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Abstract—Middleboxes are widely deployed in today’s enter-
prise networks. They perform a wide range of important net-
work functions, including WAN optimizations, intrusion detection
systems, network and application level firewalls, etc. Depending
on the processing requirement of traffic, packet processing for
different traffic flows may consume vastly different amounts
of hardware resources (e.g., CPU and link bandwidth). Multi-
resource fair queueing allows each traffic flow to receive a
fair share of multiple middlebox resources. Previous schemes
for multi-resource fair queueing, however, are expensive to
implement at high speeds. Specifically, the time complexity
to schedule a packet is O(log n), where n is the number of
backlogged flows. In this paper, we design a new multi-resource
fair queueing scheme that schedules packets using Elastic Round
Robin (ERR). Our scheme requires only O(1) work to schedule a
packet and is simple enough to implement in practice. We show,
both analytically and experimentally, that our queueing scheme
achieves nearly perfect Dominant Resource Fairness.

I. INTRODUCTION

Network appliances or “middleboxes” are ubiquitous in
today’s networks. Recent studies report that the number of
middleboxes deployed in enterprise networks is on par with the
traditional L2/L3 devices [1], [2]. These middleboxes perform
a variety of critical network functions, ranging from basic
operations such as packet forwarding and HTTP caching to
more complex processing such as WAN optimization, intrusion
detection system (IDS) and firewalls.

As the traffic through middleboxes surges [3], it is important
to have a scheduling discipline that provides predictable
service isolation for flows passing through them. Although
traditional fair queueing allows flows to have a fair share
of the output bandwidth [4], [5], packet scheduling in a
middlebox is more complicated because flows are competing
for multiple hardware resources (e.g., CPU, memory band-
width, and link bandwidth) and may have vastly different
resource requirements, depending on the network functions
they go through. For example, forwarding a large amount
of small packets of a flow via software routers congests the
memory bandwidth [6], while performing intrusion detection
for external traffic is CPU intensive. Despite the heterogeneous
resource requirements of traffic, flows are expected to receive
predictable service isolation. This requires a multi-resource
fair queueing scheme that makes scheduling decisions across
all middlebox resources. The following properties are desired.

Fairness: The middlebox scheduler should provide some
measure of service isolation to allow competing flows to have
a fair share of middlebox resources. In particular, each flow

should receive the service at least at the level when every
resource is equally allocated (assuming flows are equally
weighted). Moreover, this service isolation should not be
compromised by strategic behaviours of other flows.

Low complexity: With the ever growing line rate and
the increasing volume of traffic passing through middleboxes
[3], [7], it is critical to schedule packets at high speeds.
This requires low time complexity when making scheduling
decisions. In particular, it is desirable that this complexity is
a small constant, independent of the number of traffic flows.
Equally importantly, the scheduling algorithm should also be
amenable to practical implementation.

While both fairness and scheduling complexity have been
extensively studied for bandwidth sharing [4], [5], [8], [9],
[10], multi-resource fair queueing remains a largely uncharted
territory. The recent work of Ghodsi et al. [11] suggests
a promising alternative, known as DRFQ, that implements
Dominant Resource Fairness (DRF) [12] in the time domain.
While DRFQ provides nearly perfect service isolation, it is
expensive to implement. Specifically, DRFQ requires O(log n)
time complexity per packet, where n is the number of back-
logged flows. With large n, it is hard to implement DRFQ
at high speeds. This problem is aggravated in the recent
middlebox innovations, where software-defined middleboxes
deployed as VMs and processes are now replacing tradi-
tional network appliances with dedicated hardwares [13], [14].
As more software-defined middleboxes are consolidated onto
commodity and cloud servers [1], [2], a device will see an
increasing amount of flows competing for resources.

In this paper, we design a packet scheduling algorithm,
called Multi-Resource Round Robin (MR3), that takes O(1)

time complexity to schedule a packet, and achieves similar
fairness performance as DRFQ. While round-robin schemes
have found successful applications to fairly share outgoing
bandwidth of L2/L3 devices [9], [15], [16], directly applying
them to schedule multiple resources may lead to arbitrary
unfairness. We show, analytically, that simply withholding
the scheduling opportunity of a packet until the progress gap
between two resources falls below a small threshold leads to
nearly perfect fairness. We explore the design space of round-
robin algorithms, and implement this idea in a way similar
to Elastic Round Robin [16], which we show is the most
suitable round-robin variant for the middlebox environment.
Both theoretical analyses and extensive simulation show that
as compared with DRFQ, the price we pay is a slight increase
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in packet latency. To our knowledge, this is the first multi-
resource fair queueing scheme that offers near-perfect fairness
with O(1) time complexity. We believe that our scheme is
amenable to an extremely simple implementation, and may
find a variety of applications in other multi-resource schedul-
ing contexts, e.g., VM scheduling inside a hypervisor.

II. RELATED WORK

Unlike switches and routers where the output bandwidth
is the only shared resource, middleboxes handle a variety
of hardware resources and require a more complex packet
scheduler. Many recent measurements, such as [6], [11], [17],
report that packet processing in a middlebox may bottleneck
on any of CPU, memory bandwidth, and link bandwidth,
depending on the network functions applied to the traffic
flow. Such a multi-resource setting significantly complicates
the scheduling algorithm. As pointed out in [11], simply
applying traditional fair queueing schemes [4], [5], [8], [9],
[18], [19] per resource (i.e., per-resource fairness) or on the
bottleneck resource (i.e., bottleneck fairness) fails to offer
service isolation: by strategically claiming some resources that
are not needed, a flow may increase its service share at the
price of other flows.

Ghodsi et al. [11] suggest a promising scheduler that
implements Dominant Resource Fairness (DRF) in the time
domain and therefore achieves service isolation across multi-
ple resources. Their design, referred to as DRFQ, schedules
packets in a way such that flows receive roughly the same
processing time on their most congested resources. Following
this intuition, Wang et al. [20] extend the idealized GPS model
[4], [5] to Dominant Resource GPS (DRGPS) that implements
the strict DRF at all times. By emulating DRGPS, well-known
fair queueing algorithms, such as WFQ [4] and WF2Q [21],
can have direct extensions in the multi-resource setting. While
all these algorithms achieve nearly perfect service isolation,
they are timestamp-based schedulers and are expensive to
implement. In particular, packets, upon their arrivals, are
stamped some timestamps and are scheduled in increasing
order of their timestamps. To maintain the right scheduling
order, the scheduler has to select a packet with the earliest
timestamp among n active flows, requiring O(log n) time
complexity per packet. With a large number of flows passing
through a middlebox, these algorithms are hard to implement
at high speeds.

Such a challenge to reduce the scheduling complexity
should come at no surprise to network researchers. When there
is only a single resource to schedule, round-robin schedulers
[9], [15], [16], [22] have been proposed to multiplex the output
bandwidth of switches and routers, in which flows are served
in a round-robin fashion. These algorithms eliminate the sort-
ing bottleneck associated with timestamp-based schedulers,
and achieve O(1) time complexity per packet. Due to their
extreme simplicity, they have been widely implemented in
high-speed routers such as Cisco GSR [23].

Despite the successful applications of round-robin algo-
rithms in traditional L2/L3 devices, it remains unclear whether

their attractiveness, i.e., the implementation simplicity and low
time complexity, extends to multi-resource scheduling, and if
it does, how a round-robin scheduler should be designed and
implemented in middleboxes. We answer these questions in
the following sections.

III. MULTI-RESOURCE ROUND ROBIN

In this section, we revisit round-robin algorithms in the
traditional fair queueing literature and discuss the challenges
of extending them to the multi-resource setting. We see
that directly applying them to schedule multiple middlebox
resources may lead to arbitrary unfairness across flows. Before
we inspect this problem in depth, we first introduce some basic
concepts that will be used throughout the paper.

A. Preliminaries

Packet Processing Time: Depending on the network func-
tions applied to a flow, processing a packet of the flow may
consume different amounts of middlebox resources. Following
[11], we define the packet processing time as a metric to
measure the resource requirements of a packet. Specifically,
for packet p, its packet processing time on resource r, denoted
⌧r(p), is defined as the time required to process the packet on
resource r, normalized to the middlebox’s processing capacity
of resource r. For example, a packet may require 10 µs to
process using one CPU core. A middlebox with 2 CPU cores
can process 2 such packets in parallel. As a result, the packet
processing time of this packet on CPU is 5 µs.

Dominant Resource Fairness (DRF): The recently pro-
posed Dominant Resource Fairness (DRF) [12] serves as a
promising notion of fairness for multi-resource scheduling.
Informally speaking, with DRF, any two flows receive the
same processing time on their dominant resources in all
backlogged periods. The dominant resource is the one that
requires the most packet processing time. Specifically, for a
packet p, its dominant resource, denoted d(p), is defined as

d(p) = argmax

r
{⌧r(p)} . (1)

For example, consider two flows in Fig. 1a. Flow 1 sends
packets P1, P2, . . ., while flow 2 sends packets Q1, Q2, . . ..
Packet P1 requires 1 time unit for CPU processing and 3
time units for link transmission, and has the processing time
h1, 3i. All the other packets require the same processing time
h3, 3i on both CPU and link bandwidth. In this case, the
dominant resource of packet P1 is the link bandwidth, while
the dominant resource of packets Q1, P2, Q2, P3, . . . is CPU
(or bandwidth). We see that the scheduling scheme shown in
Fig. 1a achieves DRF, under which both flows receive the same
processing time on their dominant resources (see Fig. 1b).

It has been shown in [20] that by achieving strict DRF at
all times, the resulting scheduling scheme offers the following
properties.

Predictable Service Isolation: For each flow i, the received
service is at least at the level when every resource is equally
allocated.
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(b) The processing time received on the dominant resources.

Fig. 1. Illustration of a scheduling discipline that achieves DRF.

Truthfulness: No flow can receive better service (finish
faster) by misreporting the amount of resources it requires.

Work Conservation: No resource that could be used to serve
a backlogged flow is wasted in idle.

Due to these highly desired scheduling properties, DRF is
adopted as the notion of fairness for multi-resource scheduling.
To measure how well a packet scheduler approximates DRF,
the following Relative Fairness Bound (RFB) is used as a
fairness metric [11], [20]:

Definition 1: For any packet arrivals, let Ti(t1, t2) be the
packet processing time flow i receives on its dominant resource
in the time interval (t1, t2). Ti(t1, t2) is referred to as the
dominant service flow i receives in (t1, t2). Let B(t1, t2) be
the set of flows that are backlogged in (t1, t2). The Relative
Fairness Bound (RFB) is defined as

RFB = sup

t1,t2;i,j2B(t1,t2)
|Ti(t1, t2)� Tj(t1, t2)| . (2)

RFB generalizes the fairness measure of Golestani [8] to
the multi-resource setting. We require a scheduling scheme
to have a small RFB, such that the difference between the
normalized dominant service received by any two flows i and
j, over any backlogged time period (t1, t2), is bounded by a
small constant.

B. Challenges of Round-Robin Extension
As mentioned in Sec. II, among various scheduling schemes,

round-robin algorithm is of particular attractiveness for practi-
cal implementation due to its extreme simplicity and constant
time complexity. To extend it to the multi-resource setting
with DRF, a natural way is to directly apply it on flows’
dominant resources, such that in each round, flows receive
roughly the same dominant services. Such a general extension
can be applied to many well-known round-robin algorithms.
However, a naive extension may lead to arbitrary unfairness.

Take the well-known Deficit Round Robin (DRR) [9] as an
example. When there is a single resource, DRR assigns some
predefined quantum size to each flow. Each flow maintains a
deficit counter, whose value is the current unused transmission
quota. In each round, DRR polls every backlogged flow and
transmits its packets up to an amount of data equal to the sum
of its quantum and deficit counter. The unused transmission
quota will be carried over to the next round as the value of the
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(a) Direct application of DRR to schedule multiple resources.
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(b) The dominant services received by two flows.

Fig. 2. Illustration of a direct DRR extension. Each packet of flow 1 has
processing time h7, 6.9i, while each packet of flow 2 has processing time
h1, 7i.

flow’s deficit counter. Similar to the single-resource case, one
can apply DRR [9] on flows’ dominant resources as follows.

Initially, the algorithm assigns a predefined quantum size to
each flow, which is also the amount of dominant service the
flow is allowed to receive in one round. Each flow maintains a
deficit counter that measures the current unused portion of the
allocated dominant service. Packets are scheduled in rounds,
and in each round, each backlogged flow schedules as many
packets as it has, as long as the dominant service consumed
does not exceed the sum of its quantum and deficit counter.
The unused portion of this amount is carried over to the next
round as the new value of the deficit counter.

As an example, consider two flows where flow 1 sends P1,
P2, . . . , while flow 2 sends Q1, Q2, . . . Each packet of flow
1 has processing time h7, 6.9i, i.e., it requires 7 time units
for CPU processing and 6.9 time units for link transmission.
Each packet of flow 2 requires processing time h1, 7i. Fig. 2a
illustrates the resulting schedule of the above naive DRR
extension, where the quantum size assigned to both flows is 7.
In round 1, both flows receive a quantum of 7, and can process
1 packet each, which consumes up the quantum awarded on
the dominant resources in this round. Such a process repeats
in the following rounds. As a result, packets of the two flows
are scheduled alternately. Since in each round, the received
quantum is always used up, the deficit counter remains 0 in
the end of each round.

Similar to single-resource DRR, the extension above has
O(1) time complexity per packet1. However, such an extension
fails to provide fair services, with respect to DRF. Instead, it
may lead to arbitrary unfairness with unbounded RFB! To see
this, we depict the dominant services received by two flows

1The O(1) time complexity is conditioned on the quantum size being at
least the maximum packet processing time.
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in Fig. 2b. We see that flow 1 receives nearly two times the
dominant service flow 2 receives, i.e., T1(0, t) ⇡ 2T2(0, t).
With more packets being scheduled, the service gap increases,
eventually leading to unbounded RFB.

It is to be emphasized that the problem of arbitrary un-
fairness is not limited to DRR extension only, but generally
extends to all round-robin variants. For example, one can
extend Surplus Round Robin (SRR) [15] and Elastic Round
Robin (ERR) [16] to the multi-resource setting in a similar
way (more details will be given in Sec. IV). It is easy to
verify that running the example above will give exactly the
same schedule shown in Fig. 2a with unbounded RFB2. In fact,
due to the heterogeneous resource requirements among flows,
a service round may span different time intervals on different
resources. As a result, the work progress on one resource may
be far ahead of that on the other. For example, in Fig. 2a, when
CPU starts to process packet P6, the transmission of packet P3
remains unfinished. It is such a progress mismatch that leads
to a significant gap between the two flows’ dominant services.

In summary, directly applying round-robin algorithms on
flows’ dominant resources fails to provide fair services. A new
design is therefore required. We preview the basic idea in the
next subsection.

C. Deferring the Scheduling Opportunity
The key reason that direct round-robin extensions fails is

because they cannot track flows’ dominant services in real-
time. Take the DRR extension as an example. In Fig. 2a,
after packet Q1 is completely processed on CPU, flow 2’s
deficit counter is updated to 0, meaning that flow 2 has already
used up the quantum allocated for dominant services (i.e., link
transmission) in round 1. This allows P2 to be processed but
erroneously, as the actual consumption of this quantum incurs
only when Q1 is transmitted on the link, after the transmission
of packet P1.

To circumvent this problem, a simple fix is to withhold
the scheduling opportunity of every packet until its previous
packet is completely processed on all resources, which allows
the scheduler to track the dominant services accurately. Fig. 3
depicts the resulting schedule when applying this fix to the
DRR extension shown in Fig. 2a. We see that the difference be-
tween the dominant services received by two flows is bounded
by a small constant. However, such a fairness improvement
is achieved at the expense of significantly lower resource
utilization. Even though multiple packets can be processed in
parallel on different resources, the scheduler serves only one
packet at a time, leading to poor resource utilization and high
packet latency. As a result, this simple fix cannot meet the
demand of high-speed networks.

To strike a balance between fairness and latency, packets
should not be deferred as long as the difference of two
flows’ dominant services is small. This can be achieved by
bounding the progress gap on different resources by a small

2In either SRR or ERR extension, by scheduling 1 packet, each flow uses
up all the quantum awarded in each round. As a result, packets of the two
flows are scheduled alternately, the same as that in Fig. 2a.
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Fig. 3. Naive fix of the DRR extension shown in Fig. 2a by withholding the
scheduling opportunity of every packet until its previous packet is completely
processed on all resources.
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(b) The dominant services received by two flows.

Fig. 4. Illustration of a schedule by MR3.

amount. In particular, we may serve flows in rounds as follows.
Whenever a packet p of a flow i is ready to be processed
on the first resource (usually CPU) in round k, the scheduler
checks the work progress on the last resource (usually the link
bandwidth). If flow i has already received services on the last
resource in the previous round k � 1, or it is a new arrival,
then packet p is scheduled immediately. Otherwise, packet p
is withheld until flow i starts to receive service on the last
resource in round k � 1. As an example, Fig. 4a depicts the
resulting schedule with the same input traffic as that in the
previous example of Fig. 2a. In round 1, both packets P1 and
Q1 are scheduled without delay because both flows are new
arrivals. In round 2, packet P2 (resp., Q2) is also scheduled
without delay, because when it is ready to be processed, flow
1 (resp., flow 2) has already started its service on the link
bandwidth in round 1. In round 3, while packet P3 is ready to
be processed right after packet Q2 is completely processed on
CPU, it has to wait until packet P2 starts to be transmitted, as it
has to wait until flow 1 receives service on the link bandwidth
in round 2. Similar process repeats for all the subsequent
packets.

We will show later in Sec. V that such a simple idea leads
to nearly perfect fairness across flows, without incurring high
packet latency. In fact, the schedule in Fig. 4a incurs the same
packet latency as that in Fig. 2a, but is much more fair. As we
see from Fig. 4b, the difference between dominant services
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received by two flows is bounded by a small constant.

IV. MR3 DESIGN

While the general idea introduced in the previous section is
simple, implementing it as a concrete round-robin algorithm
is nontrivial. We next explore the algorithm design space and
implement the idea in a way similar to Elastic Round Robin
[16], which we show is the most suitable round-robin variants
for middleboxes. The resulting algorithm is referred to as
Multi-Resource Round Robin (MR3).

A. Design Space of Round-Robin Algorithms

There are many round-robin variants in the traditional fair
queueing literature. While all these variants achieve similar
performance and are all feasible for the single-resource sce-
nario, not all of them are suitable to implement our idea
in a middlebox. We investigate three typical variants, i.e.,
Deficit Round Robin (DRR) [9], Surplus Round robin (SRR)
[15], and Elastic Round Robin (ERR) [16], and discuss their
implementation issues in middleboxes as follows.

Deficit Round Robin (DRR): We have introduced the
basic idea of DRR in Sec. III-B. As an analogy, one can
view the behavior of each flow as maintaining a banking
account. In each round, a predefined quantum is deposited
into a flow’s account, tracked by the deficit counter. The
balance of the account (i.e., the value of the deficit counter)
represents the dominant service the flow is allowed to receive
in the current round. Scheduling a packet is analogous to
withdrawing the corresponding packet processing time on the
dominant resource from the account. As long as there is
sufficient balance to withdraw from the account, a packet is
allowed to process.

However, DRR is not amenable to implement in middle-
boxes due to the following two reasons. First, to ensure that
a flow has sufficient account balance to schedule a packet,
the processing time required on the dominant resource has to
be known before packet processing. However, it is hard to
know what middlebox resources are needed and how much
processing time is required until the packet is processed.
Moreover, the O(1) time complexity of DRR is conditioned
on the quantum size that is at least the same as the maximum
packet processing time, which is hard to estimate in a real
system. Without satisfying this condition, the time complexity
could be as high as O(N) [16].

Surplus Round Robin (SRR): SRR [15] allows a flow to
consume more processing time on its dominant resource in
one round than it has in its account. As a compensation, the
excessive consumption, tracked by a surplus counter, will be
deducted from the quantum awarded in the future rounds. In
SRR, as long as the account balance (i.e., surplus counter)
is positive, the flow is allowed to schedule packets, and the
corresponding packet processing time is withdrawn from the
account after the packet finishes processing on its dominant
resource. In this case, the packet processing time is only
needed after the packet has been processed.

...

SeqNum1

f1

Round 1 Round 2 Round 3 Round 4

f2 f3 f1 f4 f2 f3 f4 f2 f3 f4

2 3 4 5 6 7 8 9 10 110

Fig. 5. Illustration of the round-robin service and the sequence number.

While SRR does not require knowing packet processing
time beforehand, its O(1) time complexity remains condi-
tioned on the predefined quantum size that is at least the same
as the maximum packet processing time. Otherwise, the time
complexity could be as high as O(N) [16]. For the same
reason, SRR is not amenable to implement in middleboxes
either.

Elastic Round Robin (ERR): Similar to SRR, ERR [16]
does not require knowing the processing time before the
packet is processed. It allows flows to overdraw its permitted
processing time in one round on the dominant resource,
with the excessive consumption deducted from the quantum
received in the next round. The difference is that instead of
depositing a predefined quantum with fixed size, in ERR, the
quantum size in one round is dynamically set as the maximum
excessive consumption incurred in the previous round. This
ensures that each flow will always have a positive balance in
its account at the beginning of each round, and can schedule
at least one packet. In this case, ERR achieves O(1) time
complexity without knowing the maximum packet processing
time a priori, and is the most suitable to implement in
middleboxes at high speeds.

B. MR3 Design
While ERR serves as a promising round-robin variant to

extend for middleboxes, there remain several challenges to
implement the idea presented in Sec. III-C. How can the
scheduler quickly track the work progress gap of two resources
and decide when to withhold a packet? To ensure efficiency,
such a progress comparison must be completed within O(1)

time. Note that simply comparing the numbers of packets that
have been processed on two resources does not give any clue
about the progress gap: due to traffic dynamics, each round
may consist of different amounts of packets.

To circumvent this problem, we associate each flow i a
sequence number SeqNumi, which increases from 0 and is
the scheduling order of the flow. We use a global variable
NextSeqNum to record the next sequence number that will be
assigned to a flow. The value of NextSeqNum is initialized
to 0 and increases by 1 every time a flow is processed. Each
flow i also records its sequence number in the previous round,
tracking by PreviousRoundSeqNumi. For example, consider
Fig. 5. Initially, flows 1, 2 and 3 are backlogged and are
served in sequence in round 1, with sequence numbers 1, 2
and 3, respectively. Later, while flow 2 is being served, flow
4 becomes active. Flow 4 is therefore scheduled right after
flow 1 in round 2, with a sequence number 5. After round 2,
flow 1 has no new packet to serve and becomes inactive. As
a result, only flows 2, 3 and 4 are serviced in round 3, where
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their sequence numbers in the previous round are 6, 7 and 5,
respectively.

We use sequence numbers to track the work progress on a
resource. Whenever a packet p is scheduled to be processed, it
is stamped a service tag (i.e., p.Tag) whose value is its flow’s
sequence number. By checking the service tag of the packet
that is being processed on a resource, the scheduler knows
exactly the work progress on that resource.

Besides sequence number, the following important variables
are also used in the algorithm.

Active list: The algorithm maintains an ActiveFlowList to
track backlogged flows. Flows are served in a round-robin
fashion. The algorithm always serves the flow at the head of
the list, and after the service, this flow, if remaining active,
will be moved to the tail of the list for service in the next
round. Newly arrived flows is always appended to the tail of
the list, and will be served in the next round. We also use
RoundRobinCounter to track the number of flows that have not
yet been served in the current round. Initially, ActiveFlowList
is empty and RoundRobinCounter is 0.

Excess counter: Each flow i maintains an excess counter
ECi, recording the excessive dominant service flow i incurred
in one round. The algorithm also uses two variables, MaxEC
and PreviousRoundMaxEC, to track the maximum excessive
consumption incurred in the current and the previous round,
respectively. Initially, all these variables are set to 0.

Our algorithm, referred to as MR3, consists of 2 functional
modules, PacketArrival (Module 1), which handles packet
arrival events, and Scheduler (Module 2), which decides which
packet should be processed next.

PacketArrival: This module is invoked upon a packet
arrival. It enqueues the packet to the input queue of the flow to
which the packet belongs. If this flow is previously inactive,
it is then appended to the tail of the active list and will be
serviced in the next round. The sequence number of the flow
is also updated, as shown in Module 1 (line 3 to line 5).

Module 1 MR3 PacketArrival
1: Let i be the flow to which the packet belongs
2: if ActiveFlowList.Contains(i) == FALSE then
3: PreviousRoundSeqNumi = SeqNumi

4: NextSeqNum = NextSeqNum + 1
5: SeqNumi = NextSeqNum
6: ActiveFlowList.AppendToTail(i)
7: end if
8: Enqueue the packet to queue i

Scheduler: This module decides which packet should be
processed next. The scheduler first checks the value of
RoundRobinCounter to see how many flows have not yet been
served in the current round. If the value is 0, then a new round
starts. The scheduler sets RoundRobinCounter to the length of
the active list (line 3), and updates PreviousRoundMaxEC as
the maximum excessive consumption incurred in the round
that has just passed (line 4), while MaxEC is reset to 0 for the
new round (line 5).

Module 2 MR3 Scheduler
1: while TRUE do
2: if RoundRobinCounter == 0 then
3: RoundRobinCounter = ActiveFlowList.Length()
4: PreviousRoundMaxEC = MaxEC
5: MaxEC = 0
6: end if
7: Flow i = ActiveFlowList.RemoveFromHead()
8: Bi = PreviousRoundMaxEC � ECi

9: while Bi � 0 and QueueIsNotEmpty(i) do
10: Let q be the packet being processed on the last resource
11: WaitUntil(q.Tag � PreviousRoundSeqNumi)
12: Packet p = Dequeue(i)
13: p.Tag = SeqNumi

14: ProcessPacket(p)
15: Bi = Bi � DominantProcessingTime(p)
16: end while
17: if QueueIsNotEmpty(i) then
18: ActiveFlowList.AppendToTail(i)
19: NextSeqNum = NextSeqNum + 1
20: PreviousRoundSeqNumi = SeqNumi

21: SeqNumi = NextSeqNum
22: ECi = �Bi

23: else
24: ECi = 0
25: end if
26: MaxEC = Max(MaxEC, ECi)
27: RoundRobinCounter = RoundRobinCounter � 1
28: end while

The scheduler then serves the flow at the head of the
active list. Let flow i be such a flow. Flow i receives a
quantum equal to the maximum excessive consumption in-
curred in the previous round, and has its account balance
Bi equal to the difference between the quantum and the
excess counter, i.e., Bi = PreviousRoundMaxEC�ECi. Since
PreviousRoundMaxEC � ECi, we have Bi � 0.

Flow i is allowed to schedule packets (if any) as long
as its balance is positive (nonnegative). To ensure a small
work progress gap between two resources, the scheduler keeps
checking the service tag of the packet that is being processed
on the last resource3 (i.e., output bandwidth) and compares
it with flow i’s sequence number in the previous round. The
scheduler waits until the former exceeds the latter, at which
time the progress gap between any two resources is within
1 round. The scheduler then dequeues a packet from the
input queue of flow i, stamps a service tag equal to flow i’s
sequence number, and performs deep packet processing on
CPU, which is also the first middlebox resource required by
the packet. After CPU processing, the scheduler knows exactly
how the packet should be processed next and what resources
are required. The packet processing time on each resource can
now be accurately estimated, for example, via some simple
packet profiling technique introduced in [11]. The scheduler
then deducts the dominant processing time of the packet from
flow i’s balance. The service for flow i continues until flow i
has no packet to process or its balance becomes negative.

3If no packet is being processed, we take the service tag of the packet that
has recently been served.
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If flow i is no longer active after service in the current
round, its excess counter will be reset to 0. Otherwise, flow
i is appended to the tail of the active list for service in the
next round. In this case, a new sequence number is associated
with flow i. The excess counter ECi is also updated as the
account deficit of flow i. Finally, before serving the next flow,
the scheduler updates MaxEC and decrements RoundRobin-
Counter by 1, indicating that one flow has already finished
service in the current round.

V. ANALYTICAL RESULTS

In this section, we analyze the performance of MR3 by
deriving its time complexity, fairness, and delay bound.

A. Complexity and Fairness

MR3 is highly efficient as compared with DRFQ [11]. One
can verify that under MR3, at least one packet is scheduled
for each flow in one round. Formally, we have

Theorem 1: The time complexity of MR3 is O(1) per
packet.

Proof: We prove the theorem by showing that both enqueu-
ing a packet (Module 1) and scheduling a packet (Module 2)
finish within O(1) time.

In Module 1, determining the flow at which a new packet
arrives is an O(1) operation. By maintaining the per-flow state,
the scheduler knows if the flow is contained in the active list
(line 2) within O(1) time. Also, updating the sequence number
(line 3 to 5), appending the flow to the active list (line 6), and
enqueueing a packet (line 8) are all of O(1) time complexity.

We now analyze the time complexity of scheduling a packet.
In Module 2, since the quantum deposited into each flow’s
account is the maximum excessive consumption incurred in
the previous round, a flow will always have a positive balance
at the beginning of each round, i.e., Bi � 0 in line 15.
As a result, at least one packet is scheduled for each flow
in one round. The time complexity of scheduling a packet
is therefore no more than the time complexity of all the
operations performed during each service opportunity. These
operations include determining the next flow to be served,
removing the flow from the head of the active list and possibly
adding it back at the tail, all of which are O(1) operations
if the active list is implemented as a linked list. Additional
operations include updating the sequence number, MaxEC,
PreviousRoundMaxEC, RoundRobinCounter, and dequeuing a
packet. All of them are also executed within O(1) time.

Despite such low time complexity, MR3 achieves similar
fairness performance as DRFQ. To see this, let ECk

i be the
excess counter of flow i after round k, and MaxECk the max-
imum ECk

i over all flow i’s. Let Dk
i be the dominant service

flow i receives in round k. Also, let Li be the maximum packet
processing time of flow i across all resources. Finally, let L
be the maximum packet processing time across all flows, i.e.,
L = maxi{Li}. We can show that the following lemmas and
corollaries hold throughout the execution of MR3 algorithm.

Lemma 1: ECk
i  Li for all flow i and round k.

Proof: If flow i has no packets to serve (i.e., the input queue
is empty) after round k, then ECk

i = 0 (line 24 in Module 2)
and the statement holds. Otherwise, let packet p be the last
packet of flow i served in round k. Let B0

i be the account
balance of flow i before packet p is served. We have

ECk
i = DominantProcessingTime(p)�B0

i  Li, (3)

where the inequality holds because B0
i � 0 and

DominantProcessingTime(p)  Li.

Corollary 1: MaxECk  L for all round k.

Lemma 2: For all flow i and round k, we have

Dk
i = MaxECk�1 � ECk�1

i + ECk
i , (4)

where EC0
i = 0 and MaxEC0

= 0.

Proof: At the beginning of round k, flow i has an account
balance Bi = MaxECk�1 � ECk�1

i . After round k, all this
amount of normalized processing time has been consumed on
its dominant resource, with an excessive consumption ECk

i .
The normalized dominant service flow i received in round k
is therefore Di = Bi + ECk

i = RHS of (4).

Corollary 2: Dk
i  2L for all flow i and round k.

Proof: By Lemma 2, we derive as follows

Dk
i = MaxECk�1 � ECk�1

i + ECk
i ,

 L� 0 + L = 2L, (5)

where the inequality holds because of Corollary 1 and
Lemma 1.

With lemmas and corollaries above, we now analyze the
fairness performance of MR3. For simplicity, we assume flows
are dominant-resource monotonic, i.e., the flow’s dominant
resource does not change during any of its backlogged periods,
which is usually the case in middleboxes as observed in [11].
The following theorem bounds the difference of dominant
services received by two flows that are dominant-resource
monotonic. Similar analysis also extends to general flows.

Theorem 2: For any packet arrivals, let Ti(t1, t2) be the
dominant service flow i received in the interval (t1, t2) under
MR3. The following relationship holds for any two dominant-
resource monotonic flows that are backlogged in (t1, t2):

|Ti(t1, t2)� Tj(t1, t2)|  Li + Lj + 2L. (6)

Proof: Let r⇤i (resp. r⇤j ) be the dominant resource of flow
i (resp. j). Without loss of generality, we assume r⇤j  r⇤i ,
that is, a packet is processed on resource r⇤j before it is
processed on resource r⇤i . Suppose during (t1, t2), flow i
receives its dominant service from round s to round f . For
s  k  f , let Sk

i be the time from which flow i begins
to receive dominant service in round k, and F k

i the time
when flow i finishes its the dominant service in round k. The
difference |Ti(t1, t2)� Tj(t1, t2)| reaches its maximal value
when (t1, t2) = (F s�1

i , Sf+1
i ) or (t1, t2) = (Ss

i , F
f
i ). In either
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Fig. 6. The difference of dominant services received by two flows i and
j within (t1, t2), where flow j is served before flow i in one round. The
dominant services are highlighted as shaded areas.

case, we have

Ti(t1, t2) =

fX

k=s

Dk
i

=

fX

k=s

MaxECk�1 � ECs�1
i + ECf

i , (7)

where the second equality is derived from Lemma 2.
Since both flows i and j are backlogged in (t1, t2), flow i

is served either before j or after j in all rounds in (t1, t2). We
hence consider the following two cases.

Case 1: Flow j is served before flow i in all rounds in
(t1, t2). Since under MR3, the work progress on resource r⇤j
is never ahead of that on resource r⇤i by more than 1 round,
it is easy to check that flow j receives dominant services at
most in rounds s, . . . , f + 2 (see Fig. 6a), i.e.,

Tj(t1, t2) 
f+2X

k=s

Dk
j

=

f+2X

k=s

MaxECk�1 � ECs�1
j + ECf+2

j . (8)

For the same reason, flow j receives dominant services at least
in rounds s+ 2, . . . , f (see Fig. 6b), i.e.,

Tj(t1, t2) �
fX

k=s+2

Dk
j

=

fX

k=s+2

MaxECk�1 � ECs+1
j + ECf

j . (9)

Now let the RHS of (8) be ↵j(t1, t2), and let the RHS of
(9) be �j(t1, t2). Further, let

�1(t1, t2) = |Ti(t1, t2)� ↵j(t1, t2)| (10)

and
�2(t1, t2) = |Ti(t1, t2)� �j(t1, t2)| . (11)

We have

�1(t1, t2) =

������

f+2X

k=f+1

MaxECk�1 � ECs�1
j + ECf+2

j

+ ECs�1
i � ECf

i

���

 2L+ Li + Lj , (12)

where the inequality is derived from Lemma 1 and Corollary 1.
Similarly, we have

�2(t1, t2)  2L+ Li + Lj . (13)

Finally, we see that the statement holds because

|Ti(t1, t2)� Tj(t1, t2)|  max {�1(t1, t2),�2(t1, t2)}
 2L+ Li + Lj . (14)

Case 2: Flow j is served after flow i in all rounds in (t1, t2).
It is easy to check that flow j receives dominant services at
most in rounds s� 1, . . . , f + 1 (see Fig. 7a), i.e.,

Tj(t1, t2) 
f+1X

k=s�1

Dk
j

=

f+1X

k=s�1

MaxECk�1 � ECs�2
j + ECf+1

j . (15)

For the same reason, flow j receives dominant services at least
in rounds s+ 1, . . . , f � 1 (see Fig. 7b), i.e.,

Tj(t1, t2) �
f�1X

k=s+1

Dk
j

=

f�1X

k=s+1

MaxECk�1 � ECs
j + ECf�1

j . (16)

By (7), (15), (16) and deriving similarly as Case 1, we see
that the statement holds.

Corollary 3: MR3 has RFB = 4L.
Based on Theorem 2 and Corollary 3, we see that MR3

bounds the difference between dominant services received by
two backlogged flows in any time interval by a small constant.
Note that the interval (t1, t2) may be arbitrarily large. MR3

therefore achieves nearly perfect DRF across all active flows.

B. Latency
In addition to complexity and fairness, latency is also an

important concern for a packet scheduling algorithm. Two
metrics are widely used in the fair queueing literature to
measure the latency performance: startup latency [11], [16]
and single packet delay [22]. The former measures how long
it takes for a previously inactive flow to receive service after
it becomes active, while the latter measures the latency from
the time when a packet reaches the head of the input queue
to the time when this packet finishes service on all resources.
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Fig. 7. The difference of dominant services received by two flows i and j
within (t1, t2), where flow i is served before j in one round. The dominant
services are highlighted as shaded areas.

TABLE I
PERFORMANCE COMPARISON BETWEEN MR3 AND DRFQ, WHERE L IS

THE MAXIMUM PACKET PROCESSING TIME; m IS THE NUMBER OF
RESOURCES; AND n IS THE NUMBER OF BACKLOGGED FLOWS.

Performance MR3 DRFQ [11]
Complexity O(1) O(logn)

Fairness (RFB) 4L 2L
Startup Latency 2(m+ n� 1)L nL

Single Packet Delay (4m+ 4n� 2)L Unknown

Our analysis begins with the startup latency. Let m be
the number of resources concerned, and n the number of
backlogged flows. We have the following theorem. The proof
is given in Appendix A.

Theorem 3: Under MR3, for any newly backlogged flow
i, the startup latency SLi is bounded by

SLi  2(m+ n� 1)L . (17)

We next state the following theorem on the single packet
delay. The proof is given in Appendix B.

Theorem 4: Under MR3, for any packet p, the single
packet delay SPD(p) is bounded by

SPD(p)  (4m+ 4n� 2)L . (18)

Table I summarizes the derived performance of MR3, as
compared with those of DRFQ [11]. We see that MR3 sig-
nificantly reduces the time complexity per packet. Similar
to DRFQ, MR3 also achieves nearly perfect fairness across
flows. The price we paid, however, is longer startup latency for
newly active flows. Since the number of middlebox resources
is typically much smaller than the number of active flows, i.e.,
m ⌧ n, the startup latency bound of MR3 is two times that of
DRFQ, i.e., 2(m+n� 1)L ⇡ 2nL. Since single packet delay
is usually hard to analyze, no analytical delay bound is given
in [11]. We experimentally compare the latency performance
of MR3 and DRFQ in the next section.

TABLE II
LINEAR MODEL FOR CPU PROCESSING TIME IN 3 MIDDLEBOX MODULES.

MODEL PARAMETERS ARE BASED ON THE MEASUREMENT RESULTS
REPORTED IN [11].

Module CPU processing time (µs)
Basic Forwarding 0.00286⇥ PacketSizeInBytes + 6.2

Statistical Monitoring 0.0008⇥ PacketSizeInBytes + 12.1
IPSec Encryption 0.015⇥ PacketSizeInBytes + 84.5

VI. SIMULATION RESULTS

As a complementary study of theoretical analysis, we eval-
uate the performance of MR3 via extensive simulations. In
particular, (1) we would like to confirm experimentally that
MR3 offers predictable service isolation and is superior to the
naive first-come-first-served (FCFS) scheduler, as the theory
indicates. (2) We want to confirm that MR3 can quickly adapt
to traffic dynamics and achieve nearly perfect DRF across
flows. (3) We compare the latency performance of MR3 with
DRFQ [11] to see if the extremely low time complexity of
MR3 is achieved at the expense of significant packet delay. (4)
We also investigate how sensitive the performance of MR3 is
when packet size distributions and arrival patterns change.

General Setup: All simulation results are based on our
event-driven packet simulator written with 3,000 lines of C++
codes. We assume resources are consumed serially, with CPU
processing first, followed by link transmission. We implement
3 schedulers, FCFS, DRFQ and MR3. The last two inspect
the flows’ input queues and decide which packet should be
processed next, based on their algorithms. By default, packets
follow Poisson arrivals. The simulator simulates resource con-
sumption of packet processing in 3 typical middlebox modules,
each corresponds to one type of flows, basic forwarding, per-
flow statistical monitoring, and IPSec encryption. The first
two modules are bandwidth-bound, with statistical monitoring
consuming slightly more CPU resources than basic forward-
ing, while IPSec is CPU intensive. For direct comparison, we
set the packet processing times required for each middlebox
module the same as those in [11], which are based on real
measurements. In particular, the CPU processing time of each
module is observed to follow a simple linear model based on
packet size x, i.e., ↵kx + �k, where ↵k and �k are linear
parameters of module k. Table II summarizes the detailed
parameters based on the measurement results reported in [11].
The link transmission time is proportional to the packet size,
and the output bandwidth of the middlebox is set to 200 Mbps.

Service Isolation: We start off by confirming that MR3

offers nearly perfect service isolation, which naive FCFS
fails to provide. We initiate 30 flows that send 1300-byte
UDP packets for 30 seconds. Flows 1 to 10 undergo basic
forwarding; 11 to 20 undergo statistical monitoring; 21 to 30
undergo IPSec encryption. We generate 3 rogue flows, i.e.,
1, 11 and 21, each sending 10,000 pkts/s. All other flows
behaves normally, each sending 1,000 pkts/s. Fig. 8a shows the
dominant services received by different flows under FCFS and
MR3. We see that under FCFS, rogue flows grab an arbitrary
share of middlebox resources, while under MR3, flows receive
fair services on their dominant resources. This result is further

9



0 5 10 15 20 25 30
0

5

10

15

Flow ID

D
o

m
in

a
n

t 
S

e
rv

ic
e

 (
s)

 

 

FCFS

MR3

(a) Dominant service received.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

Flow ID

T
h

ro
u

g
h

p
u

t 
(1

0
0

0
 p

kt
s/

s)

 

 

FCFS

MR3

(b) Packet throughput of flows.

Fig. 8. Dominant services and packet throughput received by different flows
under FCFS and MR3. Flows 1, 11 and 21 are ill-behaving.
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Fig. 9. Latency comparison between DRFQ and MR3.

confirmed in Fig. 8b: Under FCFS, the presence of rogue
flows squeezes normal traffics to almost zero. In contrast,
MR3 ensures that all flows receive deserved, though uneven,
throughput based on their dominant resource requirements,
irrespective of the presence and (mis)behaviour of other traffic.

Latency: We next evaluate the latency price MR3 pays for
its extremely low time complexity, as compared with DRFQ
[11]. We implement DRFQ and measure the startup latency
as well as the single packet delay of both algorithms. In
particular, 150 UDP flows start generating traffic in serial,
where flow 1 is active at time 0, followed by flow 2 at time
0.2, and flow 3 at time 0.3, and so on. A flow randomly
chooses one of the three middlebox modules to pass through.
To congest the middlebox resources, the packet arrival rate of
each flow is set to 500 pkts/s, and the packet size is uniformly
drawn from 200 B to 1300 B. Fig. 9a depicts the per-flow
startup latency using both DRFQ and MR3. Clearly, the dense
and sequential flow starting times in this example represent a
worst-case scenario for a round-robin scheduler. We see that
under MR3, flows joining the system later see larger startup
latency, while under DRFQ, the startup latency is relatively
consistent. This is because under MR3, a newly active flow
will have to wait for a whole round before getting served.
The more active flows, the more time is required to finish
serving one round. As a result, the startup latency is linearly
dependent on the number of active flows. While this is also
true for DRFQ in the worst-case analysis (see Table I), our
simulation results show that on average, the startup latency of
DRFQ is smaller than MR3. However, we see next that this
advantage of DRFQ comes at the expense of highly uneven
single packet delays.

Compared with the startup latency, single packet delay is a

much more important delay metric. As we see from Fig. 9b,
MR3 exhibits more consistent packet delay performance, with
all packets delayed less than 15 ms. In contrast, the latency
distribution of DRFQ is observed to have a long tail: 90%
packets are delayed less than 5 ms while the rest 10% are
delayed from 5 ms to 50 ms. Further investigation reveals that
these 10% packets are uniformly distributed among all flows.
All results above indicate that the low time complexity and
near-perfect fairness of MR3 is achieved at the expense of
only slight increase in packet latency.

Dynamic Allocation: We further investigate if the DRF
allocation achieved by MR3 can quickly adapt to traffic
dynamics. To congest middlebox resources, we initiate 3 UDP
flows each sending 20,000 1300-byte packets per second.
Flow 1 undergoes basic forwarding and is active in time
interval (0, 15). Flow 2 undergoes statistical monitoring and is
active in two intervals (3, 10) and (20, 30). Flow 3 undergoes
IPSec encryption and is active in (5, 25). The input queue of
each flow can cache up to 1,000 packets. Fig. 10 shows the
resource share allocated to each flow over time. Since flow
1 is bandwidth-bound and is the only active flow in (0, 3),
it receives 20% CPU share and all bandwidth. In (3, 5), both
flows 1 and 2 are active. They equally share the bandwidth
on which both flows bottleneck. Later, when flow 3 becomes
active at time 5, all three flows are backlogged in (5, 10).
Because flow 3 is CPU-bound, it grabs only 10% bandwidth
share from 2 and 3, respectively, yet is allocated 40% CPU
share. Similar DRF allocation is also observed in subsequent
time intervals. Through the whole process, we see that MR3

quickly adapts to traffic dynamics, leading to nearly perfect
DRF across flows.

Sensitivity: Our final experiment is to evaluate the perfor-
mance sensitivity of MR3 under a mixture of different packet
size distributions and arrival patterns. The simulator generates
24 UDP flows with arrival rate 10,000 pkts/s each. Flows 1
to 8 undergo basic forwarding; 9 to 16 undergo statistical
monitoring; 17 to 24 undergo IPSec encryption. The 8 flows
passing through the same middlebox module is further divided
into 4 groups. Flows in group 1 send large packets with
1400 B; Flows in group 2 send small packets with 200 B;
Flows in group 3 send bimodal packets that alternate between
small and large; Flows in group 4 send packet with random
size uniformly drawn from 200 B to 1400 B. Each group
contains exactly 2 flows, with exponential and constant packet
interarrival times, respectively. The input queue of each flow
can cache up to 1,000 packets. The simulation lasts for 30
seconds. Fig. 11a shows the dominant services received by all
24 flows, where no paritcular pattern is observed in response
to distribution changes of packet sizes and arrivals. Figs. 11b,
11c and 11d show the average single packet delay observed
in three middlebox modules, respectively. We find that while
the latency performance is highly consistent under different
arrival patterns, it is affected by the distribution of packet size.
In general, flows with small packets are slightly preferred and
will see smaller latency than those with large packets. Similar
preference for small-packet flows has also been observed in
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(c) Statistical monitoring.
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(d) IPSec encryption.

Fig. 11. Fairness and delay sensitivity of MR3 in response to mixed packet sizes and arrival distributions.
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Fig. 10. MR3 can quickly adapt to traffic dynamics and achieve DRF across
all 3 flows.

our experiments with DRFQ.

VII. CONCLUDING REMARKS

The potential congestion of multiple resources in a middle-
box complicates the design of packet scheduling algorithms.
Previously proposed multi-resource fair queueing schemes
require O(log n) complexity per packet, where n is the number
of backlogged flows. With a large n, these schemes are
hard to implement at high speeds. In this paper, we present
MR3, a multi-resource fair queueing algorithm with O(1)

time complexity. MR3 serves flows in a round robin fashion.
It keeps track of the work progress on each resource and
withholds the scheduling opportunity of a packet until the
progress gap between any two resources falls below one round.
Through such a simple scheduling deferral, MR3 avoids the
unfairness problem suffered by direct extensions to single-
resource round robin. Our theoretical analyses have indicated
that MR3 implements near-perfect DRF across flows. The

price we have paid is a slight increase of packet latency. We
have also validated our theoretical results via extensive simula-
tion studies. To our knowledge, MR3 is the first multi-resource
fair queueing algorithm that offers near-perfect fairness with
O(1) time complexity. We believe that MR3 should be easy to
implement, and may find applications in other multi-resource
scheduling contexts where jobs must be scheduled as entities,
e.g., VM scheduling inside a hypervisor.
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APPENDIX A
STARTUP LATENCY ANALYSIS

Proof of Theorem 3: Without loss of generality, suppose
n flows are backlogged in round k�1, with flow 1 served the
first, followed by flow 2, and so on. Upon flow n finishes
service on resource 1, flow n + 1 becomes active and is
appended to the tail of the active list. Flow n+1 is therefore
served right after flow n in round k. In particular, suppose
flow n + 1 becomes active at time 0. Let Sk

i,r be the time
when flow i starts to receive service in round k on resource r,
and let F k

i,r be the time when flow i finishes service in round
k on resource r. Specifically, F k�1

n,1 = 0. As shown in Fig. 12,
the startup latency of flow n+ 1 is

SLn+1 = F k
n,1 . (19)

The following two relationships are useful in the analysis.
For all flows i = 1, . . . , n and resources r = 1, . . . ,m, we
have

F k
i,r  Sk

i,r +Dk
i  Sk

i,r + 2L , (20)

where the last inequality holds because of Corollary 2. Further,
for all flows i = 1, . . . , n, we have

Sk
i,1 =

⇢
max{Sk�1

1,m , F k�1
n,1 }, i = 1

max{Sk�1
i,m , F k

i�1,1}, i = 2, . . . , n .
(21)

That is, flow i is scheduled in round k after its previous-round
service starts on the last resource (in this case, the progress
gap on two resources is no more than 1 round) and its previous
flow has finished service on resource 1.

The following two lemmas are also required in the analysis.
Lemma 3: For all flows i = 1, . . . , n and all resources

r = 1, . . . ,m, we have
⇢

Sk�1
i,r  2(i+ r � 2)L ,

F k�1
i,r  2(i+ r � 1)L .

(22)

Proof of Lemma 3: We observe the following relationship
for all resources r = 2, . . . ,m:

Sk�1
i,r 

⇢
max{F k�2

n,r , F k�1
1,r�1}, i = 1,

max{F k�1
i�1,r, F

k�1
i,r�1}, i = 2, . . . , n.

(23)

That is, flow i starts to receive service on resource r no later
than the time when it finishes service on resource r � 1 and

nk�2

Round k-2

rm

...

nk�1

nk�1 nk

F k�1
n,1 = 0

Time

1k�1

...

...

r1

Start-up latency of flow n+1

1k

nk�1...
1k�1r2

(n+ 1)k

F k
n,1

Round k-1

... ...

1k

Round k-1 Round k

Sk
1,1

Fig. 12. Illustration of the startup latency. In the figure, flow i in round k is
denoted as ik . Flow n + 1 becomes active when flow n finishes service on
resource 1 in round k � 1, and will be served right after flow n in round k.

the time when its previous flow finishes service on the same
resource (see Fig. 12).

To see the statement, we apply induction to r, i. First, when
r = 1, the statement trivially holds because

Sk�1
i,1  F k�1

i,1  0, i = 1, . . . , n. (24)

When r = 2, i = 1, we have
⇢

Sk�1
1,2  max{F k�2

n,2 , F k�1
1,1 }  2L ,

F k�1
1,2  Sk�1

1,2 + 2L  4L .
(25)

This is because
F k�1
1,1  F k�1

n,1 = 0 , (26)

and
F k�2
n,2  F k�2

n,m

 Sk�2
n,m + 2L (By (20))

 Sk�1
1,1 + 2L (By MR3 algorithm)

 2L (By (24)) .

(27)

Now assume for some r, i and r � 1, i + 1, the statement
holds. Note that for r, i+ 1, we have

Sk�1
i+1,r  max{F k�1

i,r , F k�1
i+1,r�1} (By (23))

 2(i+ r � 1)L, (By induction)
(28)

and
F k�1
i+1,r  Sk�1

i+1,r + 2L  2(i+ r)L . (29)

Therefore, the statement holds for r, i = 1, . . . , n. We then
consider the case of r + 1, 1. We have

Sk�1
1,r+1  max{F k�2

n,r+1, F
k�1
1,r } (By (23))

 max{F k�2
n,m , 2rL}

 max{2L, 2rL} (By (27))
= 2rL ,

(30)

and
F k�1
1,r+1  Sk�1

1,r+1 + 2L  2(r + 1)L . (31)

Hence by induction, the statement holds. ut
Lemma 4: The following relationship holds for all flows

i = 1, . . . , n:
⇢

Sk
i,1  2(m+ i� 2)L ,

F k
i,1  2(m+ i� 1)L .

(32)
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Fig. 13. Illustration of the packet latency, where flow i in round k is denoted
as ik . The figure shows the scenario under which the latency reaches its
maximal value: a packet p is pushed to the top of the input queue in one
round but is scheduled in the next round because of the account deficit.

Proof of Lemma 4: For i = 1, we have

Sk
1,1 = max{Sk�1

1,m , F k�1
n,1 } (By (21))

 max{2(m� 1)L, 0} (By Lemma 3)
= 2(m� 1)L ,

(33)

and
F k
1,1  Sk

1,1 + 2L  2mL . (34)

Assume the statement holds for some i. Then for flow i+1,
we have

Sk
i+1,1 = max{Sk�1

i+1,m, F k
i,1} (By (21))

 2(i+m� 1)L (By Lemma 3 and (32))

and
F k
i+1,1  Sk

i+1,1 + 2L = 2(i+m)L . (35)

Hence by induction, the statement holds. ut
Applying Lemma 4 to (19) leads to the statement.

APPENDIX B
SINGLE PACKET DELAY ANALYSIS

Proof of Theorem 4: For any packet p, let a(p) be the
time when packet p reaches the head of the input queue and is
ready for service. Let d(p) be the time when packet p finishes
processing on all resources and leaves the system. The single
packet delay of packet p is defined as

SPD(p) = d(p)� a(p) . (36)

Without loss of generality, assume packet p belongs to flow
n, and is pushed to the top of the input queue at time 0 in
round k � 1. The delay SPD(p) reaches its maximal value
when packet p is scheduled in the next round k, as shown in
Fig. 13.

We use the same notations as those in the proof of Theo-
rem 3. Let Sk

i,r be the time when flow i starts to receive service
in round k on resource r, and let F k

i,r be the time when flow i
finishes service in round k on resource r. As shown in Fig. 13,
the packet latency is

SPD(p) = d(p)  F k
n,m . (37)

We claim the following relationships for all flows i =

1, . . . , n and resources r = 1, . . . ,m, with which the statement

holds. ⇢
Sk
i,r  2(m+ n+ i+ r � 2)L ,

F k
i,r  2(m+ n+ i+ r � 1)L .

(38)

To see this, we extend (23) to round k by replacing k � 1

in (23) with k:

Sk
i,r 

⇢
max{F k�1

n,r , F k
1,r�1}, i = 1,

max{F k
i�1,r, F

k
i,r�1}, i = 2, . . . , n.

(39)

We now show (38) by induction. First, by Lemma 4, (38)
holds when r = 1. Also, for r = 2, i = 1, we have

Sk
1,2  max{F k�1

n,2 , F k
1,1} (By (39))

 max{2(n+ 1)L, 2mL} (By (22), (32))
 2(m+ n+ 1)L ,

(40)

and
F k
1,2  Sk

1,2 + 2L = 2(m+ n+ 2)L . (41)

Now assume for some r, i and r�1, i+1, (38) holds. Note
that for r, i+ 1, we have

Sk
i+1,r  max{F k

i,r, F
k
i+1,r�1} (By (39))

 2(m+ n+ i+ r � 1)L, (By induction) (42)

and

F k
i+1,r  Sk

i+1,r + 2L = 2(m+ n+ i+ r)L . (43)

Therefore, by induction, (38) holds for r, i = 1, . . . , n. We
then consider the case of r + 1, 1. We have

Sk
1,r+1  max{F k�1

n,r+1, F
k
1,r} (By (39))

 max{2(n+ r)L, 2(m+ n+ r)L} (By Lemma 3)
= 2(m+ n+ r)L,

and

F k
1,r+1  Sk

1,r+1 + 2L = 2(m+ n+ r + 1)L . (44)

Hence by induction, (38) holds.

13


