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Abstract— The optimal and distributed provisioning of high
throughput in mesh networks is known as a fundamental but
hard problem. The situation is exacerbated in a wireless setting
due to the interference among local wireless transmissions. In
this paper, we propose a cross-layer optimization framework for
throughput maximization in wireless mesh networks, in which
the data routing problem and the wireless medium contention
problem are jointly optimized for multihop multicast. We show
that the throughput maximization problem can be decomposed
into two subproblems: a data routing subproblem at the network
layer, and a power control subproblem at the physical layer with a
set of Lagrangian dual variables coordinating interlayer coupling.
Various effective solutions are discussed for each subproblem. We
emphasize the network coding technique for multicast routing
and a game theoretic method for interference management,
for which efficient and distributed solutions are derived and
illustrated. Finally, we show that the proposed framework can be
extended to take into account physical-layer wireless multicast
in mesh networks.

Index Terms— Convex optimization, dual decomposition, mesh
network, multicast routing, network coding, power allocation,
game theory.

I. INTRODUCTION

Wireless mesh networks have emerged as a practical so-
lution for the broadband wireless Internet. In a wireless
mesh network, nodes at different locations communicate with
each other by relaying information over wireless links. An
important consideration in the design of a mesh network is
the network’s ability to efficiently support high-throughput
multicast applications (e.g., video streaming broadcast) over
wireless links. This paper addresses architectural and network
optimization issues for such applications in a wireless mesh
network.

The design of wireless mesh networks for high-throughput
multicast involves at least two sets of technical challenges.
The first set of challenges involves multicast routing (i.e., the
ability for a single source node to send information to multiple
destinations at the same time1.) Recently, a technique called
network coding was proposed [2] to implement multicast by
information encoding at the relay nodes. Network coding has
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1Since unicast and broadcast may be viewed as special cases of multicast
[1], multicast routing represents a general problem at the network layer.

proven to be effective in increasing the multicast throughput
[1] [2] [3]. Network optimization with the use of network
coding is one of the main emphases of this paper.

The second set of challenges arises due to the shared
nature of the wireless medium. Since geographically nearby
transmissions often interfere with each other, the traditional
‘bit-pipe’ assumption on link capacity no longer holds. It is
possible to tradeoff the capacity of one link with the capacity
of another by power adaptation. This necessitates the use of
power control techniques for interference mitigation at the
physical layer.

This paper addresses both sets of challenges together by
considering a joint optimization of multicast routing and power
control for a wireless mesh network. We focus on achieving
maximum multicast throughput and propose a cross-layer
optimization framework to model and to solve the optimal
throughput problem in an efficient and distributed manner.

In our framework, the utility of the overall throughput is
maximized subject to three groups of constraints: (1) the
dependence of overall throughput on per-link data flow rates,
(2) the dependence of per-link flow rates on link capacities,
and (3) the dependence of link capacities on radio power
levels. Our main contribution is that the joint optimization
problem can be decomposed into two subproblems: a mul-
ticast routing subproblem at the network layer and a power
control subproblem at the physical layer. We present a gen-
eral primal-dual algorithm that iteratively solves these two
disjoint subproblems and globally converges to the optimal
solution of the throughput maximization problem. We further
illustrate how each subproblem can be solved efficiently with
different techniques. More specifically, at the network layer,
we discuss the multicast routing subproblem with or without
network coding; at the physical layer, we discuss geometric
programming method as well as game theoretic approach.
The primal-dual algorithm and the effective solutions for
each subproblem together constitute an integrated modelling
and solution framework for optimal multicast in wireless
mesh networks. The optimization framework proposed in this
paper represents a cross-layer strategy, which strikes a balance
between the demand of link bandwidth at the network layer
and the supply of link capacity at the physical layer.

The remainder of this paper is organized as follows. We first
discuss related work in Section II, then motivate the necessity
of a cross-layer design through a simple example in Section
III. In Section IV, we propose the joint optimization framework
and the layering approach, together with an efficient primal-
dual algorithm to solve the problem. In Section V, we discuss
the modular structure of subproblems, point out several new
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techniques at the network and physical layers, and show how
the subproblems are incorporated in the overall framework.
In Section VI, we address the distributed implementation of
wireless mesh networks. Section VII presents simulation re-
sults to illustrate the main concept. In Section VIII, we discuss
possible extensions such as hybrid/hierarchical networks and
the utilization of physical-layer wireless multicast. Finally, we
conclude the paper in Section IX.

II. RELATED WORK

Recent fundamental work by Ahlswede, Cai, Li and Yeung
[2] and Koetter and Médard [3] showed that coding operations
at relay nodes can improve the overall throughput for multicast
in a directed network. Such coding operations are referred
to as network coding. In addition, Li, Yeung and Cai [4]
showed that linear coding suffices to achieve the maximum
rate. With the assistance of network coding, the problem of
achieving optimal multicast throughput in undirected networks
has been studied by Li et al. [1][5]. Recently, two groups
have studied the distributed implementation of routing with
network coding. Lun et al. [6] proposed a subgradient-based
distributed algorithm in dual domain, while Wu and Chiang
[7] proposed a subgradient-based distributed method in pri-
mal domain. However, most of existing literature in network
coding assumes fixed link capacities, which is not realistic in
multihop wireless networks, where link capacities are subject
to interference from other neighboring transmissions. In this
paper, we propose a framework that takes the physical layer
interference into account when solving the optimal throughput
problem for multihop wireless mesh networks.

The main technique used in this paper is the method of dual
decomposition for convex optimization problems. Our dual
decomposition approach is inspired by the duality analysis
of TCP flow control protocol by Low [8] and Wang et al.
[9], in which network congestion parameters are interpreted as
primal and dual optimization variables and the TCP protocol
is interpreted as a distributed primal-dual algorithm. Our work
is also related to the extension of the above work to multihop
wireless networks by Chiang [10], in which power levels and
TCP window sizes are jointly optimized. In a related work,
Johansson, Xiao, and Boyd [11] carried out a similar convex
optimization approach to jointly perform routing and resource
allocation in wireless code division multiple access systems.
Recently, Lin and Shroff [12] employed a dual decomposition
technique to study the impact of imperfect scheduling on
cross-layer rate control. In our previous work [13], we have
also studied a dual method for the joint source coding, routing,
and power allocation problem for sensor networks, where the
focus is a lossy source coding problem at the application layer.
All of the above work treat the multi-session unicast problem
only. The main idea of the present work is to propose a similar
framework for multicast problems in a network coding context.

For wireless multicast in ad hoc networks, Wu et al. [14][15]
studied the issue of network planning and solved a cost (e.g.,
power consumption or congestion) minimization problem with
centralized control. Both the focus and solution approaches of
our paper are different as compared to [14][15]. We focus on
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Fig. 1. Motivating example: (a) A multicast session in a mesh network. Solid
lines represent wireline links, dashed lines represent wireless links. S is the
multicast source, and T1, T2 are multicast destinations. (b) Naive power allo-
cation with equal transmission power at each wireless link: AT1, BD, CT3.
Multicast throughput is bounded by 1.8. (c) Radio power increased for the
middle wireless link BD, and radio power decreased for the side wireless
links AT1, CT2. Multicast throughput becomes 2 with network coding. (d)
Power allocation scheme optimized for multicast routing using a tree.

maximum throughput, which is critical to the provisioning of
high network capacity especially in mesh networks. We target
distributed solutions. We further present a general solution
framework that decomposes the optimization into different
layers with modular structures.

III. MOTIVATING EXAMPLE

In this section, we present a simple example to illustrate the
necessity of joint flow routing and power control in a multicast
session. Consider a mesh network with mixed wireline and
wireless communication links as shown in Fig. 1(a). The solid
lines represent wireline links with fixed high capacities. The
three dashed vertical lines represent wireless links established
between radios, which have relatively low capacities. Each
wireless link capacity depends not only on its own transmis-
sion power and channel gain, but also on the interference from
nearby links. (A detailed characterization of the interference
model will be treated later.) Assume there is a multicast
session with a source S and two destinations T1, T2.

If we simply let each wireless link of AT1, BD,CT2 have
the same power level, then the link BD in the middle will have
a low capacity due to high interference from the two side links.
Assume that equal-power allocation leads to a capacity of
(1.2, 0.6, 1.2) respectively as shown in Fig. 1(b). The multicast
throughput is then upper-bounded by 1.8, due to the existence
of a cut with the same size, isolating receiver T1 from the rest
of the networks as shown in Fig. 1(b).

From the topology of the network, it is clear that the
wireless link BD in the middle is a critical one that may
potentially serve both receivers. It is also at a disadvantageous
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location with a high interference level. Therefore, one way to
improve the all-equal power allocation scheme is to increase
the radio power at B and to reduce the powers at A and C.
Suppose that by power adaptation, it is possible to achieve a
capacity of 1 in all three wireless links AT1, BD,CT2. Con-
sequently, a network flow of throughput 2 can be established
from S to either T1 or T2, and a multicast throughput of 2
is achievable with network coding technique (we will discuss
network coding in details later). Note that an encoded flow of
rate 1 will be transmitted in link BD for both network flows
as shown in Fig. 1(c).

While the example above shows that a good power alloca-
tion scheme is in general needed to achieve high throughput,
we can further show that the optimal power allocation depends
on the choice of routing scheme at the network layer. Fig. 1(c)
shows the data flow in a mesh topology with network coding.
If instead a multicast tree is adopted for routing as shown
in Fig. 1(d), then the power allocation scheme needs to be
adjusted accordingly to achieve an optimal throughput. In
particular, it is not difficult to see that the optimal power
allocation scheme is to allocate power along the side links only
and to shut off the middle link. As the optimal routing and
power allocation are tightly coupled, this example motivates a
cross-layer approach.

IV. A JOINT OPTIMIZATION FRAMEWORK

We now present a general framework to model and to solve
the problem of optimizing multicast throughput in a multihop
wireless mesh network. We first give a system-level formu-
lation of the optimization problem, which involves variables
from both the network layer and the physical layer. We then
show that Lagrange relaxation and subgradient optimization
can be applied to decompose the overall optimization problem
into a sequence of smaller subproblems, each of which only
involves variables from either the network layer or the physical
layer. Interactions between the two subproblems are then
discussed.

A. The General Framework of Joint Optimization

The formulation of the throughput maximization problem
in wireless mesh networks is based on the following facts.
First, throughput is realized by routing flows from sources to
destinations. Second, at each transmission link, the aggregated
flow rate cannot exceed the link capacity. Third, the link
capacity is a function of signal-to-interference-and-noise ratio
(SINR), which in turn is determined by the power levels at all
the transmitters.

Let G = (V,E) be the network topology. Let S be the set of
multiple data sessions supported in the network. Let r = {ri}
be the set of multicast throughput for each session i ∈ S. Let
f be a flow rate vector {f i

l }, where i denotes the session index
i ∈ S and l denotes the link index l ∈ E. We denote N as the
routing region, which is a fundamental concept at the network
layer. The routing region defines a set of (r, f) such that flow
rates f can support multicast throughput r. For example, in a
single-source-single-destination network, it is well known that
the maximum throughput is the minimum cut across the flows
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in G. Fig. 2 illustrates the flow and throughput variables in a
network.

The fundamental concept at the physical layer is the ca-
pacity region C. Let p be the set of power consumption on
each link in E, and c be the set of achievable link capacities.
The capacity region defines a set of (c,p) such that the link
power p can support link capacity c. The capacity region
characterizes the tradeoff between link capacity and power
allocation due to the shared nature of wireless mesh networks.
Fig. 3 illustrates power and capacity variables in a network.

The physical layer can support the network traffic if and
only if the aggregated flow of different multicast sessions on
each link is less than the link capacity. This paper adopts a
network utility maximization approach. We consider a concave
utility function of multicast throughput [16]. We further as-
sume that the utility is separable. For the rest of this paper, we
adopt the following utility that leads to proportional fairness.

U(r) =
∑

i

Ui(r
i) =

∑

i

log(1 + ri)

The throughput optimization problem can now be formulated
as:

max U(r) (1)
s.t. (r, f ) ∈ N

(c,p) ∈ C
∑

i∈S

f i
l ≤ cl, ∀l ∈ E

where the constraint (r, f) ∈ N models the inter-dependence
between the achievable multicast throughput r and the data
flow routing scheme f . The constraint (c,p) ∈ C models the
inter-dependence between the link capacity vector c and the
link power consumption p. The constraint

∑

i f i
l ≤ cl reflects

the fact that the aggregated flow rate at each link is bounded
by the link capacity. Here i is the index of data sessions, and
l is the index of links. The detailed characterization of the
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regions N and C are independent of our general formulation
and will be discussed in the next section.

B. Decomposing the Problem

The main contribution of this paper is a dual decomposition
approach for a distributed solution of the overall network
optimization problem (1). Note that when the utility function
U(r) is concave and when both N and C are convex regions,
generic convex optimization methods can be used to solve the
overall optimization problem (1). However, such a centralized
solution does not take advantage of the special problem
structure and it requires global information to be collected
at a central point of computation. In a wireless mesh network,
decentralized and scalable implementations are preferred. In
this paper, we propose an optimization solution framework,
within which the original problem is decomposed into smaller
subproblems, each of which can be solved efficiently in a
distributed fashion.

We start by relaxing link capacity constraint
∑

i f i
l ≤ cl

and introduce price into the objective function:

L = U(r) +
∑

l

λl

[

cl −
∑

i

f i
l

]

. (2)

Observe that the maximization of the Lagrangian above now
consists of two sets of variables: network layer variables (r, f),
and physical layer variables (c,p). More specifically, the
Lagrangian optimization problem is now decoupled into two
disjoint parts. The network layer part is a routing subproblem:

max U(r) −
∑

l

λl

∑

i

f i
l

s.t. (r, f) ∈ N

and the physical layer part is a power control subproblem:

max
∑

l

λlcl

s.t. (c,p) ∈ C

Thus, the optimization framework naturally provides a layered
approach to the throughput optimization problem. The global
maximization problem decomposes into two parts: routing at
the network layer and power control at the physical layer. The
power control subproblem ensures that the maximal capacity
is provided in individual network links, while the routing
subproblem ensures that the link capacity is efficiently utilized
to maximize the multicast throughput.

The decoupling of the network optimization problem also
reveals that a cross-layer design can be achieved in a the-
oretically optimal way. The dual variable (shadow price) λ
plays a key role in coordinating the network layer demand
and physical layer supply. In particular, the lth component of
λ (i.e., λl) can be interpreted as the rate cost in link l. A higher
value of λl signals to the underlying physical layer that more
resources should be devoted to transporting the traffic in link
l. At the same time, it signals to the upper network layer that
transporting bits in link l is expensive and provides incentive
for the network layer to find alternative routes for traffic.

C. The Primal-Dual Solution Framework

The key requirement that allows the decoupling of the
network optimization problem into routing and power control
is the underlying convexity structure of the problem. Further,
as strong duality holds, the optimization problem (1) can
be solved efficiently via its dual. More specifically, we now
propose the following primal-dual algorithm that solves the
entire network optimization problem:

Algorithm 1: Primal-Dual Algorithm:

1) Set t = 0. Initialize λ(0).
2) In primal domain, solve the following subproblems:

max
r,f

U(r) −
∑

l

λl

∑

i

f i
l , s.t. (r, f) ∈ N (3)

max
c,p

∑

l

λlcl, s.t. (c,p) ∈ C (4)

3) In dual domain, update the dual variables:

λ
(t+1)
l =

[

λ
(t)
l + ν

(t)
l (cl −

∑

i

f i
l )

]+

(5)

where [·]+ denotes max(0, ·).
4) Set t = t + 1. Return to step 2 until convergence.

Theorem 1: Algorithm 1 always converges to the global
optimum of the overall network optimization problem (1),
provided that the regions N and C are convex and that the
step sizes ν(t) are appropriately chosen.

Proof: We outline the proof here. Since the objective
of (1) is concave and the constraint sets are convex, by
strong duality, finding the optimal value of the overall network
optimization problem (1) is equivalent to solving its dual
minimization. The convexity of N and C ensures that the
dual function can be evaluated optimally. More precisely, it
guarantees that the update in (5) is a subgradient for the dual
variables. Thus, as long as the step sizes are chosen appropri-
ately (e.g., as a square summable but not summable sequence),
the dual update eventually converges. Hence, Algorithm 1
converges to the global optimal value of the overall network
optimization problem.

V. SUBPROBLEM MODULES

One of the main features of the primal-dual algorithm is
modularity, as each subproblem can be solved independently
within a single layer. It remains to show how the routing
subproblem at the network layer and the power control sub-
program at the physical layer are effectively solved. We inves-
tigate different alternative solutions for the two subproblems in
a mesh network. At the network layer, we examine solutions
with or without network coding. At the physical layer, we
discuss different algorithmic approaches, including geometric
programming and game theoretic methods. These alternatives
consist of modules to be readily plugged into the cross-layer
optimization framework that we have proposed.
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A. Network Layer Module

The characterization of the routing region at the network
layer depends on the specific model and techniques. In this
section, we first review tree packing routing, then emphasize
on the network coding technique for multicast.

1) Routing based on Tree Packing: When network coding
is not considered and data sessions are multicast or broadcast2

sessions, tree packing routing is achieved by data forwarding
and replication at each wireless node. With these forward-and-
replicate operations, each atomic data flow propagates along
a tree. Each tree represents a path from a source to all of
its destinations in the data session. The maximum achievable
throughput can be computed by finding the maximum number
of pairwise capacity-disjoint trees. Such an optimization has
a linear programming formulation but with an exponential
number of tree capacity variables. In the case of broadcast
sessions, this problem corresponds to the spanning tree pack-
ing problem, which can be solved by employing the minimum
spanning tree algorithms as the separation oracle. In the case of
multicast sessions, the problem corresponds to the Steiner tree
packing problem [1], in which the separation oracle method
does not work effectively. This is due to the fact that we need
to solve the minimum Steiner tree problem in the dual, which
is as hard as the Steiner tree packing problem itself [17].

2) Multicast Routing with Network Coding: While the con-
ventional approach for multicast (i.e., tree packing) requires
a high computational complexity to achieve optimal multicast
solutions, the most important advantage of network coding
technique is its ability to achieve the optimal multicast solution
with a low complexity. In contrast to the traditional replicate-
and-forward approach at relay nodes, network coding assumes
that every node in the network is a potential encoding and
decoding point, hence it may help increase the transmission
throughput and reduce the complexity of achieving optimal
data transmission [1][2][3]. In particular, the use of network
coding results in an easy characterization of the routing region
N , therefore makes the optimal multicast routing problem
polynomial time computable.

The fundamental result in network coding [2][3] shows that
a multicast throughput is feasible in a directed network if
and only if it is feasible from the source to each destination
independently, as a unicast. Therefore multicast flows from
the same source to different destinations can be viewed as
conceptual flows that do not compete for link capacities [1].
Denote ei,j

l as the conceptual flow rate on link l in the ith
multicast session to its jth destination T i

j , and f i
l as the actual

flow on link l for multicast session i. The above property
of conceptual flows leads to a MAX operation in the flow
constraint (f i

l = maxj ei,j
l , or equivalently, f i

l ≥ ei,j
l ,∀j),

instead of a SUM operation (f i
l =

∑

j ei,j
l ).

In this paper, we do not consider inter-session network
coding for multiple data sessions. This is because inter-session
coding provides only marginal throughput gains [1] and it
renders the data routing subproblem NP-hard.

2Multicast refers to a scenario, in which a source node sends the same
information to a set of nodes in a network. Broadcast refers to a scenario, in
which a source node sends the same information to all the nodes in a network.

The flow routing subproblem (3) with network coding can
be stated as follows:

max U(r) −
∑

l

λl

∑

i

f i
l (6)

s.t. ri ≤
∑

l∈I(T i
j
)

ei,j
l , ∀i,∀j,∀T i

j ∈ V

ei,j
l ≤ f i

l , ∀i,∀j,∀l ∈ E
∑

l∈O(n)

ei,j
l =

∑

l′∈I(n)

ei,j
l′ , ∀i,∀j,∀n ∈ V \{si, T i

j}

f i
l ≥ 0, ei,j

l ≥ 0, ri ≥ 0

The first inequality represents the constraint that the ith session
multicast throughput ri is less than or equal to the sum of all
the conceptual flow rates from source si to each of its jth
destination T i

j . The second inequality represents the fact that
the actual flow rate f i

l of session i on link l is the maximum
of all the conceptual flows from source to destinations in that
session. The third equality constraint represents the law of flow
conservation for conceptual flows, where I(n) is defined as
the set of links that are incoming to node n, and O(n) is the
set of links that are outgoing from node n.

For a data network with multiple multicast sessions, the
maximum utility of (6) and its corresponding optimal routing
strategy can be computed in polynomial time. This is because
the utility function of (6) is a concave function and the
network coding constraints are linear. Therefore, solving the
subproblem (6) is a convex optimization problem, which can
be solved in polynomial time [18].

Note that a complete data transmission scheme consists of
both a flow routing scheme computed by (6), and a code
assignment which determines the content of each flow being
transmitted across the network. Code assignment is comple-
mentary to our work and is not the focus of this paper. We
point out the following two observations: (a) the availability
of the optimal flow routing scheme usually makes the code
assignment simpler; (b) if the application is not mission criti-
cal, a simple randomized code assignment algorithm is usually
sufficient: each node simply generates random numbers from
an agreed-upon finite field to serve as the coding coefficients
[3][19].

B. Physical Layer Module

Interference management is one of the main challenges in
the physical layer design of wireless networks. A key concept
at the physical layer is the capacity region (more rigorously,
the achievable capacity region), which characterizes a tradeoff
between achievable capacities at different links. Consider a
network with Gll, pl, and σ2

l as the link gain, power, and
noise, respectively. Denote Glj as the interference coefficient
from link j to link l.3 Further, assume that each node has a
power budget Pn,max. Thus, the power control subproblem (4)
with a physical-layer interference model may be formulated as

3The channel statistics are characterized by G and σ2, which are assumed
to be available by certain estimation techniques.
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follows:

max
∑

l

λlcl (7)

s.t. cl = log (1 + SINRl) ∀l ∈ E

SINRl =
Gllpl

∑

j 6=l Gljpj + σ2
l

∀l ∈ E

∑

l∈O(n)

pl ≤ Pn,max, pl ≥ 0 ∀n ∈ V, ∀l ∈ E

where cl is the capacity of link l, SINRl is the signal-to-
interference-and-noise ratio of link l, and n is the node index.

Because of interference, the power control subproblem (7)
is a nonconvex optimization problem that is inherently difficult
to solve. In this subsection, we first discuss a geometric
programming method [10], then propose a new game theo-
retic approach to characterize the achievable capacity region
approximately.

1) Geometric Programming: Recent development in con-
vex optimization shows that, in high SINR scenarios, the
problem (7) can be solved efficiently by geometric program-
ming techniques [10]. The idea is to first approximate the link
capacity cl = log(1+SINRl) ≈ log(SINRl) assuming that the
SINR is much larger than 1. Then through a logarithmic trans-
formation of power vector, the transformed problem becomes
a convex optimization problem.

2) Game Theoretic Approach: Although the geometric pro-
gramming method has shown to be effective in certain appli-
cations, it is not without limitations due to the requirement of
high SINR. In this section, we propose a different approach
based on game theory to approximately solve the nonconvex
power control subproblem (7).

In a power control game, each link is modelled as a player
with an aim of maximizing its payoff function. In conventional
game theoretic approaches [20][21], each link uses its own
achievable rate as the payoff function. Competitive equilibria
in such a game may not correspond to desirable operating
points, especially when the interference level is high. The main
idea here is to modify the payoff function such that each link
player’s payoff includes not only the achievable rate but also
the interference effect to other links. As the computation of
the competitive equilibrium of a game is more efficient and
is amenable to distributed implementation, this gives us an
effective means of approximately solving the physical layer
power control subproblem.

Mathematically, we propose a power control game in which
each link player l maximizes its payoff function as follows:

Ql = λllog

(

1 +
Gllpl

∑

j 6=k Gljpj + σ2
l

)

− mlpl − µnpl (8)

where Ql is the payoff for link player l, pl is the player’s
action, ml is the dual variable summarizing the effect of
interference to all other links and µn is the dual variable that
indicates the price of transmitter power at node n. A sensible
choice for ml is −∂

∑

s6=l cs/∂pl. In other words, ml is the
rate at which other users’ achievable data rates decrease with
an additional amount of power. The power price µn reflects

how tight the resource at node n is being utilized by its
outgoing links under the constraint

∑

l∈O(n) pl ≤ Pn,max.
We present the following algorithm that implements the

dynamics of the game.
Algorithm 2: Power Control Game Algorithm
1) Initialize p(0), m(0), µ(0). Set t = 0.
2) Set p̃(0) = p(t). Set i = 0, iteratively update

p̃
(i+1)
l =





λl

m
(t)
l + µ

(t)
n

−
∑

j 6=l

Glj

Gll

p̃
(i)
j −

σ2
l

Gll





+

Set i = i + 1, repeat until p̃(i) converges. Set p(t+1) =
p̃(i).

3) Update price µn via subgradient with stepsize γ
(t)
n

µ(t+1)
n =



µ(t)
n + γ(t)

n





∑

l∈O(n)

p
(t)
l − Pn,max









+

4) Update the message ml

m
(t+1)
l =

∑

s6=l

Glsλs

SINR
(t+1)
s

Gssp
(t+1)
s

SINR
(t+1)
s

1 + SINR(t+1)
s

5) Set t = t + 1. Return to step (2) until convergence.
The power update in step (2) is based on the following. At
each step, each player tries to maximize its own payoff Ql

while assuming that the power levels of all other players and
the messages and prices are fixed. The expression for optimal
pl is obtained by setting the derivative of Ql with respect to pl

to zero. Such a locally optimal pl strikes a balance between
maximizing its own rate and minimizing its interference to
other links (which is taken into account via ml). For example,
a large value for ml indicates that link l is producing severe
interference to other links. This is reflected in the power update
as a larger ml leads to a lower pl. Similarly, the value of
the pricing variable µn indicates the tightness of the per-node
power constraint. A high value for µn signals that the supply
for power is tight and it entices link l to reduce its power.

Although each player appears to be selfish in maximizing
its own payoff only, because the payoff function incorporates
social welfare, the Nash equilibrium of this game is in fact
a cooperative social optimum. Furthermore, Algorithm 2 is
amenable to distributed implementation as we will discuss in
next section.

Finally, we analyze the properties of the Nash equilibrium
of the power control game. It is possible to prove [22] that if a
strictly diagonal dominance (SDD) condition holds (i.e., Gll >
∑

j:j 6=l Glj , ∀l), the power control game always converges
to a unique and stable Nash equilibrium for any given dual
variables. This is because, under SDD, for any given dual
variables, the player’s best response function in step (2) of
Algorithm 2 is a contraction, therefore Nash equilibrium is
unique. Further, it can be verified that the absolute values
of the eigenvalues of the dynamic stability matrix of the
power control game are all less than one, hence the game
is asymptotically stable. On the other hand, it is observed
through simulations (as will be shown in section VII) that
the overall multicast rates converge in many scenarios even
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without SDD. Note that, however, for the question of how far
the approximate solution is away from the optimum, we do
not have a good answer for a quantitative analysis yet.

For simplicity, we present the power control game for a
scenario in which each link consists of a single channel. The
same idea can be extended to cases in which each link consists
of multiple physical channels, such as that in orthogonal
frequency-division multiplex (OFDM) systems.

VI. DISTRIBUTED IMPLEMENTATION

As realistic mesh network deployment often encounters
variations in channel characteristics and network demand
fluctuations, real-time and distributed algorithms are desir-
able. Distributed implementation of the network optimization
method is also important in mesh networks for scalability
reasons. In this section, we show that the overall throughput
maximization problem of mesh networks can be solved in a
distributed manner. Our main algorithm is as follows:

Algorithm 3: Distributed Primal-Dual Algorithm:
1) Set t = 0. Initialize λ(0).
2) In primal domain, solve the following subproblems:

(2.1) Solve the routing subproblem by network coding
technique in a distributed manner.

max
r,f

U(r) −
∑

l

λl

∑

i

f i
l , s.t. (r, f) ∈ N

and let the optimal solution be (r∗, f∗).
(2.2) Solve the power control subproblem by power
control game Algorithm 2 in a distributed manner.

max
c,p

∑

l

λlcl, s.t. (c,p) ∈ C

and let the optimal solution be (c∗,p∗).
3) In dual domain, update the dual variables:

λ
(t+1)
l =

[

λ
(t)
l + ν

(t)
l (c∗l −

∑

i

f i,∗
l )

]+

4) Set t = t + 1. Return to step 2 until convergence.
We next address the distributed implementation in details.

A. Distributed Flow Routing

We first show how to solve the network layer multicast flow
routing step (2.1) of Algorithm 3 in a distributed fashion.
We propose a three-phase solution: (a) session separation,
(b) distributed min-cost flow computation, and (c) utility
maximization at the source.

In phase (a), we separate the joint multi-session optimization
into smaller intra-session optimization problems. A critical
assumption of the optimization in (2.1) is that the objective
function is separable:

max

(

U(r) −
∑

l

λl

∑

i

f i
l

)

=
∑

i

max

(

Ui(r
i) −

∑

l

λlf
i
l

)

Consequently, we can solve the joint optimization in step (2.1)
of Algorithm 3 by solving a sequence of projections within
each multicast session.

The separated intra-session optimizations are then solved
in phase (b) and phase (c). In phase (b), we prepare for the
final optimization in phase (c) by computing the minimum
weighted (with given weight vector λ) bandwidth consumption
necessary to achieve a unit end-to-end multicast throughput.
This is a special case of the min-cost multicast problem studied
in [6], where the authors apply Lagrangian relaxation to
transform the problem into a sequence of traditional min-cost
flow computations, and obtain a distributed solution based on
a distributed min-cost flow algorithm such as the ε-relaxation
algorithm.

Once the minimum weighted bandwidth consumption (b∗ =
∑

l λlf
i
l ) for one unit multicast throughput is determined, we

let the source si make the final optimization decision in phase
(c). The source first collects the value of b∗ as the output
from phase (b), then it transforms the objective function from
max(Ui(r

i)−
∑

l λlf
i
l ) into max(Ui(r

i)−b∗ri), and performs
a local single-variable maximization based on the function
curve of U and the value of b∗.

Since each of phases (a), (b), and (c) can be implemented
in a distributed manner, we obtain a distributed algorithm for
the flow routing module (2.1) of Algorithm 3.

B. Distributed Power Control

The power control game in step (2.2) of Algorithm 3 can
also be implemented in a distributed fashion at the physical
layer. Inspired by the work of [10], we decompose the message
update in step (4) of power control game Algorithm 2 as
follows:

m
(t+1)
l =

∑

s6=l

Glsbcms,

bcms = λs

SINR(t+1)
s

Gssp
(t+1)
s

SINR(t+1)
s

1 + SINR(t+1)
s

Specifically, we propose a two-phase message-passing mech-
anism: at phase (a), each link calculates its broadcast
message (i.e., bcms) based on local information (i.e.,
λs,SINRs, Gss, ps), and broadcasts to the network. At phase
(b), each link collects broadcast messages from others, and
locally computes the message (i.e., ml), where the interference
term (i.e., Gls) can be estimated, for example, by pilots. Note
that the update of µn only requires the outgoing link power
allocation from node n and its budget (i.e., Pn,max), therefore
it can be locally updated. Hence, given the dual variables ml

and µn, the power update in step (2) of the power control
game Algorithm 2 can be achieved locally.

C. Distributed Shadow Price Update

In step (3) of Algorithm 3, the update of the dual variable
λl in the lth link only requires the local capacity cl and the
rates of local flows

∑

i f i
l . Therefore, the shadow prices λ can

be updated locally.
For the above reasons, the overall throughput maximization

problem in mesh networks has a distributed implementation.
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VII. SIMULATIONS

We simulate a single-session multicast example to illustrate
the network optimization framework. The wireless mesh net-
work is shown in Fig. 4. The source S attempts to estab-
lish a session with maximum multicast throughput to three
destinations T1, T2, T3 using network coding. A multi-channel
link model is adopted at the physical layer. The channel gain
and interference coefficient are generated according to log-
normal fading. We consider two different channel scenarios:
a low-interference scenario in which the average ratio of the
desired channel gain to the sum of all interference coefficients
is 10 dB, and a high-interference scenario in which the average
ratio of the desired channel gain to the sum of all interference
coefficients is −2 dB. We use Algorithm 3 to find the optimal
solution for the throughput maximization problem (1).

Fig. 5 illustrates the multicast throughput maximization
process. In both high-interference and low-interference cases,
the multicast throughput converges to the optimal solution.
However, the convergence speed is different. Convergence is
much faster in the low-interference scenario (i.e., 60 iterations)
than in the high-interference scenario (i.e., 200 iterations). This
is because the exchange of messages is not as important in
the low-interference case as compared to that in the high-
interference case.

The convergence process for the cross-layer dual variables
is illustrated in Fig. 6. Each curve in the figure corresponds to
a dual variable λl for each link. The dual variables (shadow
prices) control the inter-layer interface so that both routing at
the network layer and power control at the physical layer can
reach an optimal point. As the shadow prices converge, the
entire system reaches an optimal solution. Fig. 7 shows the
convergence process between the network layer flows and the
physical layer capacities for both low-interference and high-
interference cases.

In Fig. 8, a series of snapshots are plotted to illustrate
the convergence process for the low-interference case. At the
beginning as shown in Fig. 8(a)(b), the physical layer link
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capacities are high (especially in link 1 and link 2), while the
network layer routing flow rates are low. Since the supply of
rates is greater than the demand, the prices λ would decrease
as shown in Fig. 6(a). Next, due to the change of prices, the
physical layer would reduce its supply (especially in link 1
and link 2), while the network layer would take advantage
of low prices by increasing its demand. This is illustrated in
Fig. 8(c)(d).

During the negotiation process coordinated by shadow
prices, the network flows oscillate in an attempt to find a good
routing strategy for each set of physical-layer capacities. At
the same time, physical layer capacities fluctuate in order to
better support network layer traffic and to avoid interference.
This is illustrated in Fig. 8(e)(f).

Eventually, the network flows and link capacities reach an
agreement as shown in Fig. 8(g)(h). This solution is optimal
in the sense that the physical layer comes up with the best
resource allocation while the network layer routes the best
paths from the source to multiple destinations. Together, the
multicast rate utility function is maximized. Note that at all
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Table I: Multicast Throughput Comparison
CLO No CLO Improvement

Low Interference 13.62 10.72 21.32%
High Interference 2.97 2.32 21.88%

time, the flow rates always satisfy the flow conservation law.
However, only the converged link capacities are consistent as
shown in Fig. 8(h).

It is interesting to point out that our algorithm is energy
efficient because there are no slack link capacities in both
cases. For example, in the high-interference case as shown
in Fig. 7(b), the final solution of network flows are f1 =
f2 = 1.98, f3 = · · · = f18 = 0.99; the link capacities are
c1 = c2 = 1.98, c3 = · · · = c18 = 0.99; and the multicast rate
is r = 2.97. Therefore, all link capacities exactly support the
network flows (fl = cl).

This optimal solution has a max-flow min-cut interpretation.
If we normalize the optimal throughput, the optimal flows and
link capacities are all one unit except for link 1 and link 2,
where they are two units. As we can see from the optimal
solution, the source sends three units of information in total
to each destination, and the max-flow rate is exactly equal to
the min-cut bound as shown in Fig. 9. Further, Fig. 9 shows
a network coding assignment to achieve the optimum.

Finally, we compare the performance of joint cross-layer
optimization with network coding and power control with the
performance of a network in which each node uses equal radio
power and the routing is built through Steiner trees. For the
particular example in Fig. 4, we have total 46 Steiner trees and
linear programming is used to find the corresponding time-
sharing coefficients among the trees. Table I shows that the
multicast throughput of cross-layer optimization (i.e., CLO)
outperforms that of its absence (i.e., No CLO) by more than
21% in both low and high interference scenarios. Thus, it con-
firms the benefit of cross-layer optimization for provisioning
of high throughput in wireless mesh networks.
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VIII. EXTENSIONS

In this section, we point out two possible extensions of the
current framework.

A. Hybrid and Hierarchical Structure

Although we focus on a fully wireless mesh network in this
paper, our model and solution can easily handle hybrid and
hierarchical mesh networks as well [23], where wireline and
wireless links coexist. This is because that a wired network
can be regarded as a special case of the formulation of wireless
networks, where all interference terms are zero.

B. Physical-Layer Wireless Multicast

Because of the shared nature of wireless medium, it is
possible for one transmitter to successfully reach multiple
receivers in a single transmission. For example, in Fig. 9,
rather than transmitting the information “a” separately on the
link from node i to node T1 and on the link from node i to
node ii, the transmitter node i can simply transmit information
“a” to the two receiver nodes at the same time at the physical
layer. Such physical-layer multicasting has the advantage of
saving transmitter power and reducing mutual interference.
The ability for a single transmitter to reach multiple receivers
at the same time is called wireless mutlicast advantage [24].

Wireless multicast advantage can be characterized by in-
cluding the concept of common information at the physical
layer. Consider the scenario with nodes i, ii, and iii in Fig. 10.
Let us assume that node i can send common information at
rate c0 to both nodes ii and iii, and it can send independent
information to node ii on link 1 at rate c1 and to node iii
on links 2 at rate c2 respectively. The capacity region with
common information can be characterized as follows:


























c0 = min

{

log
(

1 + G11p0

G11p1+G12p2+σ2+I

)

,

log
(

1 + G22p0

G21p1+G22p2+σ2+I

)

}

c1 = log
(

1 + G11p1

G12p2+σ2+I

)

c2 = log
(

1 + G22p2

G21p1+σ2+I

)

Pi,max ≥ p0 + p1 + p2

(9)

where p0 is the power for transmitting common information
from node i to both nodes ii and iii, p1 and p2 are the
powers for transmitting independent information on link 1
from node i to node ii, and on link 2 from node i to node iii
respectively, σ2 represents the noise variance, I represents the
interference from all other nodes’ transmissions, and Pi,max

is the power budget of node i. Note that at nodes ii and
iii, common information can be decoded first, then subtracted
before independent information is decoded. Thus, p0 does not
appear as interference in the capacity expressions for c1 and
c2. Clearly, by setting p0 = 0, this model (9) includes the
previous capacity region (7) as a special case.

Our cross-layer optimization framework can be extended
to incorporate the common information rate above. The main
idea is to add virtual nodes to represent common information
transmission as shown in Fig. 10. Each virtual node has
only one incoming link and several outgoing links, therefore,
it simply replicates and broadcasts the incoming common

PSfrag replacements
i

ii iii

iv

v

vi vii

v′

i′

ii′ iii′

ĉ0
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independent information capacity. Solid circles represent the real nodes and
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information. This results in an augmented network topology
G′ = (V ′, E′). The entire capacity region for the augmented
network topology can be formulated similarly as in (9). We
denote the capacity region with the augmented network as C0,
and denote the routing region with the augmented network as
N0. Note that, given the augmented network topology, the
min-cut-max-flow argument still holds for network coding.
Therefore, the cross-layer optimization framework can handle
the throughput maximization problem with wireless multicast
advantage by solving the following augmented problem:

max U(r)

s.t. (r, f ) ∈ N0

(c,p) ∈ C0
∑

i∈S

f i
l ≤ cl, ∀l ∈ E′

IX. CONCLUSIONS

In this paper, we propose a cross-layer optimization frame-
work for multihop multicast in wireless mesh networks. We
formulate a throughput maximization problem which jointly
considers the data routing problem at the network layer and the
power control problem at the physical layer. We show that the
problem can be decomposed into two subproblems. Modelling
and solution algorithms for each subproblem can be easily
tuned according to the availability of networking technologies,
as well as the availability of optimization techniques. In partic-
ular, we emphasize the cross-layer optimization of multicast
routing with network coding and power control with game
theoretic method, where efficient and distributed solutions are
derived and illustrated. Finally, we show that the wireless
multicast advantage can be incorporated into the optimization
framework.
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