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Abstract—Cognitive Radio Networks (CRNs) have recently commonly available channel for all subscribers. Essdwptial
emerged as a promising technology to improve spectrum utilization multicast is performed in aingle-hop fashion. This works

by allowing secondary users to dynamically access idle primary || jn existing cellular networks, where channel assigntne
channels. As progress are made and computationally powerful.

wireless devices are proliferated, there is a compelling need of cgntrally managed by BS. Sgch“strategy, however, does
enabling multicast services for secondary users. Thus, it is crucialnOt fit to CRNs, as channel availability on secondary users
to design an efficient multicast scheduling protocol in CRNs. How- (SUs) is opportunisticand highly dynamicdue to the bursty
ever, state-of-the-art multicast scheduling protocols are not ®fl ysage by primary users (PUs) and SU mobility. Fig. 1 shows
designed for CRNs. First, due to primary channel dynamics and 5 jj|ystrative example where a CRN consisting of four PUs,

user mobility, there may not exist commonly available channels for _. . . .
secondary users, which inevitably makes the multicast schedulings'x SUs, and one base station (BS) that is responsible for

infeasible. Second, the potential benefits provided by user andmulticasting data to SUs. PUs can communicate with their

channel diversities are overlooked, which leads to under-utilizatio respective access points over their own licensed chanhels.

of the scarce wireless bandwidth. contrast, BS and SUs do not have such resources and can only
In this paper, we present an optimization framework for mul- - 550 rtynistically use the idle spectrum for multicast &zes.

ticast scheduling in CRNSs, by fully embracing its characteristics. . . .
In this framework, base station multicasts data to asubset of According to convectional scheduling protocols, multicas

secondary users first by carefully tuning the power. Concurrenly, @ Certain chanr_lel is i_nfeasible if the channel is o_ccupie.d by
secondary users opportunistically perform cooperative transris- any PU to avoid the interference to PUs, as BS is designed

sions using locally idle primary channels, in order to mitigate to use full power to multicast data globally to cover all SUs
multicast loss and delay effects. Network coding is adopted duringj, gne hop (represented by the outer solid circle from BS in

the transmissions to reduce overhead and perform error contrb Fig. 1). Obviously. current protocols are missing the bufk o
and recovery. We jointly consider important design factors in 9. 1). Y P 9

our scheduling protocols, including power control, relay assign- OPpPOrtunities to exploit the spectrum holes.
ment, buffer management, dynamic spectrum access, primary
user protection, and fairness. We also incorporate user, chanhe
and cooperative diversities. Two forms of multicast scheduling Channel4
protocols in CRNs are proposed accordingly: (i) agreedy protocol n
based on centralized optimization; (i) anonline protocol based

on stochastic optimization in both centralized and decentralized

manners. With rigorous analysis based on Lyapunov optimization,

we provide closed-form bounds to characterize the performance

of our protocols, in terms of the interference to primary users ard

throughput utility of secondary users. With extensive simulations S
we show that our proposed protocols can significantly improve the Access Point
multicast performance in CRNs.

Primary User

I. INTRODUCTION @

Cognitive radio networks (CRNs) have emerged as a promis-  Secondary User
ing technology to improve spectrum utilization, by allogin

dynamic spectrum access (DSA). With the proliferation of

owerful cognitive wireless devices, as well as the surgthef e ) - ”
P 9 g IWork to optimize multicast performance by efficiently wifig

demand on service varieties and qualities, there is a cdimge - X
d channel resources. Rather than confining to the single-hop

need for enabling multicast services in CRNSs to furtherdas;irv,[r dition. we advocate that multicast should b rformed i
its potential. Thus, it is crucial to design an efficient rruast adition, we advocate that multicast sholid be periorme

scheduling protocol in CRN. a multi _ho_pfashlon, with power control at BS _and_cooperatlve
. . ; ransmissions among SUs. The key observation is that, the se
Existing multicast scheduling protocols are hobbled by t . . : .
! . 2 of accessible channels for different SUs are different dejey
holdover from cellular networks: their insistence on using : . o
on their locations. For example in Fig. 1, Sltan use channel

This work is supported by NSERC Discovery, CRD and Stratégjiants 2, 3*_and 4 §|nce it Only re_3|des n the_serwce are_a Qf PU
(RGPIN 238994-06, CRDPJ 379623-08, STPGP 364910-08). 1. With multi-hop multicasting, the requirement of finding a

Fig. 1. An illustrative example on multicast scheduling in GRN

In this paper, we present a novel multicast scheduling frame



globally available channel for all SUs is relaxed. BS and Sthe potential benefits above, considering important clagsr
only need to use channels that dogally accessible within design factors including BS power control, relay assignimen
one hop, providing abundant transmission opportunitieth wiooperative communication, QoS guarantee, dynamic spactr
channel reuse and thus largely improving the performance.access, licensed user protection, buffer management, end r

Specifica”y’ in our framework, BS Carefu”y tunes the mulpource allocation. Our contributions are three fold: (I) We
cast transmission power to feasibly transmit data to a sut¥epose agreedycentralized multicast scheduling. (ii) We de-
of SUs. Concurrently, to mitigate multicast loss and delgign anonline multicast scheduling protocol based on stochas-
on SUs who can not get data directly from BS, cooperati@ Lyapunov optimization, and characterize their perfance
communication is applied via locally available channelg. B guarantees in terms of throughput utility and interferetwe
shows the intuition. When all channels are occupied by PB¥s. (iii) We develop an efficient scheme for implementing
BS uses a smaller power to multicast data in the conseqllgntghannel allocation in our online multicast scheduling llase
smaller region (the inner circle from BS in Fig. 1). In then maximum weighted bipartite matching algorithm. It can be
multicast area, channel is used for multicasting as it isPerformed in both centralized and distributed fashion Wwhg
available for every SU involved. At the same time, $lielps Practical in realistic systems. To the best of our knowledge
SU 4 through cooperative transmission via chanfelhich this is the first work studying cooperative multicast schiedu
is available for both of them. Further, SW uses channelin CRNs. Our proposed protocols are analyzed theoretically
3 to Coordinate|y he|p SU5, who can not get data fronﬁ.nd evaluated via extensive simulations which show sutiatan
any connection. Although there may exist commonly avadaterformance improvement.
channels for all SUs in the whole service area (some PUs aréhe remainder of the paper is organized as follows. In
idle), such power control and cooperative communicatian &ec. I, we present the network model and multicast settimgs

able to create more opportunities for using spectrum hole&Ns. In Sec. Ill, we present our greedy centralized mudtica
achieving higher channel utilization. scheduling protocol. In Sec. IV, we describe our realistic

Cooperative communication can be performed even witfiylticast scheduling protocol based on stochastic opétiua
the multicast area, as long as the channels other than tiy&Performance analysis. We conduct extensive simulatio

being used by BS for multicast are commonly available ﬁyaluate the performance of our proposed protocols instéali

the involved SUs. Such cooperation is beneficial with diegrsCRN Scenarios in Sec. V. In Sec. VI, we review related work

gains as different downlink SUs experience different cleanfT CRNS. Finally, we conclude our paper in Sec. VII.
conditions, especially when user mobility is consideredthe ||, M opELS ONMULTICAST SCHEDULING FRAMEWORK
example, SW2 and SU3 can be served by BS as well as $U

. . . : Wi nsider RN consistin PUs, N nd on
at the same time, who is much closer to BS. Intuitively, vess| e consider a C consisting @ PUs, N SUs and one

. - . BS in the same fashion as in Fig. 1. Each PU has a unique

channels_ are (_affecfuyely utilized by exploiting user, aheinand licensed channel to communicate with its access point, and

cooperative diversities. ] o ] all C' channels are orthogonal supported by OFDMA. PUs
The bad news, however, is that it is challenging to schedylg static with fixed positions, while SUs can be mobile and

transmissions in a Cooperqtlye fashion. SUs that E_ll’e m'gfbportunistically utilize the idle spectrum. Such oppniﬁes

as relays do not have sufficient knowledge on which packgts commonly called “spectrum holes.” The entire network

their neighbors need. Blindly “pushing” packets that aré ngherates in a time-slotted fashion, where channel comditimd

useful to other Sps will incur a substantial dggree of ova(hq.jser actions remain the same during a given time slot, and var
and thus be detrimental for data recovery with losses, "@qhdependently from one time slot to another.

to dramatic degradation of multicast performance_. To afdre | ot S(t) = {S.(t)}c represent the channel states on each
these challenges, we propose to empi@gwork codingn the time slot¢, whereS,(t) is a binary value capturing the channel
transmission, which has emerged as one of the most PromiginGiability. S.(¢t) = 0 means channet is occupied by PU
information theoretic approaches to improve throughput pg otherwise, S, (t) = 1. We assume the channel availability
formance, especially in wireless networks [1]. With netogiate process(t) evolves according to a finite state ergodic
coding, all packets are encoded with random linear codes, gyrkoy chain. Within a time slot, a SU can access a subset
all coded data blocks could be considered equally useful @dne |icensed channels potentially depending on its atrre

innovative. With the data fully mixed, relays can freely §0 |ocation. This information is concisely represented by reaby
innovative blocks, and receivers only need to “hold” a “bettk -hannel accessibility matrifI(t) = {hS (t)} xxc Where:

and collect all useful data without dictating which paclesfrom
which source. Further, we impose structure in the coeffisien he (1) = { 1 If SUn can access channel
encode data [2], with which the receivers are able to pitial " 0 Otherwise

decode the important data even with a subset of all blocksyote the mobility process of SUs is independent of channel
Intuitively, network coding can help to mitigate the oveatle availability. Channel availability information for SUs rebe
significantly and effectively perform error control and eeery. described by a probability vect®(t) = { P.(t)}c whereP,(t)

The salient highlight of our contributions in this paper is the probability that channel is available. This information
a novel CR multicast scheduling framework to exploit athn be obtained via spectrum sensing or prediction acaptdin



traffic statistics. Assume BS can precisely sense the spectr I1l. GREEDY COOPERATIVE SCHEDULING

with ultra-sensitive CRs. Intuitively, the clos#(t) is to S(t) |y this section, we present a greedy centralized multicast

(better techniques employed), the smaller interferenae dan gchequling protocol to perform optimization at each timat, s

be potentially generated to PUs. so that the overall performance is optimized in the long term
BS does not have the authority to access licensed spect8nThe problem is trivially decomposed to each time slot.

and opportunistically utilizes “spectrum holes” to mudtit ) o

data to SUs on available channels with tunable power. In fheCentralized Optimization Framework

multicast sessions, BS holds all the original data, andragg®m = We consider proportional fairness in the centralized opti-

the data into segments. A data segment is further dividesd imiization framework, which is able to strike a good balance

n blockswith fixed size. We can easily compute the numbleetween utilization and fairness [3]. The objective cantagesl

of blocks in one segment if the segment size is pre-detexniras follows:

The BS further separates these blocks into a series gfoups, a U,

Xy, X (X4 € --- C X)), according to data priority, Prgg,% E @

where X is the most important set of data, followed B, n=t

etc Accordingly, the data blocks are encoded $tyuctured  Un represents throughput on SUT, is the average through-

network Cod|ng[2] by imposing structure in the Coefﬁcientﬁ)ut that SUn ObtainS over pl‘eViOUS t|me SIOtS, and |t bl’il’lgS

according to data priority. Random coefficients are embeddfee proportional fairness to the objectivBps = {Pgstc

in the transmitted blocks used for decoding at the receivél@notes the multicast power used on each channel from BS.

Essentially, each coded block is a linear combination oft@se® = {17} Nnxc is the set of feasible channel assignments,

original blocks, and all linearly independent blocks arealy Whereys,,, is the binary function capturing the assignment of

innovative. In this way, a virtually unlimited number of i channelc to the cooperative transmission link from Sb to

blocks can be generated, referred tora®lessproperty. SU n. Pggs and © represent the power control and resource

Evolved in the multicast service, all SUs not only receivtadgnoca“(:n pohclles Whlcf|1t_ Wet seikdtol_ Opt'm'fe 6}”1 are dthe
directly from BS but also get help from others if cooperatitf{ﬁ?r?]ers otnes ko ogr Imu |<;]as Sti] ef u”|ng_ pro ocot. . irmy
opportunities exist. When serving as a relay, SU encodes Qfne network model, we have the following constraints:

the received blocks and sends the recoded blocks which are Pgs < PS.. Ve (2)
still linear combinations of the original blocks [2]. Acaling Poe-g°- S, < B v 3)
H BS g c > (&

to the property of structured network coding, SUs can have a ) T
high probability of decoding the data groups with high gties P < P Higy < iy vm,n, c (4)
using Gaussian Eliminationeven with only a portion of the Hn < Uy i, < 1, Vm,n,c (5)
whole data [2]. To support cooperative transmission, Sls ar N
equipped with multiple radios which can perform concurrent 0< Z P < 1 Vn,c (6)
transmissions via separate channels. Note only a small @umb m=1
of radios are required which is practical in realistic sysie ¢
This is because the distribution of SUs is sparse and dynamic 0< Y <1 vm,n (7
and thus the probability that multiple SUs are within the C?Vl N
interference regions of each other is very low. . c

Essentially, BS tunes the power to reach a limited number of 0= mzzjl Hmn 2;1 Mt <11, ®

SUs, and SUs help with each other in a local neighborhood. The N ) }

multicast data thus are propagated via multi-hop dissetioima n€qualities (2) and (3) describe the constraints on power
with network coding efficiently. The objective of our mubigt control. (2) shows that thg power used on each channellhas an
scheduling is to find the optimal power control policy on BS, 4PPer bound’y,,.. To avoid interference to PUs, the multicast
well as the most efficient cooperative communication scleed?OWer received by PUs on each channel should not exceed the
to maximize the aggregate throughput on all SUs undefolerant levels, if the corr_espondmg chann_el is being use_d. 3)
fairess criteria. To achieve this objective and meet al fXPresses these constraints, where (0, 1] is the propagation
requirements described above, there are a number of chaiefain from BS to PUc.

including but not only limited to the following: Ir_neql_J_aIities (4) and _(5) represen_t th_e constraints on atlann
availability for cooperative communication. (4) showsttb@op-

> How to design the scheduling protocol to jointly optimizgrative communication is constrained by the channel aviitha
the power control and cooperative communication?  on each SU represented B¥(t). (5) shows the constraint im-
> Can the optimized scheduling protocol be practically fegosed by the channel availability with regards to multi¢eests-
sible and be implemented in a distributed fashion? mission from BS. Similar td(t), we useL(t) = {IS(t)}nxc
> Can PUs be effectively protected in CRNs? to capture this information:

Our responses to these challenges constitute the flow of e _ 1 If Pig-g5 <~ 9
presentation in this paper. n 1 0 Otherwise ©)



The definition ofLi(t) indicates whenever the multicast power, - Ine
received by a SU exceeds the threshpldn a channel, this SU
can not use this channel for cooperative transmissjpris the , :
propagation gain from BS to SW on channek. /” S| y Vo o Phs

Inequalities (6)-(8) capture the constraints regarding th | -/, <> coccmeany | Y\‘\\
avoidance of potential interference generated by coogerat orlh Tmex T o 05 ==
communication. (6) shows that one SU can not be helped b o o _ /9 _ Pruw Ths

. . . ig. 2. Intuition on linearization for Fig. 3. Intuition on linearization of
multiple SUs simultaneously via the same channel. To take ﬁ,g;

g . rithmic relationship, which uses &onstraint (9).
advantage of the user diversity and channel reuse, we aimstsur-point tangential approximation.

one cooperative transmission link can be allocated With(mtmnto the fractional variable ifi0, 1]. Accordingly, we can also
one char_mel in order_ to encourage more SUs o parti_cip_atgeﬁgx I¢ into the range ofl0, 1],’and the value should depend
cooperative communication, repre_ser?ted by (7). (8) ind&gy,  iticast powelPs ¢. Intuitively, the larger power sensed by
the incoming and outgoing transmissions on each SU can §8t5, the more likely the channel is occupied and can not be
be performed on the same channel. allocated for cooperative transmission, and thfishould be
Now, we are ready to calculate SU throughput: more like approaching t0, and vice versa. If the sensed power

RS 0.5

c P gt ¢ N is just around the thresholg/g¢, it will be very ambiguous to
U, =Y BW -logy(l + )+ >3 1w, (10) determine the availability of the corresponding chanrlelshis

e=1 " e=1m=1 case, we can relax the value ijf to be around).5. According
W = min{wmas, max{0, B — Bn}} 11) to the ana_lysis_ above,_we_L_Jse the f(_)llov_ving Iinea_r cqnsﬂsain

T for approximation, the intuition of which is shown in Fig. 3.
BW and N¢ denote channel bandwidth and noise respét—> f%PgS +1 .
tively. w¢,,, represents the achievable cooperative transmisgiorr —_ 1 pe | 1 i Phas <~/¢¢ < PE
K n — 2v/gc * BS D) =7/ max

rate from SUm to SUn on channelc with an upper bound;c . _ b.5 (P%g — PS.0)
Wmas due to SU power constraint. It is also limited by thd ~  Thas=7/92°" B e
amount of innovative data that Stk is able to contribute to ¢ < fP%Pﬁs +1 pe
SU n. As network coding is employed and the .pa_ckets are fulkﬁ > _w%pés +1 if 0 < ~/g¢ < —maz
random, we us€B,, — B,,)/T to represent this information, > _ 6.5 (P&g — PC. ) 2
whereB,, denotes the amount of innovative data buffered at SU —  Drax—7/97 " BS 7 maz

m, and B,, indicates the same information at SU T is the ~ With linear relaxation, we now applyranch-and-bound
duration of one time slot, and we can $et= 1 without loss algorithm in our problem. Under this approach, we aim to
of generality. (11) fully captures all the constraints mefjag provide a(1 — ¢) optimal solution, wherer is a small positive
we,,, and we set the buffer of each SU is sufficiently large genstant reflecting our desired accuracy in the final salutio
store at least one data segment. We first solve the LP relaxation and get the fractional sohi
Overall, the cooperative multicast scheduling in CRNs caf, and corresponding upper bount B) of the objective.

be formulated as a centralized optimization problem with tWith this solution, we then use a local search algorithm td fin

objective (1), subject to constraints (2)-(11). a feasible lower boundL(B) of the objective. In our problem,
o ) we use randomized rounding qYf,,, to get LB, considering
B. Optimization Solution the problem feasibility at the same time.IfB > (1 — ¢)UB,

The formulated problem above is a non-linear integer pthen we get the overall optimal solution. If not, we have tusel
gramming (NIP) problem, which is NP-hard. In the followinghis gap by obtaining a tighter linear relaxation. This cbhé
we discuss problem linearization and usench-and-bound achieved by selecting a partition variable with the maximum
algorithm to solve it withpolynomial complexity. relaxation errors and dividing its value set into two sets by

We first relax the binary indicators;,,, into fractional values its value in the relaxation solution. In our problem, we cé®o
in [0,1]. Besides, it is important to linearize constraints (18):¢,, with maximum value of relaxation error captured by
and (9) which are not convex. To address this challenge, m{/¢,,,,1 — i¢,,.}, and divide the original problem into two
adopt Reformulation-Linearization Technique (RLT) [4}hieh subproblems with.¢,, equal to0 and1 respectively.
is used to produce LP relaxations for an underlying nontinea For the two subproblems, we again solve the LP relaxation
non-convex programming problem by providing a tight uppand run local search to get their bound&/ B, LB2) and
bound for a maximization problem. According to RLT, wéJBs, LBs). We updateU B = max{UB,,UB3} and LB =
linearize the logarithmic relationship in (10) using padginal max{LB>, LBs}. Then, if LB > (1 — ¢)UB, the entire pro-
outer approximation with several tangential supports T#je cedure is terminated. Otherwise, we will iteratively reptee
intuition on the approximation af = log(z) is shown in Fig. 2. problem dividing until we get the optimal solution. Durinigg

(9) contains a nonlinear relationship that couples powpepcess, we remove any subproblémhen(1—¢)UB; < LB.
control and channel allocation variables together. Egalnt It has been shown that under general conditions, a brangh-an
I¢ in (9) constrains the value qff,,,, which is already relaxedbound procedure always converges efficiently.

mn?



IV. MULTICAST SCHEDULING WITH STOCHASTIC data errors on PU will be generated. PU may also be affected
LYAPUNOV OPTIMIZATION by the cooperative transmissions from Sltb SU4. We define

The centralized protocol has some implementation prohleth€ following variablesEL(¢) to capture the total number of
It requires network condition information, such as propiaga such collisions caused by cooperative transmissions foh ea

gain on SUs, which cannot be precisely estimated in practﬂa’: N N
systems, especially when SUs are mobile. Moreover, branch- Bo(t) = > e I5 (1)1 - S(t) (14)
and-bound algorithm does not provide performance guagante m=1n=1

over time and may have high complexity due to LP relaxatiowhere I¢,(¢) is the binary variable indicating whether the
and search. These problems may cause the centralized schedoperative communication issued by SW may generate
ing infeasible or inefficient for practical use. interference to Pl at time slott. This information can be
To address these challenges, we design an online schedutiygtured by each SU according to the location informatién (i
including power control and channel allocation policieasé&d PU c is in the transmission range of Su, thenI¢, (t) = 1). It
on a stochastic optimization with realistic system setwigh- is intuitive that the more interference incurred, the mareese
out the requirement of global knowledge of channel conditiom®Js would suffer from the packet loss. Let denote the time
Especially, we design a distributed algorithm for channlel-a average rate of interference for RU
cation which can be performed efficiently in realistic syste -1
without linear approximation and search efforts. Via rigorous €. = lim — ZEC(T) (15)
analysis, we show that our stochastic multicast scheduing =0

able to provide explicit over-time performance guarantees | the network, this interference information can be tracke

A. Stochastic Network Model with Practical Settings using interference queues. () for PUs, and all SUs are aware
of these queues. The interference on each PU can not exceed

. ) . ) f
Each SU involved in the multicast session collects d talime average tolerant raje. Thus, we have the following
and maintains a data buffer to store the data. As we empla¥ ference queue dynamics: '

structured network coding, each SU is able to perfpartially B
decoding with a limited number of encoded blocks. The more Xe(t+1) = max{Xc(t) — pe, 0} + Ec(t) (16)
data a SU gets from the buffer, the more data groups can be I e

decoded and forwarded to upper layers, if a sufficient nuraber %>

groups are applied in network coding. All SUs in the network R

aregreedyand take off as much data as possible from the buffer \Primary User | x@\@

to upper layers for decoding and other processing. @
Let B,,(t) be the amount of data in the buffer of Siat time SecordenUser f s\

slot ¢ with upper bound a®,,,.... R, (t) represents the rate that Q /

SU n takes data off from the buffer at time slotClearly, it is @

bounded bymin{B,,(t), Rinaz}, WhereR,,q, is the maximum  gig 4. cooperative communication may generate interferendeUs.
rate that can be achieved due to the computation and bar’ﬂjwidbverall we aim to maximize the aggregate throughput of

limit of SUs. Then, we have the following buffer dynamics: ;s gyer time under a faimess criteria (consistent with the
By (t +1) = max{By(t) — Ry (t),0} + My(t) objective of centralized optimization (1)). LWy, 0y}
C N . g - B B .
. . . be a collection of positive weights, representing user rityio
+ Z Z Hirn ()5 (@i (1) (12) (fairness). Then, the multicast scheduling can be stated as

c=1m=1 N
M, (t) is the multicast throughput obtained directly from BS max Z 0,7
at time slott for SUn, and>"_, SN e, ()SE (6w, (t) _ n=1
is the throughput it obtains from cooperative communicatio subject to: (2) — (16). 17)

In the network, BS keeps on multicasting data, and we deno
r, as the time average throughput of SU Without loss of
generality, we have the following:
1=l B. Optimal Online Scheduling Policies
rn, = lim n R, (1) (13)
=0

tS\Ie seek to design a scheduling scheme with practical power
control and resource allocation by solving this problem.

The online scheduling includes the following two policies
based on stochastic optimization:
Letr = (ry, -+ ,ry) denote the rate vector on all SUs. (i) Power Control Policy At each time slot;, BS chooses
In multicast sessions, cooperative communication may ggfiiticast power as the solution of the following problem:

erate interference to PUs. The examples are shown in Fig. 4, N
where SULI fails to detect the transmission that the access point max Z R, (t)M,(t)
makes to PUL, and intends to utilize channelfor cooperative n=1

transmissions. Under this condition, a collision will oc@nd subject to: (2), (3). (18)



t—1 N
. . . 1
(18) indicates that the optimal power control policy on BS lim inf ; Z Z 0,1]E{Rn

is to achieve the maximum aggregate throughput on all SUs ¢ o S
with regards to direct multicast transmissions from BS wiith , o , , .

cooperative communication. With such convenience, it sye¥/Nerer;, is the optimal solution (maximum achievable rates)
to see that (18) can be solved by using maximum feasible poffeptochastic problem (17), and B > 0 are constants.

of BS to multicast data on each channel under interferencé/e use the technique @tochastic Lyapunov Optimization

constraint (2) and (3). Thus, the power control policy can eProve it. LetQ(t) = (Qi(t),---,@x(t)) be a vector of
queue lengths for a discrete time stochastic queueing mietwo

al B
(M} =D Onry, - v@
n=1

simplified as: . .
. ) Let W(Q) be any non-negative scalar valued function of the
c 1y — ) Prar if Se(t) =1, queue lengths, called a Lyapunov function. Defineltjigpunov
PBS(t) H c c
min{ Py, #/9°}, otherwise. drift A(t) as follows:
(i) Channel Allocation Policy Channel resources are allo- A@) EE{W(Q(t+1)) —W(Q(t))} (22)

cated as the solution of the following: . ) )
The network accumulatagtility every time slot, with bounded

Max Y 16, (£) (W, (1) B (t) Pel(t) — Xe()I5,(£)(1 = Po(t)))  value. We have the stochastic proce&) to represent the
n,m,c utility earning during time slot with optimal valuef*.
subject to: (4) — (8), (11). (19)  Theorem 1:Suppose there exist finite constaimts> 0, B >

(19) is a LP and can be solved in polynomial time, thou d > 0, and a non-negative functio® (Q) such that

this may require centralized control (feasible and prattio .W(Q.(d.))},< oc. For every time slot > d, if the Lyapunov
cellular CRNs such as the one we work on in the papeq}j'.ft safisfies:

We also propose a distributed solution for channel allocati At) — VE{f(t)} < B— Vf* (23)
and its discussion is deferred to Sec. IV-D. Note, (19) only

requires buffer, interference, and capacity informatishich is then we have:

practically feasible. The SU data buffer and PU interfeeenc I . . B

queue will be updated after observing the outcome of this tlggo mf;ZE{f(T)} > "= v (24)
allocation at the end of each time slot. 7=0

C. Perf Analvsi Proof: Refer to [5]. ]
- rerformance Analysis In our stochastic multicast scheduling problem,
We now characterize the performance of our scheduliqg:) = (B,(¢),---,Bn(t),X1(t),---,Xc(t)) including
policies with the following bounds: the data buffer queues and interference queues. Let

_(i) (Interference Performangénitialize X.(0) = 0, Ve. Vt > f(t) 2 271:’:1 0,R,(t) be the aggregated throughput utility
0,if P.(t) <1,set0 <e <landP(t) <1—c. Thenthe worst gt each time slot according to the objective of problem (17).
case interference queue backlog for all PUs is upper boungiggds, s+ 2 Zgﬂ 0,r%. Then, we further define the Lyapunov
by: function as follows:

1—¢ N N c
Xc t) < XnLam é Bmazwmaz —)t+ 1= Ve 20 1 2 2
t) < =+ lg! (20) W) £ o (3 (Ba)* + 3 (Xe0)°)
c=1

2
Proof: X.(0) = 0 < X,4e- Now, suppose thak.(t) < .
Xmaz. We show the same holds foX.(t + 1). First, sup- Now, we calculate the Lyapunov drift as follows:
pose P.(t) = 1. Then, there is no interference to Pdas
channelc is idle. Thus, we haveX.(t + 1) < X4, from A(t)

n=1

N
_ E{ 37 Ra(t)(Ba(t) + Mo (1)) +

<B
(16) asE.(t) = 0. Next, supposeP,.(t) < 1, and we have n=1
two cases. d) X.(t) < Xyaw — [ 5]. [ 5] represents the c N
maximum number of cooperative transmission links in the Rn(f)z Z :LLm.n(t)SC(t)wmn(t)} -
network, which is also the maximum value &f.(¢). Under CC=1’ =1
this case, X (t + 1) < Xz (0) Xe(t) > Xonaw — | 5] =
Bunaswmaz(1=5). Then, X, (t)e > Bunazwmaz (1 — ¢). Further, B{ 3" Xe(t)(pe — Eo(t) (25)

1

Xe(t)(1 = Pu(t)) > BimaasWmaz Pe(t). If I¢,(t) = 1, according ¢
to our channel allocationpolicy, ¢, = 0,%m,n, which where B 2 1(N(Baz + Tinaz)® + 2oy (pe)? + C), and
means there is no cooperative communication on channel;, ... is the upper bound of the throughput on each SU at each
If Ic (t) = 0, the transmissions from all SUs can not reatime slot due to the buffer constraint and network capacity.
PU c. Thus, no interference will be generated to it. Hence,Now we subtractVIE{Zf?’:1 0, R, (t)} from both sides of
Xo(t+1) < X.(t) € Xpnaz- Overall, (20) is proved. W the drift inequality (25) and use (14) to obtain:

(i) (Utility performancé Initialize B, (0) = 0,Vn. The time N c
average throughput utility achieved by our protocol is with _ < B_
B/V of the optimal value: AWM V]E{ 7;9"1%"(15)} =B ;pCE{XC(t)}



by the vertex se. The edge seE corresponds td®| x |x|
7E{ Z B (8)(Bn(t) + Va")} B ]E{ ZR"(t)M"(t)} edges connecting all possible pairs. The weight of each edge

" =t carrieswe,, = w,, (t)Bn(t)Pu(t) — X (£)IC,(£)(1 — Pu(t)).

_ IE:{ 1l (t) (wfnn(t)Bn(t)Sc(t) Before solving WBM, we exclude all pairs connectifig, n)
myn,c in ® andcin x if hS,(t)-hS(¢)-15,(¢)-15(t) < 0, which indicates
— XL (8IS, (1)(1 — Sc(t)))} (26) the channel is already oc_cupied a(_:cording to const_ra_inamd)

(5). We also exclude verticgsn, n) if SU m is not within the

The last two terms of inequality (26) above are exactly duansmission range of Sl.
scheduling policies stated in Sec. IV-B (replaggt) as P.(t) According to constraint (7), one SU can not accept coop-
by considering the sensing errors; it is necessary to censgtative transmission from multiple SUs on the same chan-
it especially in the distributed algorithms without acderanel. Thus, we can solve the WBM problem in groups. Each
sensing). Note the direct multicast rate from BS is dominantgroup includes all links with the same destinatioe.g,
the aggregate throughput on SUs. Thus, we can optimizeshe(g 1), (2,1),---,(N,1). We denote the set of vertices with
two terms separately although they have common constrdintdestination SUn as ®,,, and |®,| may be not equal tdy|.
is clear to see that our online scheduling policies minintie= Then, we patch void vertices ®,, or x to make|®, | = |x|.
right side of inequality (26) over all alternate feasiblaeduling If an edge connects any void node, its weight is set to be zero.
policies that can be made at each time slot. Given the above graphical setup, channel allocation proble
We now define the stationary, randomized pol8iR that can be solved by solving WBM problems for all groups, getting
chooses a feasible power control and channel allocatidinthe matched pairg(m,n),c). The intuition is shown in
MSE(t), us5%(t) at every time slot as a function of only th&ig. 5. Now we consider the constraint (8) which we have
channel state informatio8(t) and P(t), which will yield the previously ignored. Solving the WBM problem stated above
following steady state values: may violate this constraint if the same channel is assigoed f
E{RSR (1)} = 1" 27) both uplink and downlink communica_tion on the same SU. In
n t__ln _the ne_twork, f?Us( are Er?edfy and SEIﬂsr)], anr(]j ther)]/ alwaysrp_refe
A o incoming traffic (get help from others) rather than outgoing
e & tliI?oZE{ECSR(T)} < Pe (28) traffic (helping others). Thus, we allocate channels adngrd
7=0 to this policy when (8) is violated. The WBM problem can be
Note our online scheduling policies minimize the right sid®lved in a centralized fashion using network flow algorishm
of (26) including this stationary, randomized policy [6]sidg [8]. To be efficiently implemented in realistic systems, we

all facts above, we can show that: design a distributed algorithm, stated Adgorithm 2, based
N on the WBM formulation and selfish policy.
A(t) = VE{f(t)} < B—E{ > RJ(t)(Bn(t) + Tu(t)) } We perform a set of simulations to specifically evaluate
n=1 our distributed algorithm. From the results, we observe the
c distributed algorithm is able teonverge within 3 rounds in
—-E{ ZXc(t) (pe — E5E (1)} -V f* (29) average, which is faster than centralized approach by a 20%
c=1 gain, and thus suitable in real world environment. It also

achieves good throughput and fairness performance, ctose t
56; optimal centralized approach for solving WBM problem,
ithin only 7% difference. We further elaborate the evahrat

in the Sec. V.

Finally, we get the following result by usindelayedqueue
backlogs and properties of Markov process (refer to the
pendix in [7] for proof):

N N
AW = VE{ Y 0.Ra(D)} < BV 0

n=1 i Void Vertices

Q

Regular Vertices

This form fits (23). Thus, applying Theorem 1 proves (21).

D. Efficient Implementation

In this section, we seek to solve channel allocation problem
stated in (19), with practically efficient implementatiowe
observe, without considering (8), (19) can be formulated @ S
maximum Welght_ed blpar_tlte matChm.g (WBM) prOble.m Whlclgg. 5. Solving the channel aIIocat?g)n problem using maximueigited
can be solveaptimally with polynomial time complexity. bipartite matching algorithm.

Construct a bipartite grapA = (® x x, E). The vertices inp
denote all the possible cooperative linksg, (1, 2) indicates the V. PERFORMANCEEVALUATION
transmission link from SU to SU 2. Note it is different from We are now ready to resort to extensive simulations to
(2,1), which represents the transmission link from Sltb SU study the performance of our cooperative multicast sclieglul
1). The set of channels for cooperative transmissions istdeng@rotocols with network coding. To be realistic, practicattsgs




4 [JCentralized

Algorithm 1 Distributed Algorithm for Channel Allocation

7 4 = Centralized| g entr
Each SUn carries out the following steps: 238 Win, L Dibuted | S 4 it
1. Senses channels at the beginning of each time slot, andég%,ff‘ ""“jjb% NOPone ;i Il NOPower
the channel availability information. 3 v g2
2. Broadcasts its buffer information on available chaniils 325 ey @1
terference informatiorX.(¢) is known by all SUs). g 2 | 8
3. Solves WBM(®,, x x, E) according to channel availability,™ 1.5 A

. . . 10 20 30 40 30 40 50 60 70
and buffer and interference information. Time (rounds) Number of SU

4. If a vertex(m,n) in ®,, and a vertex in y are matched,F_ 6 A throushout oefia. 7. Throuahout bert .
: ig. 6. verage throughput pefFig. 7. roughput performance o
SendShE|plng requests to Sun o,n the_ channet:. formance of all protocols in realistiall protocols with different numbers
. Collects all messages sent by its neighbors. CRN scenarios. of SUs, which represent the degree of
6. Upon receiving delpingrequest from SUn on channek possible cooperation among SUs.

- if it did not seqd anyhelping request to other SUs e resultsfor a total 060 SUs via a 15000-second simulation,
channelc (no matching on channel in WBM), then sends with the algorithms running every 30 seconds. We observe tha
anagreemessage back to Shi. . “Centralized” performs the best, and outperforms “NOCoop”

- if .'t sentareques_;t to any other SU on charm_éherg 'S and “NoPower” by 40% and 60%, respectively, on average.
matching on channelin WBM), then just stores thikelping “Distributed” also outperforms “NOCoop” and “NOPower,”
message. with 35% and 53% gains on average, respectively. Such a

7 .Upon receiving aragree reply f_rom SUm on channelc, throughput advantage should be considered substantiahyy a
it knows SUm agrees to provide help on channgl and standard. It coincides with our intuition that multicashedul-
sendsdrop messages t'o "?1” other SUs who reqmplngon ing with cooperative communication, power control, netkor
channelc.c The transmission from Skh to SU n is allowed, coding, and other important cross-layer designs natufitty
and Set'“m”. " L. in the design of CRNs, and is able to achieve significant

8. .Upon receving aj.rop message from Sun on channelc_, throughput improvement due to its effective use of wireless
it knows ch_anpek 1S u;ed by SUn, and excludes the IInkspectrum. From the results, we also observe that “Cenguiliz
(”.“” —cinits b'lpartlte graph. . . o .. and “Distributed” perform close to each other (within a 5%

9.lfit ha_s no free neighbors or no av_allable links in Its bijte difference), which indicates that our decentralized salied
matching graph, no further action is taken. Otherwise, it "Yased on stochastic optimization is efficient and neamuoti
repeat step (3)-(7). Another trend to notice is that the average throughput islglo

o
o

)]

TABLE | decreasing over time. The reason is that our objective takes
SIMULATION PARAMETERS. fairness into account, which makes the optimization favor a
Channel Type Rayleigh fading and AWGN “slower” SU as time goes.
I::Ezm:gg ﬁgvvﬁﬁ EngJ) %deBBr;n Next, we specifica!ly i_nvesti_gate the benefits and impact of
Noise Power -129.5 dBW cooperative communication. Fig. 7 shows the average throug
Adaptive Modulation used put performance as a function of the number of active SUs.

Evidently, the margin that “Centralized” and “Distributealut-
of a CRN, as summarized in Table. |, are adopted accordiggform “NOCoop” and “NOPower” becomes more substantial
to the IEEE 802.22 draft [9]. A total ol0 PUs reside in as the number of SUs increases. This observation indidaes t
the service area, while a number of SUs move randoralyarger number of SUs creates a higher degree of cooperation
with randomly initial locations. The channel availabilisgate which is beneficial for the performance. However, when the
evolves according to a Markov chain with symmetric transitinumber of SUs becomes overly large, throughput degrades sin
probabilities between the ON and OFF states giver) by the interference effect begins to dominate.

To evaluate the performance, we compare four multicasRegarding the fairness and delay performance, we further
scheduling protocols: (i) Centralized cooperative scliedu examine the variance of the average throughput over SUs. At
following the design in Sec. IlI, referred to as “CentratiZg(ii) each time slot, we calculate, for each SU, the average through-
Our online cooperative scheduling with distributed impéenta- put over time horizor(1, ], and then compute the throughput
tion based on the design in Sec. 1V, referred to as “Distedlit variance, which is the ratio between standard deviatiorhef t
(i) Multicast scheduling with power control according the time average throughput and the time average throughmit its
policy stated in Sec. IV-B, but without cooperative commurfig. 8 plots the CDF of this metric for a total 60 SUs in the
cation, referred to as “NOCoop.” and (iv) Multicast schédgl network. Not surprisingly, both “Centralized” and “Digitited”
with no power control nor cooperative communication, nefer outperform “NOCoop” and “NOPower,” which shows that our
to as “NOPower,” where multicast is only performed whestotocols are able to achieve good fairness performancikein t
commonly available channels exist for all SUs in the networkulticast service. This result also indicates that our quols
and is provisioned with maximum feasible power. are helpful to decrease the delay on the SUs, who do not have

We first examine the throughput performance. Fig. 6 shosgectrum resources and can not get data directly from BS.



1 7T 05 Third, we have cross-layer designs considering the impbrta
08 o 0oal I issues in CRNs. Last but not least, we design our protocols
06 i g based on both greedy and stochastic optimization framesvork

2k NOCoop 03 with both centralized and decentralized implementations.
04t (4 —Centralized|{ &
: ---Distributed || 2, VIl. CONCLUDING REMARKS
0.2 i NOPower ) . . . .
o In this paper, we have studied multicast scheduling in CRNs.
0 10 20 30 40 50
0 02 oughivarians? 08 Tia: (rousds) The main challenge is due to the dynamic spectrum avaitgbili

Fig. 8. CDF of all SUs with reFig. 9.  Evaluation of interference and diverse channel conditions on SUs. We propogeti-
spect to throughput variance, whign PUs, which remains stable andhop multicast protocols, tightly integrated with the design of
indicates fairness performance. bounded in our protocols. CRNs, by employing techniques of power control, coopegativ
Finally, we examine the interference on PUs. Fig. 9 captuf@munication, and network coding. We have jointly consid-
the average interference queue length on all PUs. It clegigd primary user protection, relay assignment, QoS gtesgan
shows that the interference level remains bounded oveotig [and buffer management. Our protocols fully exploit mukica
term, which is desirable in the system design. opportunities and incorporate user, channel, and codperat
In closing, we comment on the protocol overhead. As tliwersities. They are designed based on a sound theoretical
BS has no constraints on energy and computational poundation using centralized greedy optimization and'sistic
we are only concerned with the computation overhead at Slygpunov optimization, but not without careful considesas
Nowadays, a mobile device such as a cellphone has suffic@rihe practicality, feasibility, and efficiency of implemténg
memory cache and strong computation capability. Accortiinghese solutions. With this paper, we are convinced thaticasit
the results in [10], random network coding performs effidienperformance can be significantly improved in CRNs with the
on the iPhone family of mobile devices in a realistic PZ&#ective use of scarce wireless spectrum, by applying powe
streaming scenario. As we studied, our proposed protogelsc@ntrol, cooperative communication and network coding.
in low complexity, and our extensive simulation shows that REFERENCES
proposed algorithms have an av.erage ru.nnmg time of less tfm S. Chachulski, M. Jennings, S. Katti, and D. Katabi, ‘firey Structure
1 ms (over Intel Core Duo machine runninglag3 GHz and a for Randomness in Wireless Opportunistic Routing,”Rroc. of ACM
memory of2 GB), and are therefore suitable for typical WIMAX  SIGCOMM 2007.

; i ; _ [2] X. Liu, G. Cheung, and C.-N. Chuah, “Structured Networkdhg and
with SChedu“ng durations d§-10 ms. Cooperative Local Peer-to-peer Repair for MBMS Video Striea,” in
VI. RELATED WORK IEEE International Workshop on Multimedia Signal ProcagsiOctober
' 2008.

Cognitive radio is a revolution in radio technology to eff3] G. Song and Y. G. Li, “Cross-layer Optimization for OFDM &fess

ficiently utilize the wireless spectrum IEEE 802.22 [9] is Network - Part | and Part IIIEEE Transactions on Wireless Communi-
i ’ cations vol. 4, no. 2, March 2005.

the first standardization effort to deﬁne.COQ_nitiVG radicd @N4] H. D. Sherali and L. Liberti, “Reformulation-Linearizah Methods for
so far has drawn much research attention in both academiaGlobal Optimization,"Journal of Global Optimization1991.

; ; ; R. Urgaonkar and M. J. Neely, “Opportunistic Schedulvith Reliabilitty
and mdUStry' Dynamic spectrum access [11] is one of t@ Guarantees in Cognitive Radio Networks,” Btoc. of IEEE INFOCOM

key issues in CRNs and has driven most of the CR research. 5ggs.
[5] develops an opportunistic spectrum access framework f6] M. J. Neely, E. Modiano, and C. Li, “Dynamic Power Allocati and

. Routing for Time Varying Wireless NetworkslEEE Journal on Selected
CRNs that maximizes SU aggregate throughput. [12] and [13] Areas in Communication2005.

study the dynamic access issues in ad hoc mode of CRIN8, . jin, H. Xu, and B. Li, “Multicast Scheduling with Coapation and
where scheduling and routing are jointly considered. Ourkwo  Network Coding in Cognitive Radio Networks,” University dbronto,

i ; ; ; http://iqua.ece.toronto.edu/paper/jinjin-mCRNs.pdfci. Rep., 2009.
adopts similar network models with previous work for dynam|[8] R. K. Ahuja, T. L. Magnati, and J. B. OrlinNetwork Flows: Theory,

spectrum access. . _ Algorithms, and Applications Prentic Hall, February 1993.
Other than most concerns of previous studies, our pagér C. Cordeiro, K. Challapali, D. Birru, and N. S. ShankalEEE 802.22:

focuses on multicast scheduling in CRNs. which is more chal- The First Worldwide Wireless Standard Based on Cognitiveié&g’ in
! Proc. of 1st IEEE International Symposium on New Frontier®ynamic

lenging but h_as_ been S(_:antly investigate_d so far. [14] BEPO spectrum Access Networks (DySPAN, G505.
an energy-efficient multicast scheduling in CRNSs, but itti# s[10] H. Shojania and B. Li, “Random Network Coding on the iRbpFact
; i i _ icci i or Fiction?” in Proc. of the 19th International Workshop on Network and
reSt.”Cted in single .hOp. transmission mOd(.a without C"ay.s*’ Operating Systems Support for Digital Audio and Video (ND§S2009.
designs and WOI‘|.(5 in qlﬁ?rent network settings. Ano'th],om [11] Q. Zhao, S. Geirhofer, L. Tong, and B. Sadler, “Oppoistio Spectrum
tant work regarding this is [15] that proposes a video mattic Access via Periodic Channel SensingZEE Transactions on Signal
; ; i Processing 2008.
pr0t000| in CRNs. Our work dl_f'feI’S _from it in several aspectﬁz] Y. Shi and Y. T. Hou, “Optimal Power Control for Multi-hoBoftware
First, [15] only focuses on multicast in one cell, and assuiale ™ pefined Radio Networks, iProc. of [EEE INFOCOM 2007.
SUs and PUs are within the transmission range of each otligr.——, “A Distributed Optimization Algorithm for Multi-hp Cognitive
; i ; ; Radio Networks,” inProc. of IEEE INFOCOM 2008.
Our p.I'OtOCO|S are_ tlghtly mtegrateq with the deSIQn of CFéNd [14] L. Geng, Y.-C. Liang, and F. Chin, “Network Coding for Wiess Ad
work in more realistic scenarios with multiple PU cells in ilev Hoc Cognitive Radio Networks,” iProc. of IEEE PIPRG2007.
area. Second, our protocols employ power control, cooperafl5] D. Hu, S. Mao, and J. H. Reed, “On Video Multicast in Cdiyei Radio

communication, and network coding in multicast scheduling Networks” inProc. of IEEE INFOCOM 2009.



