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Abstract—Cognitive Radio Networks (CRNs) have recently
emerged as a promising technology to improve spectrum utilization
by allowing secondary users to dynamically access idle primary
channels. As progress are made and computationally powerful
wireless devices are proliferated, there is a compelling need of
enabling multicast services for secondary users. Thus, it is crucial
to design an efficient multicast scheduling protocol in CRNs. How-
ever, state-of-the-art multicast scheduling protocols are not well
designed for CRNs. First, due to primary channel dynamics and
user mobility, there may not exist commonly available channels for
secondary users, which inevitably makes the multicast scheduling
infeasible. Second, the potential benefits provided by user and
channel diversities are overlooked, which leads to under-utilization
of the scarce wireless bandwidth.

In this paper, we present an optimization framework for mul-
ticast scheduling in CRNs, by fully embracing its characteristics.
In this framework, base station multicasts data to a subset of
secondary users first by carefully tuning the power. Concurrently,
secondary users opportunistically perform cooperative transmis-
sions using locally idle primary channels, in order to mitigate
multicast loss and delay effects. Network coding is adopted during
the transmissions to reduce overhead and perform error control
and recovery. We jointly consider important design factors in
our scheduling protocols, including power control, relay assign-
ment, buffer management, dynamic spectrum access, primary
user protection, and fairness. We also incorporate user, channel,
and cooperative diversities. Two forms of multicast scheduling
protocols in CRNs are proposed accordingly: (i) agreedy protocol
based on centralized optimization; (ii) an online protocol based
on stochastic optimization in both centralized and decentralized
manners. With rigorous analysis based on Lyapunov optimization,
we provide closed-form bounds to characterize the performance
of our protocols, in terms of the interference to primary users and
throughput utility of secondary users. With extensive simulations,
we show that our proposed protocols can significantly improve the
multicast performance in CRNs.

I. I NTRODUCTION

Cognitive radio networks (CRNs) have emerged as a promis-
ing technology to improve spectrum utilization, by allowing
dynamic spectrum access (DSA). With the proliferation of
powerful cognitive wireless devices, as well as the surge ofthe
demand on service varieties and qualities, there is a compelling
need for enabling multicast services in CRNs to further harvest
its potential. Thus, it is crucial to design an efficient multicast
scheduling protocol in CRNs.

Existing multicast scheduling protocols are hobbled by the
holdover from cellular networks: their insistence on usinga
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commonly available channel for all subscribers. Essentially,
multicast is performed in asingle-hop fashion. This works
well in existing cellular networks, where channel assignment
is centrally managed by BS. Such strategy, however, does
not fit to CRNs, as channel availability on secondary users
(SUs) is opportunisticand highly dynamicdue to the bursty
usage by primary users (PUs) and SU mobility. Fig. 1 shows
an illustrative example where a CRN consisting of four PUs,
six SUs, and one base station (BS) that is responsible for
multicasting data to SUs. PUs can communicate with their
respective access points over their own licensed channels.In
contrast, BS and SUs do not have such resources and can only
opportunistically use the idle spectrum for multicast services.
According to convectional scheduling protocols, multicast on
a certain channel is infeasible if the channel is occupied by
any PU to avoid the interference to PUs, as BS is designed
to use full power to multicast data globally to cover all SUs
in one hop (represented by the outer solid circle from BS in
Fig. 1). Obviously, current protocols are missing the bulk of
opportunities to exploit the spectrum holes.
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Fig. 1. An illustrative example on multicast scheduling in CRNs.

In this paper, we present a novel multicast scheduling frame-
work to optimize multicast performance by efficiently utilizing
channel resources. Rather than confining to the single-hop
tradition, we advocate that multicast should be performed in
a multi-hop fashion, with power control at BS and cooperative
transmissions among SUs. The key observation is that, the set
of accessible channels for different SUs are different depending
on their locations. For example in Fig. 1, SU1 can use channel
2, 3, and 4 since it only resides in the service area of PU
1. With multi-hop multicasting, the requirement of finding a



globally available channel for all SUs is relaxed. BS and SUs
only need to use channels that arelocally accessible within
one hop, providing abundant transmission opportunities with
channel reuse and thus largely improving the performance.

Specifically, in our framework, BS carefully tunes the multi-
cast transmission power to feasibly transmit data to a subset
of SUs. Concurrently, to mitigate multicast loss and delay
on SUs who can not get data directly from BS, cooperative
communication is applied via locally available channels. Fig. 1
shows the intuition. When all channels are occupied by PUs,
BS uses a smaller power to multicast data in the consequentially
smaller region (the inner circle from BS in Fig. 1). In the
multicast area, channel4 is used for multicasting as it is
available for every SU involved. At the same time, SU1 helps
SU 4 through cooperative transmission via channel2 which
is available for both of them. Further, SU4 uses channel
3 to coordinately help SU5, who can not get data from
any connection. Although there may exist commonly available
channels for all SUs in the whole service area (some PUs are
idle), such power control and cooperative communication are
able to create more opportunities for using spectrum holes,
achieving higher channel utilization.

Cooperative communication can be performed even within
the multicast area, as long as the channels other than those
being used by BS for multicast are commonly available for
the involved SUs. Such cooperation is beneficial with diversity
gains as different downlink SUs experience different channel
conditions, especially when user mobility is considered. In the
example, SU2 and SU3 can be served by BS as well as SU6
at the same time, who is much closer to BS. Intuitively, wireless
channels are effectively utilized by exploiting user, channel, and
cooperative diversities.

The bad news, however, is that it is challenging to schedule
transmissions in a cooperative fashion. SUs that are assigned
as relays do not have sufficient knowledge on which packets
their neighbors need. Blindly “pushing” packets that are not
useful to other SUs will incur a substantial degree of overhead
and thus be detrimental for data recovery with losses, leading
to dramatic degradation of multicast performance. To address
these challenges, we propose to employnetwork codingin the
transmission, which has emerged as one of the most promising
information theoretic approaches to improve throughput per-
formance, especially in wireless networks [1]. With network
coding, all packets are encoded with random linear codes, and
all coded data blocks could be considered equally useful and
innovative. With the data fully mixed, relays can freely “push”
innovative blocks, and receivers only need to “hold” a “bucket”
and collect all useful data without dictating which packet is from
which source. Further, we impose structure in the coefficients to
encode data [2], with which the receivers are able to partially
decode the important data even with a subset of all blocks.
Intuitively, network coding can help to mitigate the overhead
significantly and effectively perform error control and recovery.

The salient highlight of our contributions in this paper is
a novel CR multicast scheduling framework to exploit all

the potential benefits above, considering important cross-layer
design factors including BS power control, relay assignment,
cooperative communication, QoS guarantee, dynamic spectrum
access, licensed user protection, buffer management, and re-
source allocation. Our contributions are three fold: (i) We
propose agreedycentralized multicast scheduling. (ii) We de-
sign anonline multicast scheduling protocol based on stochas-
tic Lyapunov optimization, and characterize their performance
guarantees in terms of throughput utility and interferenceto
PUs. (iii) We develop an efficient scheme for implementing
channel allocation in our online multicast scheduling based
on maximum weighted bipartite matching algorithm. It can be
performed in both centralized and distributed fashion which is
practical in realistic systems. To the best of our knowledge,
this is the first work studying cooperative multicast scheduling
in CRNs. Our proposed protocols are analyzed theoretically
and evaluated via extensive simulations which show substantial
performance improvement.

The remainder of the paper is organized as follows. In
Sec. II, we present the network model and multicast settingsin
CRNs. In Sec. III, we present our greedy centralized multicast
scheduling protocol. In Sec. IV, we describe our realistic
multicast scheduling protocol based on stochastic optimization
with performance analysis. We conduct extensive simulations to
evaluate the performance of our proposed protocols in realistic
CRN scenarios in Sec. V. In Sec. VI, we review related work
of CRNs. Finally, we conclude our paper in Sec. VII.

II. M ODELS ONMULTICAST SCHEDULING FRAMEWORK

We consider a CRN consisting ofC PUs, N SUs and one
BS in the same fashion as in Fig. 1. Each PU has a unique
licensed channel to communicate with its access point, and
all C channels are orthogonal supported by OFDMA. PUs
are static with fixed positions, while SUs can be mobile and
opportunistically utilize the idle spectrum. Such opportunities
are commonly called “spectrum holes.” The entire network
operates in a time-slotted fashion, where channel conditions and
user actions remain the same during a given time slot, and vary
independently from one time slot to another.

Let S(t) = {Sc(t)}C represent the channel states on each
time slott, whereSc(t) is a binary value capturing the channel
availability. Sc(t) = 0 means channelc is occupied by PU
c. Otherwise,Sc(t) = 1. We assume the channel availability
state processS(t) evolves according to a finite state ergodic
Markov chain. Within a time slot, a SU can access a subset
of the licensed channels potentially depending on its current
location. This information is concisely represented by a binary
channel accessibility matrixH(t) = {hc

n(t)}N×C where:

hc
n(t) =

{

1 If SU n can access channelc
0 Otherwise

Note the mobility process of SUs is independent of channel
availability. Channel availability information for SUs can be
described by a probability vectorP(t) = {Pc(t)}C wherePc(t)
is the probability that channelc is available. This information
can be obtained via spectrum sensing or prediction according to



traffic statistics. Assume BS can precisely sense the spectrum
with ultra-sensitive CRs. Intuitively, the closerP(t) is to S(t)
(better techniques employed), the smaller interference that can
be potentially generated to PUs.

BS does not have the authority to access licensed spectrum
and opportunistically utilizes “spectrum holes” to multicast
data to SUs on available channels with tunable power. In the
multicast sessions, BS holds all the original data, and separates
the data into segments. A data segment is further divided into
n blocks with fixed size. We can easily compute the number
of blocks in one segment if the segment size is pre-determined.
The BS further separates these blocks into a series ofm groups,
X1, · · · ,Xm (X1 ⊆ · · · ⊆ Xm), according to data priority,
whereX1 is the most important set of data, followed byX2,
etc. Accordingly, the data blocks are encoded bystructured
network coding[2] by imposing structure in the coefficients
according to data priority. Random coefficients are embedded
in the transmitted blocks used for decoding at the receivers.
Essentially, each coded block is a linear combination of a set of
original blocks, and all linearly independent blocks are equally
innovative. In this way, a virtually unlimited number of coded
blocks can be generated, referred to asratelessproperty.

Evolved in the multicast service, all SUs not only receive data
directly from BS but also get help from others if cooperation
opportunities exist. When serving as a relay, SU encodes all
the received blocks and sends the recoded blocks which are
still linear combinations of the original blocks [2]. According
to the property of structured network coding, SUs can have a
high probability of decoding the data groups with high priorities
using Gaussian Elimination, even with only a portion of the
whole data [2]. To support cooperative transmission, SUs are
equipped with multiple radios which can perform concurrent
transmissions via separate channels. Note only a small number
of radios are required which is practical in realistic systems.
This is because the distribution of SUs is sparse and dynamic,
and thus the probability that multiple SUs are within the
interference regions of each other is very low.

Essentially, BS tunes the power to reach a limited number of
SUs, and SUs help with each other in a local neighborhood. The
multicast data thus are propagated via multi-hop dissemination
with network coding efficiently. The objective of our multicast
scheduling is to find the optimal power control policy on BS, as
well as the most efficient cooperative communication schedule,
to maximize the aggregate throughput on all SUs under a
fairness criteria. To achieve this objective and meet all the
requirements described above, there are a number of challenges
including but not only limited to the following:

⊲ How to design the scheduling protocol to jointly optimize
the power control and cooperative communication?

⊲ Can the optimized scheduling protocol be practically fea-
sible and be implemented in a distributed fashion?

⊲ Can PUs be effectively protected in CRNs?

Our responses to these challenges constitute the flow of
presentation in this paper.

III. G REEDY COOPERATIVESCHEDULING

In this section, we present a greedy centralized multicast
scheduling protocol to perform optimization at each time slot,
so that the overall performance is optimized in the long term
[3]. The problem is trivially decomposed to each time slot.

A. Centralized Optimization Framework

We consider proportional fairness in the centralized opti-
mization framework, which is able to strike a good balance
between utilization and fairness [3]. The objective can be stated
as follows:

max
PBS,Θ

N
∑

n=1

Un

rn
(1)

Un represents throughput on SUn. rn is the average through-
put that SUn obtains over previous time slots, and it brings
the proportional fairness to the objective.PBS = {P c

BS}C

denotes the multicast power used on each channel from BS.
Θ = {µc

mn}NN×C is the set of feasible channel assignments,
whereµc

mn is the binary function capturing the assignment of
channelc to the cooperative transmission link from SUm to
SU n. PBS and Θ represent the power control and resource
allocation policies which we seek to optimize and are the
cornerstones of our multicast scheduling protocol. According
to the network model, we have the following constraints:

P c
BS ≤ P c

max ∀c (2)

P c
BS · gc · Sc ≤ β ∀c (3)

µc
mn ≤ hc

m, µc
mn ≤ hc

n ∀m,n, c (4)

µc
mn ≤ lcm, µc

mn ≤ lcn ∀m,n, c (5)

0 ≤
N

∑

m=1

µc
mn ≤ 1 ∀n, c (6)

0 ≤

C
∑

c=1

µc
mn ≤ 1 ∀m,n (7)

0 ≤

N
∑

m=1

µc
mn +

N
∑

m′
=1

µc
nm′ ≤ 1 ∀n, c (8)

Inequalities (2) and (3) describe the constraints on power
control. (2) shows that the power used on each channel has an
upper boundP c

max. To avoid interference to PUs, the multicast
power received by PUs on each channel should not exceed the
tolerant levelβ, if the corresponding channel is being used. (3)
expresses these constraints, wheregc ∈ (0, 1] is the propagation
gain from BS to PUc.

Inequalities (4) and (5) represent the constraints on channel
availability for cooperative communication. (4) shows that coop-
erative communication is constrained by the channel availability
on each SU represented byH(t). (5) shows the constraint im-
posed by the channel availability with regards to multicasttrans-
mission from BS. Similar toH(t), we useL(t) = {lcn(t)}N×C

to capture this information:

lcn =

{

1 If P c
BS · gc

n ≤ γ
0 Otherwise

(9)



The definition ofL(t) indicates whenever the multicast power
received by a SU exceeds the thresholdγ on a channel, this SU
can not use this channel for cooperative transmission.gc

n is the
propagation gain from BS to SUn on channelc.

Inequalities (6)-(8) capture the constraints regarding the
avoidance of potential interference generated by cooperative
communication. (6) shows that one SU can not be helped by
multiple SUs simultaneously via the same channel. To take full
advantage of the user diversity and channel reuse, we constrain
one cooperative transmission link can be allocated with at most
one channel in order to encourage more SUs to participate in
cooperative communication, represented by (7). (8) indicates
the incoming and outgoing transmissions on each SU can not
be performed on the same channel.

Now, we are ready to calculate SU throughput:

Un =
C

∑

c=1

BW · log
2
(1 +

P c
BS · gc

n

N c
n

) +
C

∑

c=1

N
∑

m=1

µc
mnωc

mn (10)

ωc
mn = min{ωmax,max{0,

Bm − Bn

T
}} (11)

BW and N c
n denote channel bandwidth and noise respec-

tively. ωc
mn represents the achievable cooperative transmission

rate from SUm to SU n on channelc with an upper bound
ωmax due to SU power constraint. It is also limited by the
amount of innovative data that SUm is able to contribute to
SU n. As network coding is employed and the packets are fully
random, we use(Bm − Bn)/T to represent this information,
whereBm denotes the amount of innovative data buffered at SU
m, and Bn indicates the same information at SUn. T is the
duration of one time slot, and we can setT = 1 without loss
of generality. (11) fully captures all the constraints regarding
ωc

mn, and we set the buffer of each SU is sufficiently large to
store at least one data segment.

Overall, the cooperative multicast scheduling in CRNs can
be formulated as a centralized optimization problem with the
objective (1), subject to constraints (2)-(11).

B. Optimization Solution

The formulated problem above is a non-linear integer pro-
gramming (NIP) problem, which is NP-hard. In the following,
we discuss problem linearization and usebranch-and-bound
algorithm to solve it withpolynomial complexity.

We first relax the binary indicatorsµc
mn into fractional values

in [0, 1]. Besides, it is important to linearize constraints (10)
and (9) which are not convex. To address this challenge, we
adopt Reformulation-Linearization Technique (RLT) [4], which
is used to produce LP relaxations for an underlying nonlinear,
non-convex programming problem by providing a tight upper
bound for a maximization problem. According to RLT, we
linearize the logarithmic relationship in (10) using polyhedral
outer approximation with several tangential supports [4].The
intuition on the approximation ofy = log(x) is shown in Fig. 2.

(9) contains a nonlinear relationship that couples power
control and channel allocation variables together. Essentially,
lcn in (9) constrains the value ofµc

mn, which is already relaxed
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into the fractional variable in[0, 1]. Accordingly, we can also
relax lcn into the range of[0, 1], and the value should depend
on multicast powerP c

BS . Intuitively, the larger power sensed by
SUs, the more likely the channel is occupied and can not be
allocated for cooperative transmission, and thuslcn should be
more like approaching to0, and vice versa. If the sensed power
is just around the thresholdγ/gc

n, it will be very ambiguous to
determine the availability of the corresponding channels.In this
case, we can relax the value oflcn to be around0.5. According
to the analysis above, we use the following linear constraints
for approximation, the intuition of which is shown in Fig. 3.

lcn ≥ − 1

P c

max

P c
BS + 1

lcn ≤ − 1

2γ/gc

n

P c
BS + 1

lcn ≤ − 0.5
P c

max
−γ/gc

n

(P c
BS − P c

max)

}

if
P c

max

2
≤ γ/gc

n < P c
max

lcn ≤ − 1

P c

max

P c
BS + 1

lcn ≥ − 1

2γ/gc

n

P c
BS + 1

lcn ≥ − 0.5
P c

max
−γ/gc

n

(P c
BS − P c

max)

}

if 0 < γ/gc
n <

P c
max

2

With linear relaxation, we now applybranch-and-bound
algorithm in our problem. Under this approach, we aim to
provide a(1− ǫ) optimal solution, whereǫ is a small positive
constant reflecting our desired accuracy in the final solution.
We first solve the LP relaxation and get the fractional solutions
µ̂c

mn and corresponding upper bound (UB) of the objective.
With this solution, we then use a local search algorithm to find
a feasible lower bound (LB) of the objective. In our problem,
we use randomized rounding on̂µc

mn to get LB, considering
the problem feasibility at the same time. IfLB ≥ (1 − ǫ)UB,
then we get the overall optimal solution. If not, we have to close
this gap by obtaining a tighter linear relaxation. This could be
achieved by selecting a partition variable with the maximum
relaxation errors and dividing its value set into two sets by
its value in the relaxation solution. In our problem, we choose
a µ̂c

mn with maximum value of relaxation error captured by
min{µ̂c

mn, 1− µ̂c
mn}, and divide the original problem into two

subproblems withµc
mn equal to0 and1 respectively.

For the two subproblems, we again solve the LP relaxation
and run local search to get their bounds:(UB2, LB2) and
(UB3, LB3). We updateUB = max{UB2, UB3} and LB =
max{LB2, LB3}. Then, if LB ≥ (1 − ǫ)UB, the entire pro-
cedure is terminated. Otherwise, we will iteratively repeat the
problem dividing until we get the optimal solution. During this
process, we remove any subproblemi when(1−ǫ)UBi ≤ LB.
It has been shown that under general conditions, a branch-and-
bound procedure always converges efficiently.



IV. M ULTICAST SCHEDULING WITH STOCHASTIC

LYAPUNOV OPTIMIZATION

The centralized protocol has some implementation problems.
It requires network condition information, such as propagation
gain on SUs, which cannot be precisely estimated in practical
systems, especially when SUs are mobile. Moreover, branch-
and-bound algorithm does not provide performance guarantees
over time and may have high complexity due to LP relaxation
and search. These problems may cause the centralized schedul-
ing infeasible or inefficient for practical use.

To address these challenges, we design an online scheduling,
including power control and channel allocation policies, based
on a stochastic optimization with realistic system settings with-
out the requirement of global knowledge of channel conditions.
Especially, we design a distributed algorithm for channel allo-
cation which can be performed efficiently in realistic systems
without linear approximation and search efforts. Via rigorous
analysis, we show that our stochastic multicast schedulingis
able to provide explicit over-time performance guarantees.

A. Stochastic Network Model with Practical Settings

Each SU involved in the multicast session collects data
and maintains a data buffer to store the data. As we employ
structured network coding, each SU is able to performpartially
decoding with a limited number of encoded blocks. The more
data a SU gets from the buffer, the more data groups can be
decoded and forwarded to upper layers, if a sufficient numberof
groups are applied in network coding. All SUs in the network
aregreedyand take off as much data as possible from the buffer
to upper layers for decoding and other processing.

Let Bn(t) be the amount of data in the buffer of SUn at time
slot t with upper bound asBmax. Rn(t) represents the rate that
SU n takes data off from the buffer at time slott. Clearly, it is
bounded bymin{Bn(t), Rmax}, whereRmax is the maximum
rate that can be achieved due to the computation and bandwidth
limit of SUs. Then, we have the following buffer dynamics:

Bn(t + 1) = max{Bn(t) − Rn(t), 0} + Mn(t)

+

C
∑

c=1

N
∑

m=1

µc
mn(t)Sc

n(t)ωc
mn(t). (12)

Mn(t) is the multicast throughput obtained directly from BS
at time slott for SU n, and

∑C
c=1

∑N
m=1

µc
mn(t)Sc

n(t)ωc
mn(t)

is the throughput it obtains from cooperative communication.
In the network, BS keeps on multicasting data, and we denote
rn as the time average throughput of SUn. Without loss of
generality, we have the following:

rn = lim
t→∞

1

t

t−1
∑

τ=0

Rn(τ) (13)

Let r = (r1, · · · , rN ) denote the rate vector on all SUs.
In multicast sessions, cooperative communication may gen-

erate interference to PUs. The examples are shown in Fig. 4,
where SU1 fails to detect the transmission that the access point
makes to PU1, and intends to utilize channel1 for cooperative
transmissions. Under this condition, a collision will occur and

data errors on PU1 will be generated. PU1 may also be affected
by the cooperative transmissions from SU3 to SU4. We define
the following variablesEc(t) to capture the total number of
such collisions caused by cooperative transmissions for each
PU:

Ec(t) =
N

∑

m=1

N
∑

n=1

µc
mn(t)Ic

m(t)
(

1 − Sc(t)
)

(14)

where Ic
m(t) is the binary variable indicating whether the

cooperative communication issued by SUm may generate
interference to PUc at time slot t. This information can be
captured by each SU according to the location information (if
PU c is in the transmission range of SUm, thenIc

m(t) = 1). It
is intuitive that the more interference incurred, the more severe
PUs would suffer from the packet loss. Letec denote the time
average rate of interference for PUc:

ec = lim
t→∞

1

t

t−1
∑

τ=0

Ec(τ) (15)

In the network, this interference information can be tracked
using interference queuesXc(t) for PUs, and all SUs are aware
of these queues. The interference on each PU can not exceed
a time average tolerant rateρc. Thus, we have the following
interference queue dynamics:

Xc(t + 1) = max{Xc(t) − ρc, 0} + Ec(t) (16)

1
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Fig. 4. Cooperative communication may generate interference to PUs.

Overall, we aim to maximize the aggregate throughput of
SUs over time under a fairness criteria (consistent with the
objective of centralized optimization (1)). Let{θ1, · · · , θN}
be a collection of positive weights, representing user priority
(fairness). Then, the multicast scheduling can be stated as:

max

N
∑

n=1

θnrn

subject to: (2) − (16). (17)

We seek to design a scheduling scheme with practical power
control and resource allocation by solving this problem.

B. Optimal Online Scheduling Policies

The online scheduling includes the following two policies
based on stochastic optimization:

(i) Power Control Policy: At each time slott, BS chooses
multicast power as the solution of the following problem:

max
N

∑

n=1

Rn(t)Mn(t)

subject to: (2), (3). (18)



(18) indicates that the optimal power control policy on BS
is to achieve the maximum aggregate throughput on all SUs
with regards to direct multicast transmissions from BS without
cooperative communication. With such convenience, it is easy
to see that (18) can be solved by using maximum feasible power
of BS to multicast data on each channel under interference
constraint (2) and (3). Thus, the power control policy can be
simplified as:

P c
BS(t) =

{

P c
max, if Sc(t) = 1,

min{P c
max, β/gc}, otherwise.

(ii) Channel Allocation Policy: Channel resources are allo-
cated as the solution of the following:

max
∑

n,m,c

µc
mn(t)(ωc

mn(t)Bn(t)Pc(t) − Xc(t)I
c
m(t)(1 − Pc(t)))

subject to: (4) − (8), (11). (19)

(19) is a LP and can be solved in polynomial time, though
this may require centralized control (feasible and practical in
cellular CRNs such as the one we work on in the paper).
We also propose a distributed solution for channel allocation,
and its discussion is deferred to Sec. IV-D. Note, (19) only
requires buffer, interference, and capacity information,which is
practically feasible. The SU data buffer and PU interference
queue will be updated after observing the outcome of this
allocation at the end of each time slot.

C. Performance Analysis

We now characterize the performance of our scheduling
policies with the following bounds:

(i) (Interference Performance) Initialize Xc(0) = 0,∀c. ∀t >
0, if Pc(t) < 1, set0 < ε < 1 andPc(t) ≤ 1−ε. Then the worst
case interference queue backlog for all PUs is upper bounded
by:

Xc(t) ≤ Xmax , Bmaxωmax(
1 − ε

ε
) + ⌊

N

2
⌋ ∀c (20)

Proof: Xc(0) = 0 < Xmax. Now, suppose thatXc(t) ≤
Xmax. We show the same holds forXc(t + 1). First, sup-
pose Pc(t) = 1. Then, there is no interference to PUc as
channelc is idle. Thus, we haveXc(t + 1) ≤ Xmax from
(16) asEc(t) = 0. Next, supposePc(t) < 1, and we have
two cases. (a) Xc(t) ≤ Xmax − ⌊N

2
⌋. ⌊N

2
⌋ represents the

maximum number of cooperative transmission links in the
network, which is also the maximum value ofEc(t). Under
this case,Xc(t + 1) ≤ Xmax. (b) Xc(t) > Xmax − ⌊N

2
⌋ =

Bmaxωmax( 1−ε
ε ). Then,Xc(t)ε > Bmaxωmax(1− ε). Further,

Xc(t)(1 − Pc(t)) > BmaxωmaxPc(t). If Ic
m(t) = 1, according

to our channel allocationpolicy, µc
mn = 0,∀m,n, which

means there is no cooperative communication on channelc.
If Ic

m(t) = 0, the transmissions from all SUs can not reach
PU c. Thus, no interference will be generated to it. Hence,
Xc(t + 1) ≤ Xc(t) ≤ Xmax. Overall, (20) is proved.

(ii) (Utility performance) Initialize Bn(0) = 0,∀n. The time
average throughput utility achieved by our protocol is within
B̃/V of the optimal value:

lim
t→∞

inf
1

t

t−1
∑

τ=0

N
∑

n=1

θnE
{

Rn(τ)
}

≥

N
∑

n=1

θnr∗n −
B̃

V
(21)

where r∗n is the optimal solution (maximum achievable rates)
of stochastic problem (17), andV, B̃ > 0 are constants.

We use the technique ofStochastic Lyapunov Optimization
to prove it. Let Q(t) = (Q1(t), · · · , QK(t)) be a vector of
queue lengths for a discrete time stochastic queueing network.
Let W (Q) be any non-negative scalar valued function of the
queue lengths, called a Lyapunov function. Define theLyapunov
drift ∆(t) as follows:

∆(t) , E
{

W (Q(t + 1)) − W (Q(t))
}

(22)

The network accumulatesutility every time slot, with bounded
value. We have the stochastic processf(t) to represent the
utility earning during time slott with optimal valuef∗.

Theorem 1:Suppose there exist finite constantsV > 0, B̃ >
0, d > 0, and a non-negative functionW (Q) such that
E{W (Q(d))} < ∞. For every time slott > d, if the Lyapunov
drift satisfies:

∆(t) − V E{f(t)} ≤ B̃ − V f∗ (23)

then we have:

lim
t→∞

inf
1

t

t−1
∑

τ=0

E
{

f(τ)
}

≥ f∗ −
B̃

V
(24)

Proof: Refer to [5].
In our stochastic multicast scheduling problem,

Q(t) = (B1(t), · · · , BN (t),X1(t), · · · ,XC(t)) including
the data buffer queues and interference queues. Let
f(t) ,

∑N
n=1

θnRn(t) be the aggregated throughput utility
at each time slot according to the objective of problem (17).
Thus,f∗ ,

∑N
n=1

θnr∗n. Then, we further define the Lyapunov
function as follows:

W (Q(t)) ,
1

2

(

N
∑

n=1

(

Bn(t)
)2

+

C
∑

c=1

(

Xc(t)
)2

)

Now, we calculate the Lyapunov drift as follows:

∆(t) ≤ B − E

{

N
∑

n=1

Rn(t)
(

Bn(t) + Mn(t)
)

+

Rn(t)

C
∑

c=1

N
∑

m=1

µc
mn(t)Sc(t)ω

c
mn(t)

}

−

E

{

C
∑

c=1

Xc(t)(ρc − Ec(t))
}

(25)

where B , 1

2
(N(Bmax + Tmax)2 +

∑C
c=1

(ρc)
2 + C), and

Tmax is the upper bound of the throughput on each SU at each
time slot due to the buffer constraint and network capacity.

Now we subtractV E{
∑N

n=1
θnRn(t)} from both sides of

the drift inequality (25) and use (14) to obtain:

∆(t) − V E

{

N
∑

n=1

θnRn(t)
}

≤ B −
C

∑

c=1

ρcE

{

Xc(t)
}



−E

{

N
∑

n=1

Rn(t)(Bn(t) + V θn)
}

− E

{

N
∑

n=1

Rn(t)Mn(t)
}

− E

{

∑

m,n,c

µc
mn(t)

(

ωc
mn(t)Bn(t)Sc(t)

− Xc(t)I
c
m(t)(1 − Sc(t))

)}

(26)

The last two terms of inequality (26) above are exactly our
scheduling policies stated in Sec. IV-B (replaceSc(t) asPc(t)
by considering the sensing errors; it is necessary to consider
it especially in the distributed algorithms without accurate
sensing). Note the direct multicast rate from BS is dominantin
the aggregate throughput on SUs. Thus, we can optimize the last
two terms separately although they have common constraints. It
is clear to see that our online scheduling policies minimizethe
right side of inequality (26) over all alternate feasible scheduling
policies that can be made at each time slot.

We now define the stationary, randomized policySR, that
chooses a feasible power control and channel allocation
MSR

n (t), µc,SR
mn (t) at every time slot as a function of only the

channel state informationS(t) andP(t), which will yield the
following steady state values:

E{RSR
n (t)} = r∗n (27)

eSR
c , lim

t→∞

t−1
∑

τ=0

E{ESR
c (τ)} ≤ ρc (28)

Note our online scheduling policies minimize the right side
of (26) including this stationary, randomized policy [6]. Using
all facts above, we can show that:

∆(t) − V E{f(t)} ≤ B − E
{

N
∑

n=1

RSR
n (t)

(

Bn(t) + Tn(t)
)}

−E
{

C
∑

c=1

Xc(t)
(

ρc − ESR
c (t)

)}

− V f∗ (29)

Finally, we get the following result by usingdelayedqueue
backlogs and properties of Markov process (refer to the ap-
pendix in [7] for proof):

∆(t) − V E

{

N
∑

n=1

θnRn(t)
}

≤ B̃ − V

N
∑

n=1

θnr∗n

This form fits (23). Thus, applying Theorem 1 proves (21).

D. Efficient Implementation

In this section, we seek to solve channel allocation problem
stated in (19), with practically efficient implementation.We
observe, without considering (8), (19) can be formulated into a
maximum weighted bipartite matching (WBM) problem which
can be solvedoptimally with polynomial time complexity.

Construct a bipartite graphA = (Φ×χ,E). The vertices inΦ
denote all the possible cooperative links (e.g.(1, 2) indicates the
transmission link from SU1 to SU 2. Note it is different from
(2, 1), which represents the transmission link from SU2 to SU
1). The set of channels for cooperative transmissions is denoted

by the vertex setχ. The edge setE corresponds to|Φ| × |χ|
edges connecting all possible pairs. The weight of each edge
carrieswc

mn = ωc
mn(t)Bn(t)Pc(t) − Xc(t)I

c
m(t)(1 − Pc(t)).

Before solving WBM, we exclude all pairs connecting(m,n)
in Φ andc in χ if hc

m(t)·hc
n(t)·lcm(t)·lcn(t) ≤ 0, which indicates

the channel is already occupied according to constraint (4)and
(5). We also exclude vertices(m,n) if SU m is not within the
transmission range of SUn.

According to constraint (7), one SU can not accept coop-
erative transmission from multiple SUs on the same chan-
nel. Thus, we can solve the WBM problem in groups. Each
group includes all links with the same destination,e.g.,
(1, 1), (2, 1), · · · , (N, 1). We denote the set of vertices with
destination SUn as Φn, and |Φn| may be not equal to|χ|.
Then, we patch void vertices toΦn or χ to make|Φn| = |χ|.
If an edge connects any void node, its weight is set to be zero.

Given the above graphical setup, channel allocation problem
can be solved by solving WBM problems for all groups, getting
all the matched pairs((m,n), c). The intuition is shown in
Fig. 5. Now we consider the constraint (8) which we have
previously ignored. Solving the WBM problem stated above
may violate this constraint if the same channel is assigned for
both uplink and downlink communication on the same SU. In
the network, SUs are greedy and selfish, and they always prefer
incoming traffic (get help from others) rather than outgoing
traffic (helping others). Thus, we allocate channels according
to this policy when (8) is violated. The WBM problem can be
solved in a centralized fashion using network flow algorithms
[8]. To be efficiently implemented in realistic systems, we
design a distributed algorithm, stated inAlgorithm 2 , based
on the WBM formulation and selfish policy.

We perform a set of simulations to specifically evaluate
our distributed algorithm. From the results, we observe the
distributed algorithm is able toconverge within 3 rounds in
average, which is faster than centralized approach by a 20%
gain, and thus suitable in real world environment. It also
achieves good throughput and fairness performance, close to
the optimal centralized approach for solving WBM problem,
within only 7% difference. We further elaborate the evaluation
in the Sec. V.

(1,n)

(2,n)

(3,n)

... ...

1

2

3

C

... ...

χ

Void Vertices
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Φn

w
c

mn

(N,n)

... ...

... ...

Fig. 5. Solving the channel allocation problem using maximum weighted
bipartite matching algorithm.

V. PERFORMANCEEVALUATION

We are now ready to resort to extensive simulations to
study the performance of our cooperative multicast scheduling
protocols with network coding. To be realistic, practical settings



Algorithm 1 Distributed Algorithm for Channel Allocation
Each SUn carries out the following steps:
1. Senses channels at the beginning of each time slot, and get

the channel availability information.
2. Broadcasts its buffer information on available channels(in-

terference informationXc(t) is known by all SUs).
3. Solves WBM(Φn × χ,E) according to channel availability,

and buffer and interference information.
4. If a vertex(m,n) in Φn and a vertexc in χ are matched,

sendshelping requests to SUm on the channelc.
5. Collects all messages sent by its neighbors.
6. Upon receiving ahelping request from SUm on channelc

- if it did not send anyhelping request to other SUs on
channelc (no matching on channelc in WBM), then sends
an agreemessage back to SUm.

- if it sent a request to any other SU on channelc (there is
matching on channelc in WBM), then just stores thishelping
message.

7. Upon receiving anagree reply from SU m on channelc,
it knows SU m agrees to provide help on channelc, and
sendsdrop messages to all other SUs who requesthelpingon
channelc. The transmission from SUm to SU n is allowed,
and setµc

mn = 1.
8. Upon receiving adrop message from SUm on channelc,

it knows channelc is used by SUm, and excludes the link
(m,n) → c in its bipartite graph.

9. If it has no free neighbors or no available links in its bipartite
matching graph, no further action is taken. Otherwise, it will
repeat step (3)-(7).

TABLE I
SIMULATION PARAMETERS.

Channel Type Rayleigh fading and AWGN
Transmitter Power (BS) 25 dBm
Transmitter Power (SU) 5 dBm

Noise Power -129.5 dBW
Adaptive Modulation used

of a CRN, as summarized in Table. I, are adopted according
to the IEEE 802.22 draft [9]. A total of10 PUs reside in
the service area, while a number of SUs move randomly
with randomly initial locations. The channel availabilitystate
evolves according to a Markov chain with symmetric transition
probabilities between the ON and OFF states given by0.5.

To evaluate the performance, we compare four multicast
scheduling protocols: (i) Centralized cooperative scheduling
following the design in Sec. III, referred to as “Centralized.” (ii)
Our online cooperative scheduling with distributed implementa-
tion based on the design in Sec. IV, referred to as “Distributed.”
(iii) Multicast scheduling with power control according tothe
policy stated in Sec. IV-B, but without cooperative communi-
cation, referred to as “NOCoop.” and (iv) Multicast scheduling
with no power control nor cooperative communication, referred
to as “NOPower,” where multicast is only performed when
commonly available channels exist for all SUs in the network,
and is provisioned with maximum feasible power.

We first examine the throughput performance. Fig. 6 shows
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Fig. 6. Average throughput per-
formance of all protocols in realistic
CRN scenarios.
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Fig. 7. Throughput performance of
all protocols with different numbers
of SUs, which represent the degree of
possible cooperation among SUs.

the resultsfor a total of60 SUs via a 15000-second simulation,
with the algorithms running every 30 seconds. We observe that
“Centralized” performs the best, and outperforms “NOCoop”
and “NOPower” by 40% and 60%, respectively, on average.
“Distributed” also outperforms “NOCoop” and “NOPower,”
with 35% and 53% gains on average, respectively. Such a
throughput advantage should be considered substantial by any
standard. It coincides with our intuition that multicast schedul-
ing with cooperative communication, power control, network
coding, and other important cross-layer designs naturallyfits
in the design of CRNs, and is able to achieve significant
throughput improvement due to its effective use of wireless
spectrum. From the results, we also observe that “Centralized”
and “Distributed” perform close to each other (within a 5%
difference), which indicates that our decentralized scheduling
based on stochastic optimization is efficient and near-optimal.
Another trend to notice is that the average throughput is slowly
decreasing over time. The reason is that our objective takes
fairness into account, which makes the optimization favor a
“slower” SU as time goes.

Next, we specifically investigate the benefits and impact of
cooperative communication. Fig. 7 shows the average through-
put performance as a function of the number of active SUs.
Evidently, the margin that “Centralized” and “Distributed” out-
perform “NOCoop” and “NOPower” becomes more substantial
as the number of SUs increases. This observation indicates that
a larger number of SUs creates a higher degree of cooperation
which is beneficial for the performance. However, when the
number of SUs becomes overly large, throughput degrades since
the interference effect begins to dominate.

Regarding the fairness and delay performance, we further
examine the variance of the average throughput over SUs. At
each time slott, we calculate, for each SU, the average through-
put over time horizon[1, t], and then compute the throughput
variance, which is the ratio between standard deviation of the
time average throughput and the time average throughput itself.
Fig. 8 plots the CDF of this metric for a total of60 SUs in the
network. Not surprisingly, both “Centralized” and “Distributed”
outperform “NOCoop” and “NOPower,” which shows that our
protocols are able to achieve good fairness performance in the
multicast service. This result also indicates that our protocols
are helpful to decrease the delay on the SUs, who do not have
spectrum resources and can not get data directly from BS.
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Fig. 9. Evaluation of interference
on PUs, which remains stable and
bounded in our protocols.

Finally, we examine the interference on PUs. Fig. 9 captures
the average interference queue length on all PUs. It clearly
shows that the interference level remains bounded over the long
term, which is desirable in the system design.

In closing, we comment on the protocol overhead. As the
BS has no constraints on energy and computational power,
we are only concerned with the computation overhead at SUs.
Nowadays, a mobile device such as a cellphone has sufficient
memory cache and strong computation capability. Accordingto
the results in [10], random network coding performs efficiently
on the iPhone family of mobile devices in a realistic P2P
streaming scenario. As we studied, our proposed protocols are
in low complexity, and our extensive simulation shows that
proposed algorithms have an average running time of less than
1 ms (over Intel Core Duo machine running at1.83 GHz and a
memory of2 GB), and are therefore suitable for typical WiMAX
with scheduling durations of5-10 ms.

VI. RELATED WORK

Cognitive radio is a revolution in radio technology to ef-
ficiently utilize the wireless spectrum. IEEE 802.22 [9] is
the first standardization effort to define cognitive radio and
so far has drawn much research attention in both academia
and industry. Dynamic spectrum access [11] is one of the
key issues in CRNs and has driven most of the CR research.
[5] develops an opportunistic spectrum access framework for
CRNs that maximizes SU aggregate throughput. [12] and [13]
study the dynamic access issues in ad hoc mode of CRNs,
where scheduling and routing are jointly considered. Our work
adopts similar network models with previous work for dynamic
spectrum access.

Other than most concerns of previous studies, our paper
focuses on multicast scheduling in CRNs, which is more chal-
lenging but has been scantly investigated so far. [14] proposes
an energy-efficient multicast scheduling in CRNs, but it is still
restricted in single-hop transmission mode without cross-layer
designs and works in different network settings. Another impor-
tant work regarding this is [15] that proposes a video multicast
protocol in CRNs. Our work differs from it in several aspects.
First, [15] only focuses on multicast in one cell, and assumes all
SUs and PUs are within the transmission range of each other.
Our protocols are tightly integrated with the design of CRNsand
work in more realistic scenarios with multiple PU cells in a wide
area. Second, our protocols employ power control, cooperative
communication, and network coding in multicast scheduling.

Third, we have cross-layer designs considering the important
issues in CRNs. Last but not least, we design our protocols
based on both greedy and stochastic optimization frameworks
with both centralized and decentralized implementations.

VII. C ONCLUDING REMARKS

In this paper, we have studied multicast scheduling in CRNs.
The main challenge is due to the dynamic spectrum availability
and diverse channel conditions on SUs. We proposemulti-
hop multicast protocols, tightly integrated with the design of
CRNs, by employing techniques of power control, cooperative
communication, and network coding. We have jointly consid-
ered primary user protection, relay assignment, QoS guarantees,
and buffer management. Our protocols fully exploit multicast
opportunities and incorporate user, channel, and cooperative
diversities. They are designed based on a sound theoretical
foundation using centralized greedy optimization and stochastic
Lyapunov optimization, but not without careful considerations
of the practicality, feasibility, and efficiency of implementing
these solutions. With this paper, we are convinced that multicast
performance can be significantly improved in CRNs with the
effective use of scarce wireless spectrum, by applying power
control, cooperative communication and network coding.
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