RapidFlow: An Experimental Testbed for
Information Flows with Network Coding

Mea Wang, Baochun Li
Department of Electrical and Computer Engineering
University of Toronto
{mea,bli } @eecg.toronto.edu

Abstract— Network coding refers to the capability of coding preserves the size of the original pieces,, they consume
incoming information flows before transmitting to other nodes no additional bandwidth, resulting in efficient utilizaticof
in the network, beyond the traditional capabilities of message network bandwidth. As nodes in peer-to-peer communication

forwarding and replication on a network node. It has been . d ¢ t the ed f the Int t th
envisioned that network coding is best applied to overlay net- S€SSIONS areé end systems at tne edge ot (he Internet, they are

works, in which network nodes are computers at the edge of assumed to be computationally capable to perform such godin
the Internet and are sufficiently capable and flexible to perform operations. Therefore, it is feasible to implement suchdaea i

coding operations. _ _ ~in real-world peer-to-peer communication sessions.
There exist a wide range of theoretical studies on the benefits At present, however, the application of network coding in

of network coding, especially with respect to throughput improve- di ination h v b .
ments in the multicast case. However, there has been very little PE€r-t0-peer content dissemination has only been accaetpan

published work on the empirical analysis regarding the benefits With simulation-based studies. In this paper, we implement
and drawbacks of network coding in realistic overlay networks. RapidFlow, a peer-to-peer content dissemination system with
Towards this objective, we have designed and implemented petywork coding, and use such an implementation to study
RapidFlow, a complete and easy-to-use experimental testbed for 1, 5qyantages and disadvantages of using network cauling |
studying information flows with network coding. In RapidFlow, . L .
each node is equipped with a high-performance overlay messageP€€r-to-peer content dissemination. Among other algmsth
switch and a randomized network coding mechanism. In this RapidFlow implementsrandomized network coding, where all
paper, we present the design and implementation of RapidFlow coded blocks are linear combinations of the original blocks
in an emulated overlay network running on a cluster of work- wjth random coefficients. It eliminates any additional comm
stations, as well as our initial experimental observations with nication between peers to reconcile their differences.
respect to the performance of coded information flows.
With the RapidFlow implementation, we were able to con-
duct the first batch of empirical experiments to study the ef-
. INTRODUCTION fects of network coding in peer-to-peer content disserionat
In a peer-to-peer content dissemination session, all nodesessions. We have observed that network coding can conserve
except the content source, are interested in receiving tine to 20% of bandwidth as compared to a vanilla peer-to-
content. To achieve scalable content dissemination, ndespeer protocol in which peers simply act as relays of received
the network are invited to contribute their upload bandtidicontent blocks. However, due to the computational overloéad
to redistribute content, in an effort to alleviate the loadl ocoding, the time to complete a content dissemination sessio
dedicated content servers. In such a design, such as Bitiorihas actually increased, when to compared to our vanilla- peer
[1], there does not exist any rigid topological structureoag to-peer content dissemination protocol without using oekw
peers. Peers connect with each other at will and are conleteoding.
flexible to network dynamics due to node failures and joins. The remainder of this paper is organized as follows. Sec. Il
However, peers must communicate with each other in orderrtsviews various architectures of peer-to-peer contersiedis-
avoid redundant data being sent to the same node, resuitingration systems and the benefit of network coding. In Sec. Il
excessive communication overhead and lack of flexibility twe present the implementation of RapidFlow, and our initial
network dynamics. set of empirical studies using RapidFlow to evaluate the
In recent work, Gkantsidist al. [2] proposed the idea benefits and drawbacks of using network coding in peer-to-
of facilitating BitTorrent-like peer-to-peer content sisnina- peer content disseminations. Sec. IV concludes this paper.
tion using network coding. It was noted that, with a small
communication overhead, the application of network coding
eliminates the need for reconciliation between peers. Nedtw
coding refers to the capability of coding incoming inforiat We consider a peer-to-peer content dissemination session,
flows before transmitting to other nodes in the networkyhich consists of one source peer and a collection of rewgivi
beyond the traditional capabilities of message forwarding peers feceivers). The objective of the receivers is to receive
replication on a network node. All pieces of informationrigei the content to be disseminated in the shortest period of, time
transmitted are linear combinations of the original piecewhereas the objective of a source peer is the ability to serve
The coding operations are performed in Galois field thas many receivers as possible. In a conventional clieneser

Il. PRELIMINARIES

model, both of these objectives are limited by the uploazhn be produced from the existing ones. Therefore, in order
capacity of the source, and the throughput to the receivees maximize the efficiency of using bandwidth, the set of
degrades as the number of peers in the session increasescoefficients must be carefully chosen so that a receiving pee

To be more scalable, recent peer-to-peer content dissemiunlikely to receive linearly dependent blocks. Unlessrpe
nation protocols, such as BitTorrent [1], organize nodéds incooperate to choose such coding coefficients, it is diffitault
a peer-to-peer network. In these protocols, the sourceebvi design a decentralized and deterministic algorithm to ensu
the content to be disseminateglg., a file in the file system, the blocks are all linearly independent with each other.thisr
into n blocks of a fixed size and send these blocks to threasonjrandomized network coding [6] has been proposed, in
receivers. A receiving peer receives these blocks from @newhich each peer independently generates randomized coding
more participating peers, referred to asupstream peers. In coefficients Avalanche adopts the idea of randomized network
return, they also contributes their uplink bandwidth toayel coding to produce the coding coefficients.
certain received blocks to itdownstream peers. A receiver After a peer has received at leastcoded blocks that are
eventually reconstructs the original file once it receiviksna linearly independent, it can recover the original blocks by
blocks. taking the inverse of the coding matrix (which is full rank).

In the ideal case of BitTorrent design, nodes receive disjoiThe coding matrix is the combination of coefficients used
sets of blocks from their peers. In practice, without cortgpleto generate each coded block from a set of original blocks.
knowledge of the available blocks on peers, a node mayey are easy to compute in the coding process, and are
receive redundant blocks, leading to a waste of bandwidd#mbedded in each coded block to be sent as one self-contained
Content reconciliation algorithms have been proposed to impplication-layer message to a downstream peer.
prove bandwidth utilization, with the cost of exchangingdi
availability information between peers, or between a peer a
a dedicated “tracking” server.

To further improve the efficiency with respect to bandwidth
usage and to minimize the messaging overhead of exchanginghough the use of network coding in peer-to-peer content
block availability information, it has been proposed that-p dissemination applications seems promising, to the best of
ticipating peers not only relay and replicate received kdoaf our knowledge, there have not been any experimental studies
content, but also code them. Such an idea has been receatlythe advantages and drawbacks of network coding, us-
proposed by Gkantsidis and Rodriguez Agalanche [2]. It ing real-world implementations of network coding and data
is in line with recent theoretical advances rtwork coding transmissions with actual TCP connections. In this paper,
[3], [4], which have been introduced to improve sessiowe present our initial experiences and preliminary results
throughput in directed networks. Based on the principles wfith RapidFlow, our implementation of a peer-to-peer content
network coding, Luret al. [5] has also proposed decentralizedlissemination application using network coding. The paepo
optimization algorithms to achieve minimum-cost multicasof implementingRapidFlow is to evaluate network coding in
These proposals attempt to use network coding to eithi@alistic peer-to-peer environments.
minimize the cost on the links, or eliminate the needs for The RapidFlow testbed is based on a scalable engine of
content reconciliation between peers, the main source ef witching application-layer messages from multiple inomm
communication overhead. message flows from upstream peers, to multiple outgoing

We considerAvalanche as an example. Similar to conven-message flows to downstream peers. These message flows
tional peer-to-peer content dissemination, such as Bifby can be either stream socket (TCP) or datagram socket (UDP)
the file of interest is also divided inte blocks of the connections. Our application-layer message switch igydesi
same size, referred to as the original blodks,---,b,}. In to consume minimal memory footprint and CPU cycles, and
Avalanche, rather than transmitting or relaying theseioailg to be flexible to accept a wide variety of message-processing
blocks, each peer generates and sends coded blocks, whicHpiug-in” algorithms. The engine is based on our earlier
linear combinations of original blocks. We consider eacerpework on iOverlay [7], a lightweight middleware framework
in a peer-to-peer session. The blocks it has received frem o facilitate the distributed implementation of overlaygai
upstream peers af@, ..., b, }, and the blocks it sends to itsrithms. In addition to the application-layer message dwitc
downstream peers af@’, ..., b;}. At the source{by,...,b.} we have implemented all the software components required to
represents the original blocks of the file to be disseminatgaerform network coding on GE®). All our experiments are
A peer uses coding coefficients; 1,---,¢; ,} to produce conducted on a cluster of dual-CPU servers. We now discuss
an outgoing blockh, = >~ _, ¢k - by, using operations in some additional technical challenges in the implememnatio
the Galois field GE{*) (usually GFg®)). Since all coded RapidFlow, as well as our initial experiences with Rapia¥lo
blocks b;(i = 1,...,r) that a peer has received are linear In the design of RapidFlow, we first need to convey the
combinations of the original blocks, the newly generatedecb coding coefficients used in each of the coded blocks to the
blocks b, are also linear combinations of the original blocksreceiver. As a coded block is a linear combination of the

A set of coded blocks are linearly independent if none afriginal blocks, it can be uniquely identified by its coding
them can be expressed as a linear combination of otheseefficients, referred to as thsignature of the coded block.
Intuitively, any coded block that is linearly dependent oA signature can be represented as an array obding coef-
existing coded blocks is considered redundant, since tbikb ficientsey, (kK = 1,...,n), such that if the original blocks are

I1l. EXPERIMENTAL STUDIES OFNETWORK CODING
USING RapidFlow

bp(k=1,...,n), then any coded block, = >";'_, ¢ - b. In Next, we consider technical challenges with respect to the
the implementation of RapidFlow, every time a peer tramsmigjeneration of coded blocks on each peer. In RapidFlow, the
a coded block to its downstream peer, it embeds the signataoeirce generates code blocks based om aitiginal blocks.
in the application-level header of a coded block, making Each peer generates new coded blocks for their downstream
self-contained. The overhead introduced by embedding thpeers as coded blocks are received (and cached locally). A
signature is small, as long as the number of original blockeer may generate coded blocks for each downstream peer
n is much smaller than the number of bytesn an original using only recently received blocks; it may also choose to
block. code recently received blocks with cached blocks to further

When the size of the content to be disseminated increas@sjuce the probability of producing linearly dependentkio
we need to either consequently increase the block sizw In RapidFlow, we propose to code recently received blocks
alternatively increase the number of blocks Intuitively, if ~with a random subset of cached blocks, to maintain reasenabl
we increasen with the same block size, the overhead of encoding times.
embedding the signature will be larger. If we increassith When should a peer start to generate new coded blocks, and
the same number of blocks, the overhead of embeddinghow many new blocks should it generate for each downstream
the signature will be smaller, but the coding process may beer? LetR; be the set of coding coefficients of blocks that
slower. What is the best and s to be used in RapidFlow in peer i has received so far. Le§; ; be the set of coding
order to achieve the best coding performance? coefficients of linearly independent blocks thathas sent

To answer this question, we performed two simple expei® its downstream peej. Upon receiving a block, a peer
ments. We first set = 10 and varys from 1 KB to 1 MB, and caches it and adds its coding coefficientspif it is linearly
measure the time needed to code. The encoding time is thdependent to the existing ones i). In RapidFlow, a peer
time taken by a peer to generate a set of randomized codingenerates one new coded block for each downstream peer
coefficients and to produce one coded block. The decodingvery time it receives a new linearly independent block. In
time is the time taken by the receiver to reconstruct theimglg addition, to ensure that all blocks sent frarto j are linearly
file from n coded blocks received. Each peer is allocatediddependent (so that bandwidth is not wastéapches coding
dedicated CPU (Intel Pentium IV Xeon 3.6GHz). We obseroefficients of the blocks that it has sentan S; ;. Peeri
from the experimental results (Table I) that both encoding athen uses its cache as a reference when producing the next
decoding times grow linearly with respect to the block sizecoded block forj.

Although each peer never receives linearly dependent block

TABLE | from the same upstream peer, it might receive linearly depen
AVERAGE CODING TIMES WITH10 BLOCKS. dent blocks that are sent by different upstream peers. From
— our experiments, we found that the more upstream peers a
File size (MB) 0.01] 05 | 1 255 75 | 10 has. the high babilit f v d dent block
Block size (KB) 1 |50 | 100| 250 | 500 | 750 | 1000 PE€er has, the higher probability a linearly dependent bloc

Encoding time (sec) | 0.002 0.051 0.098 0.25| 0.491 0.769 0.982 IS received and discarded. Such an observation is due to
Decoding time (sec) | 0.01] 05 | 1 | 25 | 49 | 7.5 | 10.3] the shared path from the source to the upstream peers of
a particular peer. An example this observation is shown in

In th d . i t the block size taib Fig. 1, where dotted lines represent an overlay path and soli
n the second experiment, we set the block size € lines represent an overlay link. Sind and 73 share the

KB, and vary the number of blocks from to 10000. The same upstream pedf, the two coded blocks! , - b, and

results are shown in Table Il. We observe that, when the . a
o o . ' -b} produced byl for T, andT3, respectively, are linearl
original file is segmented into more thard0 blocks, the 1,101 P VI 2 3 P y y

decoding time on a receiver grows rapidly, even with modedependent. Consequently, the coded blocks delivered;to

_ : : Qle different linear combinations of the same bldék i.e.,
processors. Though the growth of encoding times is not gs

fiey are linearly dependent. The same logic applies to the
dramatic, it still introduces a considerable amount of yéfa y y gep 9 Pp

T . econd batch of blocks arrivin . Therefore, RapidFlow
the transmission of coded blocks, since they are accurmeﬂaS g dt P

f hoo to h Th s h ted that it s more bandwidth efficient with a small number of incoming
rom nop o nop. These resutls have suggeste at t M3Fhnections on each peer, since upstream peers of a peer are

be best for the number of blocks to be very small (arouq ss likely to share a path from the source

10) to avoid introducing excessive latencies in peer-@xpe This problem is coupled with our particular implementation

Svonter:]t Idlzsetwlrtlatlorr:] serss(;otnst.hFrtc))lm Lhe.szthr? ?(ger“"ﬂe% randomized network coding. It can be eliminated by post-
€ conciude that, compared {o the block Sszehe number o poning encoding of new blocks until all blocks are received,

blocksn plays a much more significant role on the enCOdin\%hich significantly prolongs the downloading time, esplyia

and decoding times. for peers farther away from the source. For this reason, we
TABLE Il trade the bandwidth for better download speed since network

coding already introduces a considerable amount of delay.
For the purpose of comparisons, we also implement a simple

AVERAGE CODING TIMES WITH50 KB IN EACH BLOCK.

File size (MB) 005]05 [5 50 500 BitTorrent-like file dissemination algorithm, in which agre
Number of blocks | 1 | 10 | 100 | 1000] 10000 randomly forwards received blocks to its downstream peers.
Encoding time (sec) | 0.005 0.05 | 0.5 10.8 | 113

Decoding time (sec) | 0.005| 0.5 | 59 | 1330| 113004 For a fair comparison, this algorithm is tested on the same

topologies used by RapidFlow.

time records the duration from the first coded block was sent
from the source, to the time the original file is completely
reconstructed at a receiving peer, assuming that the coded
blocks can be produced offline on the source. The average
download time of all peers in the peer-to-peer session is
presented in Fig. 3. It indicates that network coding leads t
100% longer download times in RapidFlow. We also observe
that coding times increase as the number of blocks increases

C]é,l' b’ +C§,2 b,
C%.,l. b

1 TR
)\2,1° b} +)\2,2'b2 N L’)\;1' b} +)\§,2°b|2 . , .
Ao b! N R A2 e Db 160H —— Without network coding
11 M1 11 bl —=— RapidFlow

Fig. 1. An example in which linearly dependent blocks arrivex peer. £120r

We now present an initial set of experiments using Rapid-
Flow, showing the advantage and disadvantage of network cod
ing, in comparison with dissemination without using netkvor
coding. Our focus is on the performance of network coding
in terms of bandwidth efficiency and the time to complete
the downloading process. The experiments are conducted in 00 0 60 80
random topologies, scaled fronD peers to100 peers. In Network size
order to ensure that every peer can receive the file to be . .

. . 1g. 3. Average times to complete the downloading process.
disseminated, we let each peer randomly choose peers that
have not received any data as downstream peers. In our
typical test runs, the file to be disseminated is of size IV. CONCLUDING REMARKS
MB and is divided into10 blocks,i.e, s = 500 KB. We In this paper, we have present&hpidFlow, an imple-
assume that a peer may leave the session once it completestation of network coding in peer-to-peer content dissem
its download, which is the usual behavior of peers in peer-timation sessions. RapidFlow represents our future relsearc
peer networks. The source peer also leaves the sessiontenceiiection towards evaluating the advantages and drawhafcks
direct downstream peers complete the downloading processetwork coding using a real-world implementation, rattnemt

One of the advantages of using network coding is to usénulation-based studies. Our first batch of experimentg ha
available bandwidth more efficiently. In Fig. 2, bandwidfa e shown that, though network coding has led to more efficient
ficiency is defined as the ratio between (1) the average numibee of bandwidth, it has significantly affected the time to
of bytes received by a peer before it can completely recoaistr complete the downloading process on each peer. We arenstill i
the original file; and (2) the actual file size. The higher thihe process of investigating the cause to this observatiod,
ratio, the less bandwidth-efficient the algorithm is. Weeslie explore possibilities of improving our algorithms to miig
that network coding improves bandwidth efficiency by up teuch negative effects of using network coding.

20% (about10% on average).

Average downloading tim
Iy (2} @
o o o

N
o
T

100

REFERENCES
1.7

—— Without network coding [1] B. Cohen, “Incentives Build Robustness in BitTorrentP2P Economics

—=— RapidFlow Workshop, 2003.

1 [2] C. Gkantsidis and P. Rodriguez, “Network Coding for LarGcale
Content Distribution,” inProc. of the 24th Conference fo the IEEE
Communications Society (INFOCOM'’05), March 2005.

[3] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network ¢nfnation
Flow,” |EEE Transaction on Information Theory, vol. 46(4), pp. 1204—
1216, July 2000.

[4] R. Koetter and M. Mdard, “An Algebraic Approach to Network Coding,”
IEEE/ACM Transaction on Networking, vol. 11(5), pp. 782—-795, October
2003.

[5] D. Lun, N. Ratnakar, R. Koetter, M. Ktlard, E. Ahmed, and H. Lee,
“Achieving Minimum-Cost Multicast: A Decentralized Apprda®ased

; ; : : on Network Coding,” inProc. of the 24th Conference fo the IEEE

20 A0 etwork e 8 100 Communications Society (INFOCOM'05), March 2005.

[6] T. Ho, R. Koetter, M. Medard, D. R. Karger, and M. Effros, “The
Benefits of Coding over Routing in a Randomized Setting,” 2003
|EEE International Symposium on Information Theory (IST), 2003.

However, we have observed that the encoding time intr} l|3-f Li,tJ- tGUO'f ang M-l WaAng,l_ “i?verllay:IA Ligf?weig’h;m Midd;/vg]re
- P nfrastructure for Overlay Application Implemenations,” Rnoc. of the
duced at each hop during transmission has aversely affecteds, “AcuiFip/useNiX International Middieware Conference (Middle-

the total time to complete the download. Especially, peers ware04), October 2004, pp. 135-154.

farther away from the source experience longer downloading

times than the ones close to the source. The downloading

g = g
N 3] o
T T T

Bandwidth efficiency

=
w
T

12

Fig. 2. Bandwidth efficiency of network coding.

