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ABSTRACT

Multicasting is a natural paradigm for streaming live multimedia to multiple end receivers. Since IP multicast
is not widely deployed, many application-layer multicast protocols have been proposed. However, all of these
schemes focus on the construction of multicast trees, where a relatively small number of links carry the multicast
streaming load, while the capacity of most of the other links in the overlay network remain unused. In this
paper, we propose CodedStream, a high-bandwidth live media distribution system based on end-system overlay
multicast. In CodedStream, we construct a k-redundant multicast graph (a directed acyclic graph) as the
multicast topology, on which network coding is applied to work around bottlenecks. Simulation results have
shown that the combination of k-redundant multicast graph and network coding may indeed bring significant
benefits with respect to improving the quality of live media at the end receivers.

Keywords: Network Coding, Overlay Multicast, Media Streaming, Multiple Description Coding

1. INTRODUCTION

When distributing streaming media to multiple receivers, it is natural to utilize multicast, as opposed to naive
all-unicast from the source to all the receivers. Due to the lack of a widely available IP multicast service at
the network layer in backbone networks, recent research (e.g.,1–3) has examined the feasibility and trade-offs of
implementing multicast services in the application layer. In these studies, a multicast tree rooted at the source
is formed, with the receivers as members of the multicast group. Each node in the tree transmits the received
stream to each of its children using unicast. However, previous proposals have failed to address the following
two problems. First, a tree is vulnerable to node departures or link failures, especially since overlay nodes are far
from being dedicated servers, and may join, leave or fail in a transient manner. Second, the underlying topology
resource is rather under-utilized, as only a relatively small number of links are utilized due to the tree structure.
In this case, only a single path is assigned to each receiver, leaving many potentially high-quality alternative
paths in the overlay untapped.

In this paper, we propose a novel approach, CodedStream, to significantly improve the performance of dis-
tributing live media to multiple receivers. We deviate from the conventional view that data can only be replicated
and forwarded by overlay nodes. Rather, as end systems, these overlay nodes also have the full capability of
encoding and decoding data. We apply the mechanism of network coding4–6 in a subset of relaying overlay
nodes, with the aim to increase throughput while keeping overhead low. In addition, we also depart from the
traditional wisdom that the multicast topology needs to be a tree from source to receivers, in which, from the
source to each receiver, there exists only one path; rather, we seek to construct a k-redundant multicast graph (a
directed acyclic graph) as the multicast topology, in which network coding is applied. However, the fundamental
trade-off involved in this solution is that, introducing redundant paths may lead to higher link stress, i.e., higher
number of paths passing through the same physical network link. This will likely result in bottlenecks at the
high-stress links, inflicting negative effects on the performance that could potentially be severe enough to defeat
the purpose of having multiple redundant paths. To resolve this issue, we resort to the advantages of network
coding, as well as a meticulously designed algorithm for multicast topology construction.
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Our strategy is built on two cornerstones: (1) Network coding in the k-redundant multicast graph which
provides k redundant paths from the source to each of the receivers; and (2) Multiple Description Coding
(MDC).7, 8 We propose to encode the live media source into k separate streams, or descriptions, and transmit
one description down each of the k paths. With such a design, CodedStream is able to achieve significant
performance improvement at the receivers. Meanwhile, CodedStream also offers improved robustness to node
failures and sudden node departures, since any subset of these k descriptions can be received and decoded into
a stream with distortion (with respect to the original stream).

The key challenge in the design of CodedStream is to construct the k-redundant multicast graph that
minimizes link stress and bottlenecks, on which we apply network coding. Network coding requires specific
overlay topologies that conform to specific patterns, such multicast graphs might not exist in the overlay networks
that consist of only the source node and the receivers; therefore, we recruit cooperative high-bandwidth relay
nodes in the overlay network as core nodes , which do not belong to the multicast group. We note that such a
pool of cooperative nodes is the price we pay to exploit the power of network coding and to significantly increase
streaming throughput. The problem of provisioning incentives to encourage such cooperation in peer-to-peer
systems has been addressed in complementary work (e.g.,9), and is beyond the scope of this paper.

The remainder of this paper is organized as follows. Sec. 2 briefly reviews the concept of network coding.
Sec. 3 presents preliminaries towards the CodedStream design. Sec. 4 discusses the design of CodedStream in
details. Sec. 5 illustrates our results of performance evaluation using simulations. Finally, Sec. 6 evaluates our
proposal in the context of related work, and Sec. 7 concludes the paper.

2. NETWORK CODING

The information-theoretic aspect of network coding was first proposed and studied by Ahlswede et al..4 It is
effective due to its departure from the traditional routing framework where nodes only store, replicate and route
data. With network coding, nodes have the additional capability of encoding and decoding data at the packet
level using efficient linear codes; the aim is to use bandwidth more efficiently and thereby increase network
capacity.
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Figure 1. The effects of network coding: an example.

We briefly review the concepts of network coding with an example shown in Fig. 1. The overlay network is
represented by the graph in Fig. 1(a), in which t1 and t2 are the two receivers in the multicast group, and s is
the source. Each edge has the same unit bandwidth of 1 except that the bandwidth available on edge (s, u3) is
w � 1. This is the case when, for example, s can not sustain an outgoing bandwidth of much more than 2. The
usual all-widest-paths multicast tree is shown in Fig. 1(b); the widest alternative paths are added in Fig. 1(c),
while the other choice of (narrower) alternative paths are shown in Fig. 1(d).

Without network coding, it is impossible to double throughput in Fig. 1(c), since the alternative paths to
t1 and t2 interfere with each other’s widest paths such that they cannot both double their throughput. It can
be verified that the achievable throughput is only 3C/2. The conflict can be eliminated by choosing the paths



in Fig. 1(d), but the bandwidth of the alternative paths is much less (narrower) than that of the original tree,
again making it not feasible to double the throughput.

With network coding, however, the graph in Fig. 1(c) can be safely used to double the multicast throughput
to both receivers. The source transmits two units of information a and b to u1 and u2, respectively, and u3

encodes a, b as a ⊕ b, which is being transmitted to u4. Receiver t1 receives a and a ⊕ b, and decodes to obtain
both a and b; similarly for t2.

Clearly, the topology in Fig. 1(d) represents the intuitive approach of constructing k distinct multicast
trees, referred to as the multicast forest. The intuitive comparison in this example demonstrates the power
of network coding in multicast acyclic graph topologies beyond multicast forests, with respect to improving
session throughput. Such tremendous power of network coding lies in the fact that any conflicts resulting from
interfering paths in the multicast graph can be surmounted to obtain the same throughput for each receiver, as
if it were the only receiver.

However, network coding is not the panacea when it comes to increasing multicast session throughput. There
exist many topologies — including all forms of multicast trees — where network coding fails to be more effective
with respect to improving throughput. It helps to increase throughput only in network graphs that conform
to special patterns. Overlay networks have exactly the properties that could be leveraged to employ network
coding to achieve higher throughput in application-layer multicast, since (1) links, and therefore paths, can be
constructed without too much complexity in overlays, in order to build a desired topology for application-layer
coded multicast; and (2) all the nodes, being end systems, are capable of encoding and decoding.

3. CODEDSTREAM: PRELIMINARIES

The main concept of CodedStream is to combine source-based multiple description coding (MDC) with network-
coded multicasting. A media stream is coded into k multiple complementary descriptions using MDC, and these
descriptions are subsequently multicasted in a constructed multicast graph (rather than a tree) using network
coding.

The quintessential strength of CodedStream lies in culling the unique advantages of both MDC and network-
coded multicast. The benefit of media streaming with MDC is the resilience to lossy links, whereas the advantage
of network-coded multicast is the higher end-to-end throughput. CodedStream achieves both loss-resilience and
high throughput, as will be confirmed by the simulation results.

For clarity, we list the notations in Table 1.

Table 1. List of notations

Notation Definition
s the source node
ui each core node
ti each receiver node
k the number of disjoint paths from s to ti
n the number of receiver nodes within the multicast group
α the original live media signal
α′ the received media signal at ti
vi the vector of linear codes assigned to each node i
Vin the vector of incoming coded streams
Vout the vector of outgoing coded streams
T the set of core nodes or receivers that have k disjoint paths from the source

3.1. k-redundant Multicast Graph

To apply network coding, it is required that (1) from the source s to each receivers ti, there exist k (k ≥ 2)
disjoint paths; and (2) no directed cycles exist in the multicast graph. With Proposition 1 below, we can prove



that, with only the source s and the set of receivers, it is impossible to arrive at a topological pattern that is
amiable to network coding. We omit all proofs due to space constraints. Refer to10 for detailed proofs.

Proposition 1: A multicast graph with only receivers, i.e., every node besides s has k disjoint directed
paths from s, contains a directed cycle.

In this paper, we propose to construct a k-redundant multicast graph which enables us to apply network
coding. A k-redundant multicast graph for single-source multicast is a directed acyclic graph (DAG) that
consists of three components: the source s, the core nodes that are not members of the multicast group, and the
receiver nodes that are multicast group members. Formally, a k-redundant multicast graph has the following
two properties:

1. The set of all nodes, A, is the union of three disjoint subsets {s} ∪ Ac ∪ AT :

1.1 {s}, the source, indegree(s) = 0, outdegree(s) = k;

1.2 Ac, the core nodes (who are not members of the multicast group), denoted by ui, 1 ≤ i ≤ nC (number
of core nodes), 1 ≤ indegree(ui) ≤ k and outdegree(ui) > 0;

1.3 AT , the receiver nodes (i.e., multicast group members), denoted by ti, 1 ≤ i ≤ nT (number of
receivers), indegree(ti) = k and outdegree(ti) ≥ 0.

2. If each edge in the graph has unit bandwidth, then for any node v whose indegree is k, the individual
maximum flow of v is k (since the minimum cut is k).

We proceed to establish the relation between individual maximum flow and the number of disjoint paths from
the source s.

Proposition 2: Given a receiver node t with indegree k in a k-redundant multicast graph with source s and
unit-bandwidth edges, t has k and no more than k disjoint paths from s if and only if t has individual maximum
flow of k.

The most desirable property of k-redundant multicast graph is that, from the source s to each receiver t,
there exist k disjoint paths. This enables us to apply network coding to ensure maximum throughput for each
receiver.

3.2. Multiple Description Coding

Multiple description coding (MDC) is a method of encoding audio and/or video signal into M > 1 separate
stripes, or descriptions, such that any subset of these descriptions that are received can be decoded into a signal
with distortion. If any m ≤ M stripes are received, then the received streaming media quality is m/M with
respect to the original signal. All M stripes are equally important; the more stripes that are received, the higher
is the quality (i.e., lower distortion). It is clear that MDC provides robustness since the probability for all stripes
to concurrently fail to arrive is very low when M is sufficiently large. For instance, assuming the probability p
for each stripe to fail is totally independent, let p = 0.5, when M = 2, the expected probability for at least one
stripe to arrive is 0.75; it increases to 0.996 when M = 8. Furthermore, previous work7, 8 has indicated that
increasing M significantly decreases the distortion, and therefore results in much better reconstructed media
quality at the receivers.

In CodedStream, MDC is seamlessly integrated with other components such as network coding. The live
media stream α is encoded using MDC at the source node into k stripes and decoded at receiver nodes.

3.3. The Advantages of Live Multimedia Streaming

With respect to minimizing link stress, media streaming is a particularly attractive application of multicast in
k-redundant graphs for k ≥ 2. Unlike traditional data traffic that is usually elastic and greedy for bandwidth,
media streaming requires a predictable range of bandwidth due to its constant frame rate (or, even better,
constant bit rate for audio streams). Such characteristics of media streaming applications guarantee that for a
physical link, the bandwidth stress it experiences is the same for any k ≥ 2. Consider a typical CBR 128Kb/s
audio stream and assume equal-sized stripes (descriptions), for k = 2, each of the 2-redundant paths (to a



receiver) takes 64Kb/s, while for k = 8, each of the 8-redundant paths takes 16Kb/s. From the perspective of a
physical link shown in Fig. 2, assume that it has a link stress of 2 for k = 2 and the total bandwidth it carries is
128Kb/s; however, with k = 8, even if the link has a stress of 8, the total bandwidth it carries remains the same
(128Kb/s), since each of the 8 virtual paths mapped to it would carry 1/8 — instead of 1/2 — of the streaming
bandwidth.
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Figure 2. The relationship among bandwidth, stress and transmission rate of each flow

When k increases, the transmission rate of each stripe decreases (assuming that the media to be streamed
is CBR at the source node), i.e., each flow carries lower transmission rate. Therefore, each physical link can
sustain additional concurrent flows, and each node in the multicast graph can have higher node degrees than in
a graph with lower k. In other words, it is feasible to increase k in the context of live media streaming. As will
be confirmed by our simulation results, increasing k means that more underlying physical links are exploited,
and hence the received media quality improves. This, however, is at the cost of increasing system complexity in
recruiting more core nodes and in calculating and assigning linear codes.

4. CODEDSTREAM: ALGORITHMS AND ANALYSIS

The primary objective of CodedStream is to build and maintain a k-redundant multicast graph at the application
layer. Towards such an objective, there are several non-trivial challenges. Our algorithm addresses each of these
challenges, and much of the complexity lies in tackling all of them in conjunction. (1) In order to subsequently
apply network coding, we need to correctly construct a k-redundant acyclic multicast graph from the source to
all members of the multicast group∗. During the construction process, data delivery paths should be optimized
in the multicast graph to the receivers. Each receiver essentially has k disjoint paths from the source; all paths
should be carefully chosen to maximize the aggregated throughput to the receiver. (2) We need to minimize
the number of core nodes with a given number of receivers while preserving good performance. (3) Minimizing
stress is paramount since it directly determines how much actual bandwidth a virtual link has and high stress
can severely diminish end-to-end throughput, i.e., the number of descriptions received at each receiver.

The skeletons of components of the CodedStream algorithms are shown in Table 2. Details of these algorithms
are further discussed and analyzed in subsequent sections.

Table 2. CodedStream Algorithms

On source node s On core nodes
Consider a live media stream α on s: Consider a core node u:

ifStreamingEnd ← false; Upon receiving a vector of coded streams Vin:
Recruit a set of core nodes; Apply network coding on Vin using vu to encode;
Construct a k-redundant multicast graph; Forward generated vector Vout to downstream nodes;
Assign a vector of linear codes vi to each node i;

do On receiver nodes
Apply MDC encoding on α to generate k stripes; Consider a receiver node t:
Forward each stripe to downstream nodes; Upon receiving a vector of coded streams Vin:

until (ifStreamingEnd = true); Apply network coding on Vin using vt to decode;
Apply MDC decoding on generated vector Vout;
Return decoded media stream α′ to media player;

∗Henceforth, the terms multicast group members and receivers will be used interchangeably.



4.1. Constructing the k-redundant Multicast Graph
The algorithms in CodedStream to construct the k-redundant multicast graph are fully distributed and consist
of three steps. The objective of the first step is to build a connected graph of the set of all nodes in the group,
referred to as the rudimentary graph. The second and third steps are carried out for data delivery. In the
second step, an enhanced core tree (tree enhanced by adding some non-tree edges) is constructed from only the
core nodes with source s as the root. Using the rudimentary graph and the enhanced core tree, the third step
constructs the k-redundant multicast graph by carefully selecting k paths from the source to each receiver.

Step 1: Building the rudimentary graph

When a node joins the multicast group as a receiver or declares itself as a core node in the corresponding
multicast group, it is given a set of nodes already in the group†, these are its initial neighbors in the rudimentary
graph. The new node contacts its neighbors so they are made aware of it. Every node maintains a set of neighbors
with which it periodically exchanges group information in the following fashion: (1) Each node stores a list of
addresses of all the nodes it knows about in the group; and (2) neighboring nodes periodically exchange and
update local neighbor lists with each other. After a node joins, the information about the new node will
eventually be propagated through the rudimentary graph. The information of whether a node is core or receiver
is kept alongside its address in the list each node keeps (of all the nodes in the group to the best of its knowledge).

The process of building the rudimentary graph resembles that of constructing the Narada mesh.2 The
differences lie in the extra objectives of this process in addition to the high quality of the mesh that Narada
seeks. The objective is to construct a rudimentary graph such that the following properties are satisfied. First,
the core nodes (assisting the corresponding multicast group) are required to be connected, and form a subgraph
referred to as rudimentary core graph. Second, each of the receivers maintains at least k neighbors. Third,
several receivers have at least k neighbors that are core nodes.

Periodically, each node u randomly chooses another node v in the group that is not a neighbor and by sending
a probing packet, estimates the bandwidth and latency of the direct overlay link, (u, v). If the direct link is
better than most of its (direct) links to its current neighbors, then v is added as a neighbor of u and the edge
(u, v) is added to the rudimentary graph. The goal is to have overlay links (edges) that have good performance
in the rudimentary graph.

Let x be a current neighbor of u. If the number of neighbors of u is greater than k and (u, x) is much worse
than the links u has to its other neighbors, and both u and x use this link rarely (i.e., use it to reach very few
nodes), then u drops x as its neighbor and (u, x) is removed from the rudimentary graph.

The dynamics of adding good edges and dropping poor edges is vital to the performance of the entire
multicast scheme. This is because that, ultimately, the edges in the rudimentary graph are used to construct
the data delivery paths, whose performance depends directly on the quality of these edges.

In order that some of the receivers will each have at least k core nodes as neighbors, we use a simple procedure:
each core node contacts its receiver neighbor with which it has the best link, and if this receiver does not have k
neighbors that are core nodes, then it probes all the other core nodes it knows about and selects the ones with
the best links.

Step 2: Building the enhanced core tree

We first construct the core tree from the subgraph of the rudimentary graph consisting of s, as the root, and
the core nodes only. We adopt the distributed algorithm proposed by Wang and Crowcroft11 based on distance
vectors that finds the shortest widest paths from s to each core node. With this algorithm, the widest path,
or the path with the highest end-to-end bandwidth, is selected; and if there is more than one widest path, the
shortest, one with the lowest end-to-end latency, is then selected.

The core tree is then enhanced by adding edges to the tree, in order to greatly facilitate the third step of
building the k-redundant multicast graph. Each node chooses k − 1 non-tree edges to be part of the enhanced
core tree so that the best possible k paths will be constructed in the third step. We use a labeling technique to
efficiently find these non-tree edges with the result that each core node has k disjoint paths from s. The detailed
algorithm is shown in Table 3.

†Any of the existing solutions in the literature to address this bootstrapping or rendezvous problem may be used.



Table 3. Building the enhanced core tree
On core nodes

Construct a spanning tree rooted at s on core nodes based on the shortest-widest path algorithm;
Label the first path to s on the spanning tree;
numOfPaths ← 1;
do

Find a disjoint path in the subgraph of s and Ac;
Label this path;
Add edges in the path to the enhanced core tree;
numOfPaths ← numOfPaths + 1;

until numOfPaths = k;

We use a running example to illustrate the steps of our algorithm. In our example, k = 2, i.e., we are
constructing a 2-redundant multicast graph. The enhanced core tree is shown in Fig. 3(a). Nodes u1, u2, u3, u4

are all core nodes, the solid edges form the core tree and the dashed edges are the non-tree edges added for the
enhanced core tree.

(a) Enhanced core tree; 
solid: tree edges;
dashed: non-tree edges.
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Figure 3. Example enhanced core tree and receivers in rudimentary graph that have two core neighbors.

Step 3: Building the multicast graph
Based on the rudimentary graph and the enhanced core tree, a k-redundant multicast graph is constructed,

by first finding data paths for receivers that have k or more core neighbors. Afterwards, the distributed shortest-
widest-paths algorithm11 is used to build an optimal spanning tree of all the receivers, called receiver tree starting
from the receivers that already have data path from the first phase. Finally, the set of receivers with k incoming
data paths is expanded to the set of all receivers by adding the best possible links to the receiver tree. All
throughout, distributed labeling and relabeling procedures are run by the nodes to avoid creating directed
cycles in the multicast graph.

Returning to our running example, there are four receivers in the rudimentary graph that have two core
nodes as neighbours, they are shown in Fig. 3(b). All edges in our example rudimentary graph have bandwidth
of 2, except the edge u1 −u4 which has bandwidth 1. For these receivers, they each find two disjoint paths from
s using their two core neighbours. These are shown in Fig. 4(a),(b). For receivers t1 and t2, the best two paths
for each of them are found in the core tree; while for t3 and t4, the paths found include non-tree edges in the
enhanced core tree.

To complete the example, we also include some receivers, t5 and t6, that do not have two core nodes as
neighbours, as shown in Fig. 4(c). The set of receivers with two incoming data paths is initially just {t1, t2, t3, t4}
before data paths are found for t5 and t6. They can add edges from any two nodes in T = {t1, t2, t3, t4} ∪
{u1, u2, u3, u4}. Node t5 chooses t4 and u2 as its parents, while t6 chooses t2 and t3. Now, once they have found
two optimal data paths, the set T is expanded to include them, T = T ∪{t5, t6}. This process proceeds until all
receivers become members of the set T .

4.2. Limiting Node Degrees
Our main emphasis is on minimizing stress because it directly affects the actual end-to-end throughput. Placing
a constraint on node degree, i.e., limiting the number of neighbors that a node has, is an effective technique to



(b) 2-redundant multicast data paths with edges in enhanced core tree.

(a) 2-redundant multicast data paths with only edges in core tree.
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Figure 4. (a),(b) Data paths for the four receivers from our example. (c) The case of six receivers

minimize stress.

We need to impose the constraint of maximum node degree, ∆, during the construction of the rudimentary
graph. However, the rigidity of a universal ∆ imposed uniformly on all nodes is not suitable in overlay networks,
where end hosts have vastly different available aggregate bandwidth (i.e., the “last-mile” bandwidth). For
example, end hosts that enjoy a high-bandwidth physical link should be able to afford carrying more virtual
links in the overlay. We therefore define a new metric node stress to capture the distinction. Given the aggregate
bandwidth Bu and the current number of neighbors δ of an overlay node u, the node stress of u is δ/Bu, which
should be maintained at a stable level. When choosing neighbors to form the rudimentary graph, node stress
of a candidate neighbor is considered along with link bandwidth and delay. As a result, nodes with higher
aggregate bandwidth are chosen by more nodes to be their neighbors, and hence have higher degrees than nodes
with lower bandwidth.

In order to incorporate node stress, a value of node stress is also associated with each node during the
construction of the rudimentary graph. It is given in response to all probes searching for potential neighbors.
When choosing neighbors, in addition to consideration of link bandwidth and delay, low node stress is explicitly
favored.

4.3. The Dynamics of Node Joins and Departures

When a set of nodes join the multicast group, they are first given a list of group members, at least some of which
are still members. The new nodes find neighbors with good links and low node stress, creating new edges in the
rudimentary graph. If the best links that a newly joined member has are adjacent with core nodes, then it can
run the procedure for finding data paths through core neighbors (the first phase of the construction of multicast
graph). Otherwise, if this fails, the new receiver finds paths from choosing the best among all its neighbors
which are either a core node or a receiver that is already k-redundant.

A node sends notification to its neighbors when it leaves the group. The periodic exchanges of information
between neighbors ensure that eventually everyone will be informed. If a node fails or leaves without being able
to notify others, then the neighbors will stop receiving the periodic information exchanges from this node. After
a timeout period, they will assume the node is no longer in the group and send out notifications. Node failures
are handled gracefully and efficiently. When a node v fails, only the children of v in the k-redundant multicast
graph need to execute procedures to find another parent. This procedure is exactly the same one as if these
children nodes are joining the group, except that they still keep their own descendants. Since node degree is
constrained in the multicast graph, only a small number of nodes need to re-discover parents when a node fails.

4.4. Further Discussions

CodedStream has to recruit other nodes as core nodes to become functional. However, we argue that this is not
a major problem. Although dedicated relaying nodes are rare and expensive, we can recruit other overlay nodes



to assume such roles. For instance, CodedStream nodes might not be interested in receiving all the live media
content. That means that not all CodedStream nodes join the same streaming session. Some of them might be
idle and available to be core nodes and assist ongoing sessions, provided that specific incentives are given.

Furthermore, we might consider CodedStream as a self-contained application-layer protocol, which deals
with group management, membership maintenance, etc. We expect that CodedStream can also run on top of
a current existing peer-to-peer protocol as an add-on protocol and be able to take advantage of the underlying
protocol to deal with such issues.

5. PERFORMANCE EVALUATION

We have conducted simulation-based experiments using a packet-level, event-based simulator to evaluate the
performance and reveal the strengths of CodedStream, in the context of three benchmark protocols: (1) DVMRP,
an implementation of IP multicast; (2) Narada, a tree-based application-layer multicast; and (3) multicast forest,
a forest of k distinct multicast trees between source and all receivers.

We have chosen the INET topology generator from the University of Michigan,12 which is fully capable
of generating large-scale topologies that conform to the power-law characteristics. The underlying IP-layer
topology consists of 6000 routers with end systems to each of which a router is randomly attached. IP-layer
physical links conform to a power-law distribution pattern, with a range of 128 − 4433 Kb/s. The average link
bandwidth is about 410 Kb/s.
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A recent measurement study by Saroiu et al.13 shows that in peer-to-peer file sharing systems the distribution
of “last mile” bandwidth follows a power-law distribution spanning from 14.4 Kb/s to 100 Mb/s. In our
simulation setup, end systems have higher last mile bandwidth. We argue that in the context of live media
streaming, end systems generally have higher bandwidth. In fact, such higher last-mile bandwidth motivates us
to introduce redundant paths to improve the performance of live media streaming.

As per our goal, we focus on the simulation results with respect to streaming quality as perceived by receivers,
which is a performance measure that embodies both throughput performance and resilience to loss.

For DVMRP and Narada, MDC is not applied. We simply assume that a certain specific hop-by-hop
congestion control protocol enables the graceful degradation of media streams in both systems. Therefore, for
each receiver in DVMRP and Narada, the received streaming quality is the ratio of received throughput over
the transmission rate at the source.

MDC is applied in multicast forest and CodedStream as follows. In multicast forest, each tree carries a
description. In CodedStream, each disjoint path carries a description. Received streaming quality of each
receiver in multicast forest and CodedStream is the number of received descriptions over k; however, due to the
dynamics in the system, the received quality at each receiver is not discrete, rather, it is distributed over the
range of [0, 1]. Due to the limitation of our simulator, we define the received media quality as the expected value



of the ratio of the number of received stripes over k, which does not exactly match the term media quality with
respect to distortion in the context of signal processing. However, we believe that such an estimate captures the
system dynamics well.
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Figure 6. Left figure: Link stress distribution. Right figure: The quality of received streaming data averaged over all
the receivers.

In our experimental setup, we randomly choose n overlay nodes as the core nodes. The simulation results
would likely have been better had we selected overlay nodes with higher aggregate bandwidth during the process
of recruiting core nodes. To provide fair comparison with multicast forest, we use the same scenario in simulating
multicast forests.

Received media quality distribution over all receivers in a group size of 150 is plotted in Fig. 5. Quality for
all but a few of the nodes in CodedStream (k = 2) are lower than DVMRP and higher than Narada. It can be
seen that for CodedStream (k = 2), some nodes achieve quality as high as DVMRP. The worst quality of a node
in CodedStream (k = 2) is higher than the worst in Narada.

It appears that Fig. 5 confirms the intuition that extra redundant paths do bring better streaming perfor-
mance at the receiver end. However, in the application layer overlay, this might not be the case: introducing
extra redundant paths may not necessarily improve the end-to-end performance. In the right graph in Fig. 6, in
the case of k = 2, as n, the number of receivers, increases, the average received media quality of CodedStream
and multicast forest both decreases. Moreover, multicast forest is outperformed by Narada when n increases
beyond 200. The reason is not difficult to find: redundant paths may result in higher stress on physical IP links,
and in some cases, the last mile bandwidth becomes the bottleneck, which might recoil the benefits brought by
extra paths.

This observation is confirmed by the left graph in Fig. 6. In the figure, the horizontal axis is the link stress
and the vertical axis is the number of physical links for a given stress. The number of virtual overlay links for
CodedStream and multicast forest is higher, so stress on physical links in proximity of the end systems (overlay
nodes) is bound to be higher. This explains the phenomenon that there are more physical links with higher
stress for CodedStream than for Narada. Furthermore, there are more physical links with higher stress for
multicast forest than for CodedStream. This is reasonable since CodedStream exploits network coding, which
helps alleviate stress.

In the right graph in Fig. 6, it is clear that increasing k results in better receiver media quality for both
CodedStream and multicast forest. However, increasing k from 2 to 8 does not yield an improvement of four
times. The reason is the same as above: the improvement in received media quality is the result of introducing
extra redundant paths; on the other hand, the extra paths put higher stress on some physical IP links to
counteract such benefits.



On the bright side, CodedStream significantly outperforms multicast forest for both values of k; therefore,
the simulation results confirm our observation. In the simulation, streaming has a constant transmission rate of
512Kb/s. When k = 8, it means that every complementary description has a rate of only 64Kb/s. This is quite
small compared to most of the link bandwidths. An important advantage of CodedStream over multicast forest
is the ability to find higher-bandwidth links for the multicast graph, because it is not constrained by the strict
requirement of finding distinct trees, therefore it has more links to choose from during construction.

It might be of interest to the reader what the optimal value is for k. Unfortunately, the optimal k is variable
in different topology setups and for different bandwidth limits of core nodes and receivers. The reason is two-fold:
(1) As k increases, both the sustainable physical link stress leading to overlay nodes and the limited number of
cores and receivers significantly decrease the probability of finding multiple good paths from the source to the
receiver. (2) As k increases, the code assignment algorithm becomes more complex and adverse to the dynamics
of node joins and departures.

6. RELATED WORK

This work was mainly inspired by previous work on the information theoretic aspects of network coding, which
demonstrates the potential of achieving per-receiver maximum-flow throughput in a multicast graph by applying
linear codes.6 Although exciting insights have been provided, the existing studies in network coding have
remained largely theoretical, and we are not aware of any published work that studies the feasibility of applying
the theoretical insights in network coding to increase throughput in actual multicast streaming sessions over
wide-area networks.

Many application-level multicast systems have been proposed recently, e.g.,.1, 2, 14 All are based on a single
multicast tree. Several systems exist that use end-system multicast for media distribution, notably Overcast14

and Narada2 for Internet video conferencing.

Inspired by previous two-step algorithms such as Narada,2 our algorithm begins with the construction of
the rudimentary graph that is similar to the Narada mesh. However, our proposal distinguishes from Narada
in the following fundamental aspect: the goal of our algorithm is to construct a multicast graph, rather than a
tree, in order to increase streaming quality at the receivers and to take advantage of the tremendous power of
network coding.

Among all previous work, perhaps the work on CoopNet15 and SplitStream16 are most similar to Coded-
Stream. Both papers have proposed to utilize multiple multicast trees to deliver striped data, using either
multiple description coding or source erasure codes to split content to be multicasted. CoopNet proposes a
centralized algorithm to facilitate using multiple multicast trees from different sources, and does not feature
built-in support of optimizing link stress and stretch. SplitStream proposed a decentralized algorithm to con-
struct a forest of multicast trees from a single source, with a focus on per-node load balancing. In both work,
the inherent concerns of throughput limitations caused by conflicting paths have not been addressed. In com-
parison, CodedStream constructs an acyclic multicast graph from one multicast source, which, combined with
coding, introduces a smaller degree of stress on overlay nodes compared with a forest. Further, CodedStream
seeks a well-balanced trade-off between the constraints on link stress and the selection of good paths to achieve
high throughput. Network coding, while essential to the performance of CodedStream, has not been incorpo-
rated in either CoopNet or SplitStream due to its infeasibility in a forest of multicast trees. In Sec. 5, we have
demonstrated the best-case results using such multicast forest strategies, which are inferior to CodedStream.

Finally, Kostic et al.17 and Byers et al.18 have both proposed to construct an overlay mesh of concurrent data
dissemination connections, each sending a (hopefully) disjoint set of data. As a node receives data from these
connections and merges incoming data, throughput may be significantly improved due to the larger number of
concurrent connections. Byers et al. have discussed the algorithmic details of merging differences from different
downloading sources, while Kostic et al. have proposed an elaborate algorithm that allows nodes to send data
to different points in the overlay, as well as to locate and recover missing data items. While both papers need
to assume large or unlimited buffers at each overlay node in order to store elements of data to potentially serve
others, they might not be appropriate in the context of live video streaming which is delay-sensitive.



7. CONCLUDING REMARKS
In this paper, we have proposed CodedStream to significantly improve the performance of end-to-end streaming
of live multimedia. Such surprising results are achieved by the application of network coding when exploiting
path diversity with k redundant paths to each multicast group receiver. We depart from the conventional wisdom
that the multicast topology between the source and the receivers should be a tree, and that data may only be
replicated and forwarded by intermediate overlay nodes. To the best of our knowledge, there do not exist similar
proposals in previous literature. With respect to the effectiveness and performance of CodedStream, we have
undertaken both analytical and simulation-based studies, which agree with our original claims. We are currently
in the process of implementing CodedStream as an application-layer streaming protocol on wide-area overlay
network testbeds, including the wide-area network within the infrastructure of PlanetLab.19
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