers in AFL [15],
in SPIN, clients proactively pull the globally deployed model
from the server, and the server sends its current model only to
the clients who sent these pull requests. This helps mitigate the
negative effects on timeliness when the server selects clients
in each communication round in conventional synchronous or
asynchronous FL.

Different from workers in AFL, however, clients are not
allowed to pull the global model arbitrarily at any time,
and would not be able to completely take control of their
own optimization process. As data samples are produced
only sporadically as human users interact with the metaverse,
the quantity of such data samples produced at each client
would be small, at least initially. When local datasets are
small, locally trained models can vary greatly from a globally
deployed model. Local models with poor quality, however,
can arbitrarily deteriorate the aggregate model quality, causing
convergence processes to fail in these settings. To mitigate
the problem of small local datasets, it has been proposed in
recent literature [18] that local models can be redistributed
across clients through the server in a permutation step, in order
to allow each local model to train on a daisy chain of local
datasets. In practice, however, such a complex permutation
mechanism can lead to a significant amount of communication
overhead, which is inconsistent with our objective of timeli-
ness when utilizing freshly produced data samples.

When should a client send its pull requests to the server,
then? As illustrated in Fig. 1, in SPIN, before sending its
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initial pull request, a client is asked to accumulate a minimum
number of data samples that exceed a pre-determined threshold
that is task-dependent. For example, for object detection tasks
using a globally deployed YOLOv8 model, a client is asked
to accumulate 64 data samples before sending its initial pull
request. After the initial pull request is sent, a client sends
a new pull request whenever a new data sample is produced
by a human user, and this new data sample will participate in
the ensuing local training process, along with all existing data
samples that have been produced so far. This mechanism in
SPIN is designed to mitigate the risk of convergence failures
due to very small datasets, while maximizing timeliness in the
event that a new data sample arrives. A complete description
of SPIN’s client algorithm is shown in Algorithm 1.

Algorithm 1 SPIN: Client Algorithm at User k
Require: The set of locally produced data samples Dk; a

minimum threshold D; the batch size B, the learning rate
η, and the number of training epochs E.

1: while True do
2: Data samples are sporadically produced and added to
Du, accumulated with human interaction in the metaverse

3: if |Dk| ≥ D then
4: Send a new pull request to server S and wait for

the deployed model ws

5: if model ws has been received then
6: B ← (split Dk into batches of size B)
7: for each local epoch j ← 1 to E do
8: for batch b ∈ B do do
9: wk ← wk − η∇ℓ(wk, b)

10: end for
11: end for
12: Submit a model update wk to the server
13: end if
14: end if
15: end while

3) Server Algorithm: We are now ready to explore the
design space for the SPIN server algorithm, which governs
how the server handles the pull requests it receives from clients
who have new data samples produced locally.

As Fig. 1 shows, after a pull request has been received by
the server, it will send a push update in response, containing
the currently deployed model. Since client devices — such
as headsets — in the metaverse are computationally much
less powerful than servers (without ready GPU access, for
example), it should naturally be assumed that their local model
fine-tuning processes using local data will take a considerable
amount of time. As a real-world example, with an M1 CPU
on a modern Mac computer, approximately 5-6 minutes will
be needed to fine-tune a pretrained YOLOv8 object detection
model with 128 data samples and 5 epochs.

But why would it matter for slow client devices in the meta-
verse to finish their local fine-tuning processes over a longer
period of time? Let us consider a situation where a client has
just finished its local fine-tuning process, and sent its updated
model back to the server, as in conventional FL. Should the
server aggregate the update into its current model? Based on

state-of-the-art work in the literature on asynchronous FL [4],
[19], convergence may fail if the server chooses to aggregate
a model update from a client as soon as it is received (which
was advocated by FedAsync [14]). Instead, previous work,
such as FedBuff [4], advocated for the server to wait for a
minimum number of model updates before aggregating them
into its current model, using either a conventional aggregation
algorithm such as Federated Averaging (FedAvg) [4], or a
staleness-aware aggregation algorithm, such as PORT [19].

However, a fundamental difference between SPIN and con-
ventional FL is that in SPIN, the server may be receiving more
pull requests while it is waiting for the minimum number of
model updates to arrive. This is particularly the case if it
takes a rather long time — such as several minutes — for
a client to finish its local fine-tuning process. In conventional
FL, before the current round of server aggregation completes,
no clients will be selected since the next round has not yet
started. In SPIN, new pull requests may arrive at the server at
any time. It is straightforward to see that the server’s strategy
of waiting for a minimum number of model updates makes
the problem of model staleness worse in SPIN: a client is
said to be using a stale model if it started with a model that
has an earlier version than the model into which its update is
aggregated. In other words, more concurrency and asynchrony
between clients lead to higher risks of model staleness.

Just as SPIN’s algorithm design is inspired by continuous
integration in software engineering, it is worth pointing out
the analogy that the potential issue caused by model staleness
resembles potential merge conflicts in git repositories. With a
git repository, multiple clients are allowed to check out the
current version; yet, if they concurrently work on the current
version for a long period of time, conflicts may arise when
merging their updates on the server, leading to the need for
manual intervention. In the context of SPIN, such potential
merge conflicts correspond to poor performance or failures in
training convergence.

In the design space for the SPIN server algorithm, we can
mitigate the negative effects of model staleness with two
potential measures. First, when a pull request is received, the
server may choose to delay sending the push update with the
current model until some or all outstanding model updates —
corresponding to clients who received push updates but are
still performing their local fine-tuning processes — have been
received. Second, the server may aggregate the model updates
it has received sooner and in a more timely fashion, so that
the time interval between two aggregation rounds is shorter
and fewer clients would receive stale models.

We believe that the first alternative will not be effective
in mitigating the model staleness problem. This is because
that with pull requests arriving at any time, model staleness
is mostly caused by the fact that a large number of pull
requests are received by the server while many clients are still
performing their fine-tuning. The more frequent pull requests
that arrive and the longer it takes for clients to complete their
fine-tuning, the more severe model staleness may be. Delaying
a push update in response to a pull request does not reduce the
time a client takes to perform fine-tuning or the frequency of
pull updates; it simply gathers pull updates into batches, and
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the overall training process becomes more synchronous with
a sequence of communication rounds.

C. A Toy Example

In SPIN’s design, we aim to maintain the asynchrony and
concurrency of pull updates. Pull updates are sent to the
server whenever human users occasionally generate labeled
data samples. Upon receipt of a user’s pull update, the server
checks two parameters: the number of user updates received
and the timeout π. As shown in Fig. 2, the server begins
the aggregation process when it receives a minimum number
of model updates within the timeout π period. In this case,
the condition that triggers the server to start the aggregation
process is the receipt of three model updates from the users,
not a timeout. We do this to avoid model staleness or skew
in the model after convergence due to too few updates being
aggregated.

However, setting a timeout π is crucial. It’s important to note
that there’s a significant variation in the speed at which users
train their models, which is the reason for the heterogeneity in
federated learning. Imagine a scenario where a certain region is
at nighttime for a while, and user activity is not frequent. Some
users who accumulate data and start the FL training process at
night may have very limited computational resources, leading
to considerable differences in training speeds. If the server
waits for a long time for model updates and does not use the
currently received model updates for aggregation and global
model update, it would lead to a situation where fast-training
users have already trained and sent model updates several
times, but the server’s pushed model remains unchanged.
These users would receive models that are much stale than
their previously completed models for training their new data.
See Fig. 2 as an example, we assume only user 1 and
user 2 have newly generated data and send pull requests to
the server. However, user 1 trains several times faster than
user 2. In practice, the minimum number of model updates
received by the server can be set to 10 or more. By the time
user 1 has completed several pull-push communications with
the server, user 2 is still training. At this point, the server has
not received the minimum number of updates from the users,
but user 1 has already been training with a model several
rounds older than the one they trained. To prevent fast-training
users from wasting computational resources, we apply the
timeout hyperparameter π to ensure that the model received
by the client when a push update is sent in response to its
pull request is no more than π versions older than the latest
version.

The full description of the SPIN server algorithm is shown
in Algorithm 2. The SPIN server algorithm does not pull
updates in batches but waits for a minimum number of model
updates before aggregating them, with a crucial hyperpa-
rameter added: timeout π. If the number of model updates
has not reached the minimum threshold K before timeout
π expires, the SPIN server will continue to aggregate all
model updates received so far. We chose not to modify the
client selection or aggregation algorithm in the FL process,
as our metaverse users are very different from the traditional
clients in federated learning. Their data distribution, data size,

Fig. 2. The server algorithm in SPIN: server aggregation starts when a
minimum number of model updates have been received, or when a timeout
π expires. Whenever a pull request is received from a client, a push update
with the current global model will be sent immediately.

and training speed are significantly different, and as they are
the first users of the metaverse, their data is valuable. For
highly heterogeneous users, modifying the client selection or
aggregation algorithm in the federated learning process can
significantly improve accuracy. However, we do not want our
performance improvement to be due to selecting certain users
beneficial to the global model or giving more weight to certain
users’ models. We hope that in the metaverse, users and their
data contribute fairly to the global model, at least during the
initial construction of the metaverse world.

Given our desire for each user to participate fairly in the
construction of the metaverse world with their data, we hope
to avoid conflicts or model regressions caused by concur-
rency and asynchrony in communication with the server when
designing the algorithm. Just like FedAvg [3] and FedBuff [4],
it is intentionally designed to be simple, as our experiments
showed that additional complexity does not necessarily lead
to corresponding performance improvements. We choose not
to include more complexity in our design due to empirical
observations in our experiments.

IV. CONVERGENCE ANALYSIS

In this section, we offer a thorough convergence analysis of
the SPIN algorithm. A key challenge in SPIN is the inability
to actively select users by the server, in contrast to traditional
federated learning. Consequently, the time steps at which users
engage in the federated learning process are not uniform,
rendering our problem more closely related to asynchronous
federated learning. In order to present a comprehensive anal-
ysis of the SPIN algorithm, it is essential to examine the
convergence properties of the algorithm. Unlike traditional
federated learning structures, SPIN does not utilize a fixed set
of users. Instead, in our subsequent experiments in Section V,
we will employ a Poisson process to simulate the event arrival
times for pull requests to the metaverse server S. Given this
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Algorithm 2 SPIN: Server Algorithm
Require: The globally deployed model ws; the minimum

number of model updates K before aggregation starts; the
timeout hyperparameter π.

1: while True do
2: Wait for pull requests and model updates from clients
3: if received a pull request from client k then
4: Send the current model ws in a push update to k
5: end if
6: if received a model update wk from client k then
7: Add wk to the queue of model updates Qs

8: end if
9: if |Qs| ≥ K or timeout π exceeded then

10: ws ←
∑

k pkwk, where pk = |Dk|∑
k |Dk| ▷ FedAvg

11: end if
12: end while

context, we aim to provide a convergence guarantee for SPIN
in a smooth, non-convex setting.

Distinct from other federated learning paradigms, the pull
requests and corresponding push updates within the SPIN
framework are uncontrolled and asynchronous. This char-
acteristic poses unique challenges in terms of convergence
analysis. To address these challenges, the algorithm builds
upon techniques from an existing asynchronous federated
learning algorithm, PORT [19], in the literature.

In the asynchronous setting, the user updates are not syn-
chronized, and the server must handle the received updates
in an online fashion. To analyze the convergence of SPIN,
we consider the non-convexity of the problem and the stochas-
tic nature of user updates. We leverage the theory of stochastic
approximation and the recent advances in non-convex opti-
mization to derive convergence bounds for the algorithm.

In the efficiency mode, the server forgoes the traditional
approach of waiting for a minimum of K updates from users
for global aggregation. Instead, it performs the aggregation
process within a predetermined time interval denoted as t. As a
consequence, the frequency and quantity of updates sent to the
server by users become uncertain, resulting in a dynamically
fluctuating count of updates eligible for aggregation. This sce-
nario presents a new challenge of ensuring convergence when
the user participation count K varies across communication
rounds.

Without loss of generality, we assume that the number of
updates transmitted to the server during t follows a Poisson
distribution with a parameter r. This can be expressed as:

f(U ; r) = Pr(X = U) =

(
rt
)k
e−rt

U !
(1)

where U is the number of user updates within the unit time
interval t and λ represents the average rate r of updates
occurring per unit of time t, denoting as λ = rt.

We present the learning paradigm using specific notations.
Each user u who receives the server’s response performs E
training epochs based on its local dataset Du and the received
global model wu

iu , where i denotes the round index. For any
local training epoch j ∈ [0, E], the local model wu

iu,j+1 is

obtained by optimizing wu
iu,j using SGD with a batch size of

B and a learning rate of ηj . This can be formulated as:

wu
iu,j+1 = wu

iu,j − ηjg(wu
iu,j), (2)

where the gradient g(wu
iu,j) = ▽fu(wu

iu,j , D
u). Once the time

ζ = Kt is reached (which corresponds to π in SPIN), the
server initiates the aggregation process for the received U i

updates. Due to the Poisson distribution property, the number
of updates received by the server within ζ also follows a
Poisson distribution with parameter λζ = Kλ.

In this context, our convergence analysis is conducted under
the following assumptions, which are commonly employed in
prior work on federated learning analysis:

1) L-smoothness.
Each objective function fu of the user u is L-smooth.
Thus its derivatives are Lipschitz continuous with con-
stant L, i.e.,

∥ ▽fu (w)− ▽fu (w′) ∥≤ L ∥ w −w′ ∥ (3)

2) Unbiased local gradient.

Eξ [fu (w, ξ)] = ▽fu (w) (4)

where w denotes trainable parameters.
3) Uniformly bounded local gradient.

The expected squared norm of stochastic gradients is
uniformly bounded, i.e.,

E ∥ ▽fu (w, ξ) ∥2≤ G2, u ∈ {1 . . . U i} (5)

4) Bounded local gradient.
Let ξ be sampled from the u-th device’s local data uni-
formly at random. The variance of stochastic gradients
in each device is bounded as:

Eξ ∥ fu (w, ξ)− fu (w) ∥2≤ σ2
u, u ∈ {1 . . . U i} (6)

5) Bounded divergence between local and global gradient.
For any user k and the parameter w, we define δu as an
upper bound of ∥ fu (w)− f (w) ∥2, i.e.,

∥ fu (w)− f (w) ∥2≤ δ2u (7)

Lemma 1: Given U i following the Poisson Distribution,
the Bounded local gradient and Bounded divergence between
local and global gradient over these clients can be defined as:

σ2
l :=

λζ∑
u=1

puσ2
u, δ2g :=

λζ∑
u=1

puδ2u (8)

Proof: In each iteration i, there are U i updates received
by the server. Following assumption 4, the sum of local
gradients σ2

li =
∑Ui

u=1
|Du|
|D| σ

2
u. As U i is not as random as

previous works, such as [19], but is distributed according to
a Poisson distribution P (λ). This leads to the corresponding
expectation

σ2
l = Ei∼P (λ)Eξ

[
σ2

li

]
= Ei∼P (λ)

Ui∑
u=1

puσ2
u.

As EUi∼P (λζ) = λζ , we can safely replace the U i with its
expectation term.
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Similar derivations can be obtained for δ2g . □
Theorem 1 (Convergence Rate): Under the condition that

the server performs global aggregation every time interval ζ,
in which the number of arrival updates follows the Poisson
Distribution P (λ) defined by Eq. 1, the convergence rate for
such dynamic users arrival will be:

1
T

T−1∑
i=0

E ∥ ▽f(wi) ∥2≤ 2
(f(w0)− f(w∗))

ϕ (E)TK

+ 6Kχ(λζ)L2Eψ (E)
(
K2Ω2 + 1

)
(λζ)

2
σ2

+ L
ψ (E)
Kϕ (E)

(λζ)
2
σ2

l (9)

where

ϕ (E) =
E∑

j=1

ηj , ψ (E) =
E∑

j=1

(
ηj
)2

χ(λζ) =
λζ∑

u=1

p2
u

σ2 = λ2
ζσ

2
l + λ2

ζδ
2
g +G2.

Additionally, to achieve the convergence upper bound, the
relations between λζ and η should follow:

4
χ(λζ)

λζη
0
l ≤

1
L
. (10)

Proof: Our proof follows the standard convergence
procedure used in asynchronous federated learning methods,
such as the one presented in [19], for non-convex objective
functions. Before we start, we introduce Su, which is the
staleness bound for user u. Su denotes the difference between
the global model round and the user’s update round. We start
by using the L-smoothness assumption to establish an upper
bound of f (wi+1), which is

f (wi+1) ≤ f (wi)−
∑

u∈Ui

pu
i ⟨▽f (wi) ,△iu⟩︸ ︷︷ ︸

T1

+
L

2
∥
∑

u∈Ui

pu
i△iu ∥2︸ ︷︷ ︸

T2

(11)

where △iu =
∑E

j=1 η
j▽fu

(
wu

iu,j

)
, which implies that client

u at round i sends the update △iu to the server.
The overall logic of the proof adheres to a classical frame-

work for staleness-aware asynchronous federated learning.
Nonetheless, this paper introduces a more comprehensive
scenario wherein the count of updates transmitted to the server
may be dynamic, hence introducing a variable denoted as U i,
which is dependent on the iteration index i.
Bound E [T1].

E [T1] = −E

[
−
∑

u∈Ui

pu
i ⟨▽f (wi) ,△iu⟩

]

= −E

 Ui∑
u=1

pu
i

∑
j

ηj⟨f (wi) , fu

(
wu

iu,j

)
⟩



= −
λζ∑

u=1

pu
i E

∑
j

ηj⟨f (wi) , fu

(
wu

iu,j

)
⟩

 (12)

The derivation of the third equation relies on the Poisson
process as shown in Eq. 1.

Subsequently, conditioned on the Poisson process of arrival
updates, the expectation in Eq. 12 can be expressed as:

E [T1] = −1
2
λζ

(
Q−1∑
q=0

ηq

)
∥∇f (wi)∥2

+
Q−1∑
q=0

λζη
q

2

−EH


∥∥∥∥∥∥

λζ∑
u=1

pu∇F
(
wSu

u,q

)∥∥∥∥∥∥
2


+ EH


∥∥∥∥∥∥∇f (wi)−

λζ∑
u=1

pu∇Fu

(
wSu

u,q

)∥∥∥∥∥∥
2


︸ ︷︷ ︸
T3


(13)

where H is the history of communication rounds.
It is worth noting that in the following equations, we utilize

the symbol q to denote the number of local epochs, whereas
the symbol Q refers to the overall number of local epochs,
in order to differentiate between the various terms.
Bound E [T3]. By adding a zero term combined with
±∇Fi

(
wSi

)
and relying on the L-smoothness assumption,

E [T3] can be converted to

E [T3] ≤ 2
λζ∑
i=1

p2
i

λζ∑
u=1

(
L2EH

∥∥∥wi − wSu
∥∥∥2

+L2EH
∥∥∥wSu

− wSu

u,q

∥∥∥2
)

(14)

Following the Eq. (16) of FedBuff [4], we have

EH
∥∥∥wSu

− wSu

u,q

∥∥∥2

≤ 3 q

(
q−1∑
q=0

(
η(q)

)2
)(

σ2
ℓ + σ2

g +G
)

(15)

Based on Eq. (14) and Eq. (15) of FedBuff [4],

EH
∥∥∥wi − wSi

∥∥∥2

can be transformed to

EH
∥∥∥wi − wSi

∥∥∥2

≤ 3Qλ2
ζS

2
max

(
Q−1∑
q=0

(
η(q)

)2
)

×
(
σ2

ℓ + σ2
g +G

)
(16)

Combing these two terms Eq. 15 and Eq. 16 into Eq. 14,
E [T1] can be

E [T1] = −k
2

Q−1∑
q=0

η(q) ∥∇f (wi)∥2

+ 3λζ

λζ∑
u=1

p2
iL

2Q

Q−1∑
q=0

η(q)

Q−1∑
q=0

(
η(q)

)2
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×
(
K2S2

max + 1
) (
σ2

l + σ2
g +G

)
−

Q−1∑
q=0

kη(q)

2
EH

∥∥∥∥∥∥
λζ∑

u=1

pu∇Fu

(
ωSu

u , q
)∥∥∥∥∥∥

2

︸ ︷︷ ︸
T4

(17)

Similarly, after introducing the Poisson distribution of
arrival updates into the derivation of E [T2], we can obtain
the following inequality based on the Eq. (23) in [19].

E [T2] = E

L2
∥∥∥∥∥∥
∑
u∈λζ

Q−1∑
q=0

η(q)gk

(
wSu

u,q

)∥∥∥∥∥∥
2


≤
L
∑

u∈λζ
pk
∑Q−1

q=0 (ηq)2 σ2
e

2

+
Lλ2

ζQ

2

Q−1∑
q=0

λζ∑
u=1

(
η(q)

)2

puEH
[∥∥∥∇Fu

(
wSu

u,q

)∥∥∥2
]

︸ ︷︷ ︸
T5

(18)

To guarantee a training process in which the loss decreases
gradually, it is necessary to have E [f (wi+1)] ≤ E [f (wi)].
After inserting our derivations Eq. 17 and Eq. 18 into the
original objective Eq. 11, we have E [f (wi+1)]−E [f (wi)] ≤
T4 + T5 by ignoring other unchangeable terms. Therefore,
under the Poisson process of arrival updates, we have T4 +
T5 equals to

=
Q−1∑
q=0

λζ∑
u=1

−λζη
(q)

2

 λζ∑
u′=1

p2
u′

+
Lλ2

ζQ
(
η(q)

)2
2

pu


× EH

∥∥∥∇Fu

(
wSu

u,q

)∥∥∥2

≤ 0 (19)

We can set each inner term to be less than zero to guarantee
Eq. 19. This leads to

Lλ2
ζQpu

2

(
η(q)

)2

−
λζ

(∑λζ

u′=1 p
2
u′

)
2

η(q) ≤ 0 (20)

We can easily obtain η(q) ≤
(∑λζ

u′=1
p2

u′

)
QLλζp′

u
. Thus, as the local

learning rate satisfy η(0) ≥ η(1) ≥ . . . ≥ η(Q), Eq. 20 can be

achieved when η(0) ≤
(∑λζ

u′=1
p2

u′

)
QLλζpu

.
We then introduce the obtained Eq. 17 and Eq. 18 to Eq.

11 while maintaining the constraint shown by Eq. 20:

λζ

Q−1∑
q=0

η(q)∥∇f(w)∥2 ⩽ 2 (E [f (wi)]− E [f (wi+1)])

+ 6λζ

λζ∑
u=1

p2
uλζQ

Q−1∑
q=0

η(q)

Q−1∑
q=0

(η(q))2

×
(
K2S2

max + 1
) (
σ2

l + σ2
g +G

)
+ L

Q−1∑
q=0

(
η(q)

)2

σ2
l (21)

Finally, following the common proof schema, we first sum
up the communication round i from 1 to T for Eq. 21, then
eliminate the coefficient term on the left, and finally divide T
on both sides, leading to

1
T

T−1∑
i=0

E∥∇f(w)∥2 ⩽ 2
Ef [(w0)]− E[f(w∗)]

λζ

∑Q−1
q=0 η

(q)

+ 6
λζ∑

u=1

p2
uL

2λζ

×
Q−1∑
q=0

(
η(q)

)2 (
K2S2

max + 1
)

×
(
σ2

l + σ2
g +G

)
+ L

∑Q−1
q=0

(
η(q)

)2
σ2

l S

λζ

∑Q−1
q=0 η

(q)
(22)

After setting
(A). ϕ (E) =

∑E
q=1 η

q , ψ (E) =
∑E

q=1 (ηq)2

(B). χ(λζ) =
∑λζ

u=1 p
2
u

(C). σ2 = λ2
ζσ

2
l + λ2

ζδ
2
g +G2.,

we obtain the convergence bound.
□

The convergence bound that we have obtained expands upon
the one presented in PORT by allowing for dynamic arrival
updates for the server. This means that our bound is applicable
even when the arrival rate λζ is not constant. However, if the
arrival rate λζ is constant, our obtained Theorem Eq. 10
simplifies to the one presented by PORT, where the server
aggregates a fixed number of updates consistently.

Corollary 1: We assume a constant learning rate η that
meets the constraint Eq. 10 during local updates to demon-
strate the impact of dynamic arrival updates on convergence.
Then, for a sufficiently large T , we obtain

1
T

T−1∑
i=0

E ∥ ▽f(wi) ∥2 ≤ O
(

(f(w0)− f(w∗))√
TKrtE

)

+O

(
E
(
Krt

)2 Ω2σ2

T

)

+O
(
Eσ2

T

)
+O

(
σ2

l

K
√
TKrtE

)
(23)

where σ2 = σ2
l + δ2g +G2.

This corollary offers valuable insights for designing and
tuning the SPIN algorithm to achieve optimal performance in
various practical settings.
♢ Trade-off between convergence performance and server

aggregation timing. There exists a delicate balance
between the frequency of server aggregation and the
convergence performance with the SPIN algorithm.
By waiting for a longer time before performing aggre-
gation, the server incorporates more updates, leading to a
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faster reduction in the loss. However, this also results
in a higher gradient variance, which could negatively
impact the convergence performance. On the other hand,
performing aggregation more frequently reduces the gra-
dient variance but may lead to a slower decrease in
loss. Thus, it is crucial to carefully choose the server
aggregation interval Kt to optimize the trade-off between
convergence performance and gradient variance.

♢ Impact of user arrival rate on convergence performance.
A high user arrival rate λ can potentially lead to more
updates being included in the aggregation, contributing
to a larger drop in loss. However, this also increases
the gradient variance, which could affect the conver-
gence performance adversely. To tackle this challenge,
the server must monitor the number of updates it receives
within the aggregation time interval Kt and adjust the
value of K accordingly. By maintaining a reasonable rate
of user arrivals, the server can effectively balance the
trade-off between the rate of loss reduction and gradient
variance, ultimately achieving better convergence perfor-
mance.

These insights can guide the design and implementation of
the SPIN algorithm in real-world applications, providing prac-
titioners with a better understanding of the factors influencing
its performance and enabling them to make informed decisions
when tuning its parameters.

V. IMPLEMENTATION AND PERFORMANCE EVALUATION

A. Implementation

To ensure reproducibility of our experiments, we have
implemented SPIN in the PLATO framework,1 which is
designed for reproducible and scalable federated learning
research.

1) Pull Updates: On the same physical machine, PLATO
emulates clients in conventional FL using UNIX processes.
In order to implement pull updates that are asynchronously
sent to the server when human users generate new data sam-
ples, a naïve strategy is to start one process per client, which
simulates the timing of a sequence of events — representing
the arrival of new data samples — using a random process, and
submits a pull request upon the generation of each event. How-
ever, if the total number of clients is large, an equal number of
client processes needs to be started even if only a small number
of clients may be fine-tuning the model simultaneously, which
consumes physical memory unnecessarily. Instead, we opt to
generate such a sequence of events on the server for all the
clients, following a Poisson process with an arrival rate of λ.

Since the server needs to run other essential tasks such as
aggregating model updates when the need arises, these events
need to be generated concurrently with other tasks running on
the server. It is well known that with the Global Interpreter
Lock (GIL) mechanism to simplify memory management and
ensure thread safety, it is not possible for multiple threads in
the same process to execute Python bytecodes concurrently.
Instead of using multiple threads, we take advantage of

1Available as open source at https://github.com/TL-System/plato

Fig. 3. Fine-tuning the pretrained yolov8n model using SPIN.

the asyncio support since Python 3.6, which provides an
asynchronous I/O framework with an event loop to enable
efficient concurrency. Upon the generation of events in an
async periodic_task function, which runs periodically,
new push updates will be sent to the clients corresponding to
these events.

2) Object Detection With YOLOv8: Object detection mod-
els are widely deployed in augmented reality applications
in the metaverse to identify and track objects in real-time,
allowing for the overlay of digital information or graphics onto
the real world. These models often need to be fine-tuned with
new data samples labeled by human users. Due to the relevance
of an object detection task to the metaverse, it should be one of
the tasks we use to evaluate SPIN’s performance. We chose to
implement the state-of-the-art YOLOv8 model from Ultralytics
in PLATO, which outperformed the widely known YOLOv5
model by a considerable margin.

Unfortunately, the YOLOv8 trainer provided by Ultra-
lytics does not support customizable samplers in its dat-
aloaders for both train and test datasets. Samplers
are, however, required in PLATO to simulate i.i.d. or
non i.i.d. distributions across clients in federated learn-
ing. To bridge such a gap, we have implemented a new
SampledDetectionTrainer class, which inherits from
the DetectionTrainer class from YOLOv8 and adds the
ability to customize the sampler used by both train and
test dataloaders. The results after fine-tuning the pretrained
yolov8n model using the COCO128 dataset and SPIN’s
implementation in PLATO have been shown in Fig. 3.

B. Performance Evaluation

We are now ready to present a comprehensive evaluation of
SPIN across a diverse range of experimental settings.
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1) Experimental Settings: Our study involves an array
of training sessions involving 100 users and four sets of
datasets and models: MNIST [20] and EMNIST for fine-tuning
the LeNet-5 model, CIFAR-10 [21] for fine-tuning the
ResNet-18 model, and COCO128 for fine-tuning the pre-
trained YOLOv8 model as presented previously. The first three
sets of benchmark experiments were conducted on a server
consisting of 4 NVIDIA RTX A4000 GPUs, using CUDA
version 11.6. To best simulate slower client devices in the
metaverse, the final set of YOLOv8 object detection experi-
ments were conducted on a Mac computer running macOS
12.6.3, equipped with an M1 Max CPU and 64GB of unified
memory, using the CPU as the fine-tuning device. In con-
ventional FL, data heterogeneity that follow non-i.i.d. data
distributions would significantly slow down convergence.
In our experiments, when a non-i.i.d. distribution is needed,
we employ the Dirichlet distribution with a concentration
parameter of 1.

2) Minimum Number of Model Updates K: Using the
MNIST dataset and the LeNet-5 model, we begin by con-
ducting a hyperparameter sweep for the minimum number
of model updates, K, required before the server initiates
aggregation in each round. The elapsed wall-clock time in
seconds was used as the critical performance metric until the
global model converged. Our experimental findings indicate
that, if the number of model updates before aggregation is
too small,the converging process will slow down significantly.
This can be attributed to the observation that if only a few
model updates do not accurately represent the current global
state of the model across all the clients, ultimately leading
to global model drift in undesirable directions. Conversely,
when K becomes large, the system takes significantly longer
to converge, with the server waiting for a considerable amount
of time to accumulate model updates for each round, leading
to a slower overall iteration in the training process. Our
experiments revealed that K = 10 represents the best trade-
off, which is consistent with FedBuff’s recommendation [4].
All our subsequent experiments used this value of K.

3) Arrival Rate λ: As the number of clients arriving per unit
time varies, SPIN’s global convergence rate will be affected
due to model staleness, as discussed in Section III. We evalu-
ated the elapsed wall-clock time as the performance metric.
Our experimental results, shown in Fig. 4, supported our
intuition. As the user arrival rate λ increases, the convergence
performance improves, as the impact of staleness is reduced
to negligible levels. In 90 seconds, the setting of λ = 0.7 was
the fastest to reach a target accuracy of 96% with the MNIST
dataset and K = 10.

4) Necessity for the Timeout π: In SPIN, in addition to the
minimum number of model updates K before aggregation,
a timeout π is also imposed to mitigate model staleness.
To evaluate the positive effects introduced by incorporating
the timeout π, we ran several experiments with varying val-
ues of λ, and across three benchmark datasets: the MNIST
and EMNIST datasets, where we employed an LeNet-5
model, and the CIFAR-10 dataset, where we employed a
ResNet-18 model. The actual training times have been
measured and reflected in our overall wall-clock time elapsed

till convergence. Our experimental results are shown in Fig. 5,
where we measure the actual training time with and without
activating the timeout π in the SPIN algorithm.

Our results clearly demonstrated that SPIN’s convergence
performance has indeed been improved with the use of the
timeout. More specifically, for all three datasets considered in
our experiments, with the same setting of λ, the convergence
speed with the timeout activated consistently outperformed its
counterpart without the timeout, despite the intuition that using
the timeout may impair the global model’s convergence as
fewer model updates will be aggregated. The optimal value of
π is determined based on the training time in each task, and
our additional experimental results suggested that the optimal
timeout value needs to be set at 6/10 of the average training
time consumed in each round. These results also provided
further evidence for the impact of λ on the convergence speed
of the global model in two additional datasets, over our results
previously shown in Fig. 4.

5) Potential Impact of Non-i.i.d. and i.i.d. Data Distri-
butions: In our experimental setup, the clients accumulate
data samples as they move through the metaverse, making it
difficult to predict whether the generated data is independent
and identically distributed (i.i.d.). To avoid any interference
from varying data distributions as we evaluate SPIN, we exper-
imented with the same parameter settings on all three datasets
but with different data distributions. We hypothesized that
non-i.i.d. data distributions — generated with a Dirichlet
distribution with a concentration parameter of 1 — would have
an adverse effect on the convergence of the global model. The
results shown in Fig. 6 partly support our conjecture.

It turned out that our hypothesis is only partially valid with
some of the datasets. With the MNIST and EMNIST datasets,
the convergence of the global model followed our hypothesis,
as convergence with i.i.d. data consistently underperformed
over that with non-i.i.d. data for the same arrival rate. However,
with the CIFAR-10 dataset, non-i.i.d. data actually has a
positive effect on convergence, and the global model converges
faster with non-i.i.d. data than with i.i.d. data for all values of
λ. Though the effects of non-i.i.d. data distributions may not
be consistently conclusive across all datasets with the use of
SPIN, they are still quite substantial, and should be considered
carefully.

6) Overall Performance Evaluations: As SPIN is designed
for specialized metaverse scenarios, it is challenging to find
closely related work for our comparative study. We chose to
compare with FedBuff [4] and PORT [19], the state-of-the-
art asynchronous FL mechanism. FedBuff, PORT and SPIN
share the same total number of 100 clients and the same
settings of λ. In SPIN, a total of 100 clients actively send pull
requests to the server after accumulating enough data samples.
In contrast, clients in FedBuff and PORT can only be selected
by the server. In our experiments, FedBuff and PORT randomly
select 20 clients to join the training in each round, and uses the
same minimum number of clients K = 10 before aggregation;
but if a selected client has no data sample generated recently,
it cannot participate in the current round. In addition, PORT
has a different aggregation algorithm, that is, it will give higher
weights to model updates that are similar to the current global
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Fig. 4. With the MNIST dataset, we compare the convergence speed of different user arrival rates in SPIN with a timeout π and a mild non-i.i.d. Dirichlet
data distribution, with different values of λ, which is the arrival rate used in the Poisson process generating events. Our results confirmed our intuition that
higher arrival rates lead to faster the global model convergence, and demonstrated the correctness of our convergence proof in Section IV.

Fig. 5. SPIN with with different arrival rates λ: a performance comparison with a focus on the timeout π. Data distribution across clients is non-i.i.d.

Fig. 6. SPIN with timeout π activated and with different values of λ: a performance comparison with a focus on the non-i.i.d. and i.i.d. data distributions.

model when aggregating. PORT also has the related ‘timeout’
mechanism, which is not measured by time, but by the training
state of the stale clients. We conducted additional experiments
with FedBuff and PORT to determine the optimal timeout
value, as our previous experiments confirmed that setting a
timeout is helpful to speed up model convergence.

Our experimental results (Fig. 7) indicated that SPIN sig-
nificantly outperforms FedBuff. Specifically, for the datasets
MNIST, EMNIST, and CIFAR-10, SPIN exhibits a signifi-
cant advantage. Our experiments evaluate the performance of

algorithms by halting upon reaching a prescribed accuracy,
calculating the time taken by different algorithms to attain
the same accuracy. For the MNIST dataset, SPIN required
962 seconds to converge towards 96% accuracy, whereas
FedBuff and PORT took 2290 and 3458 seconds respectively,
making SPIN faster by 2.38 times than FedBuff. The gap
between these algorithms was also substantial on EMNIST
and CIFAR-10. SPIN achieved 72% accuracy on EMNIST
and was faster than FedBuff and PORT by factors of 4.11 and
3.30 respectively; it reached 77% accuracy on CIFAR-10,
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Fig. 7. SPIN (with timeout π) vs. FedBuff with the MNIST, EMNIST, CIFAR-10, and COCO128, and a non-i.i.d. Dirichlet data distribution.

again out-pacing FedBuff and PORT by factors of 2.06 and
2.07 respectively.

The superior performance of SPIN can be attributed to
the setting of an appropriate timeout, which accelerates the
FL aggregation process. In other words, within the same
timeframe, SPIN completes more rounds than FedBuff and
PORT, resulting in faster convergence. The timeout setting is
intended to expedite the server’s aggregation process. How-
ever, if an overly small timeout is set, it would cause a
too small number of model updates from the client during
each server aggregation, thereby impeding model convergence.
Thus, after selecting an appropriate timeout, the performance
of SPIN is greatly superior to FedBuff and PORT, which lack
a timeout mechanism. Notably, the Push-Pull mechanism in
PORT bears some similarity to the timeout in SPIN, as it assists
clients with extremely slow training speeds in shortening
their training time, preventing them from slowing down the
server’s aggregation. Moreover, it prevents overly stale model
updates from being aggregated, thereby avoiding delaying the
convergence of the entire model. However, since there are very
few clients with extremely slow training, the performance of
PORT is not significant.

In our experiments on the COCO128 dataset with YOLOv8
as the global model and mAP50 (mean Average Precision) as
the accuracy metric, we modified the experimental settings to
provide a challenging but more realistic environment for our
evaluations. For a more realistic setting, we first used only
an M1 Max CPU for client fine-tuning rather than NVIDIA
GPUs, leading to much longer runs for our experiments.
We then set the arrival rate λ = 0.01, implying that very
few events arrive per unit time. We used two settings with
FedBuff, where 30% and 70% of all clients were selected in
each round. Under the favorable condition of selecting 70% of
clients in each round, FedBuff is able to closely match SPIN’s
performance, but still lags behind by a small margin. Yet, with
30% of clients selected, FedBuff significantly underperformed.
To illustrate SPIN’s superior performance under equivalent
conditions, we subjected PORT to identical circumstances.
This entailed a total of 100 clients, with 10 selected per
round, and trains YOLOv8 on the COCO128 dataset. Since
λ was set to 0.01, the arrival of pull requests was remark-
ably sparse. If aggregation only depends on the receipt of
the minimum number of model updates, it demonstrates a
significant under-performance in terms of convergence. The
outcome from PORT reinforces this observation. When we

set the convergence accuracy target for YOLOv8 at 82%,
SPIN achieved the target accuracy in a mere 8015 seconds,
whereas PORT required 32723 seconds. Our findings in these
experiments, especially with fine-tuning a pre-trained YOLOv8
object detection model, suggested that SPIN is both effective
and robust across a wide variety of settings and tasks, in the
specialized metaverse scenarios for which it was designed.

VI. RELATED WORK

A. Privacy

Regarding privacy preservation, existing research on
enabling users to participate in training machine learning mod-
els in the metaverse has explored a variety of approaches. One
such method is differential privacy, which can be applied to
perturb the user data or the model updates during the training
process, ensuring that individual user’s data or contributions
cannot be directly inferred. Differential privacy techniques
add carefully calibrated noise to the training process, which
provides statistical guarantees on the privacy of individual data
points.

An alternative approach is encrypted computation, which
allows computation to be performed on encrypted data, pro-
tecting the privacy of user data throughout the training process.
Homomorphic encryption and secure multi-party computation
are cryptographic techniques that enable encrypted computa-
tion. With homomorphic encryption, data can be encrypted
and sent to a central server for computation, while keeping
private data confidential. With secure multi-party computation,
multiple parties jointly compute a function over their private
inputs without revealing the individual inputs, thus preserving
privacy.

By applying differential privacy, user data can be protected
through the introduction of noise, ensuring that sensitive infor-
mation is not disclosed. Encrypted computation techniques,
such as homomorphic encryption and secure multi-party com-
putation, allow the training process to be performed on
encrypted data, preventing any party, including the service
provider, from accessing the sensitive information in plaintext.
These privacy protection methods can be incorporated into the
research on enabling user participation in training machine
learning models in the metaverse. They offer mechanisms to
preserve privacy while allowing users to contribute their data
and participate in the training process, ensuring that sensitive
information remains secure and confidential.
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TABLE I
THE ELAPSED WALL-CLOCK TIME OF REACHING CONVERGENCE: A COMPARISON

B. Incentive Mechanisms

Existing works in the literature have explored incentive
mechanisms in the context of federated learning. These mech-
anisms aim to address the challenge of incentivizing users to
contribute their data and computational resources while pre-
serving privacy. One example of such work is Kang et al. [23],
which proposed a reputation-based incentive mechanism for
federated learning. The authors introduce a reputation-based
worker selection scheme for quantifying the reliability and
contribution of each user in the federated learning system.
This mechanism incentivizes users to actively participate and
contribute to the federated learning process.

These studies represented a subset of the existing research
on incentive mechanisms in the context of federated learning.
By leveraging reputation systems and cooperative game theory,
these mechanisms aim to motivate users to actively participate,
contribute their data and resources, and ensure the success of
federated learning models.

VII. CONCLUDING REMARKS

In this paper, we have presented SPIN, a novel mech-
anism designed for MLOps in the metaverse that targets
fine-tuning globally deployed models that have been pre-
trained. We addressed the unique challenges of utilizing
human-generated data in a decentralized metaverse environ-
ment and proposed a new mechanism that integrates the
benefits of conventional FL and the timeliness of continuous
integration for sporadically generated data in the metaverse
with human interactions over time. By resolving potential
conflicts between pull requests from some clients and push
updates from others, SPIN improves the convergence perfor-
mance by considering the staleness of models sent to clients
in response to their pull requests. With a mathematically
rigorous analysis of its convergence behavior, we proved that
convergence is guaranteed with our proposed mechanism.

Our experimental evaluations using image classification
and object detection tasks have demonstrated that that SPIN
converges efficiently when fine-tuning pretrained models with
sporadic and small-sized data generated by human behav-
ior. Our experimental results have also shown that SPIN
outperforms FedBuff in terms of convergence performance,
which is the state-of-the-art asynchronous federated learning
mechanism where the server actively selects clients in each
communication round. Our findings suggest that SPIN is
both effective and robust in the model fine-tuning tasks we
considered in this paper, for which it is specifically designed.
Last but not least, we have made both our source code and

experimental settings available in the public git repository for
the PLATO FL research framework, to ensure the best possible
reproducibility of our work.

In this paper, we made the assumption that using new data
samples to fine-tune an existing pre-trained model would lead
to a better model in terms of accuracy, but we acknowledge
that this is not always the case, especially when malicious
users intentionally feed low-quality data into the system. There
should naturally be some complementary approaches that are
designed to established guard rails against such malicious
users and low-quality data samples. As our future work,
we will study how such malicious users can be excluded from
the fine-tuning process, so that data samples of high quality
can contribute to improving the quality of the pre-trained
models with domain-specific knowledge.

It is worth noting that our general problem formulation is
not limited to fine-tuning scenarios in the metaverse, such
as object detection tasks with YOLOv8. It is equally appli-
cable to other MLOps scenarios outside of the metaverse,
where a pretrained model has already been deployed but still
needs fine-tuning, using data obtained from human interaction.
A prominent recent example is the recent OpenAI release of
the GPT-4 model: it was trained with more human feedback
compared to ChatGPT’s GPT-3.5, including feedback sub-
mitted by ChatGPT users. OpenAI claimed that “continuous
improvement from real-world use has been applied to update
and improve GPT-4 at a regular cadence as more people use
it [23].” As such, we expect that the need for continuously
improving deployed models using human interaction will soon
become prevalent, both within and outside of the metaverse.
As our future work, we will continue to explore new research
challenges where models need to be fine-tuned using human
interaction, and local training is no longer feasible due to
resource constraints.
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