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Abstract— The transmission of information within a ::%%?:ggrynent Iriiipea replicablg encodablp
data network is constrained by network topology and cap
link capacities. In_ this paper, we _study the fun_damental info. flow | yes ves yes yes
upper bound of information multicast rates with these fluid flow | yes yes no no

constraints, given the unique replicable and encodable
property of information flows. Based on recent information
theory advances in coded multicast rates, we are able
to formulate the maximum multicast rate problem as a a multicast ratey is feasible if and only if the max-
Iinegr network optimization problem, assuming the general f|ow rate from the source to each receiver is at least
undirected network model. We then proceed to apply | 1] [2]. Fig. 1 illustrates the concept of multicast
Lagrangian relaxation techniques to obtain (1) a necessary rate, data replication and data encoding with two simple

and sufficient condition for multicast rate feasibility, and . .. . ;
(2) a subgradient solution for computing the maximum multicast transmissions. All links in the examples have

rate and the optimal routing strategy to achieve it. The @ Unit capacity ofl bit per second.

condition we give is a generalization of the well-known

conditions for the unicast and broadcast cases. Our subgra- @ © © o

dient solution takes advantage of the underlying network \ \ — /;ipir'{fa“"”
@

flow structure of the problem, and therefore outperforms /O\ OK a a
general linear programming solving techniques. It also @ @ @ @
admits a natural intuitive interpretation, and is amenable
to fully distributed implementations.
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Packet transmission in data networks may be mOde'EﬁQ. 1. Multicast rates with information replication and information
as the flow of bit streams, referred to as informatioghcoding.
flows. Compared to classical network flonesg, fluid
flows in a pipe network, information flows share some In the first example, the max-flow rate frosi to
common fundamental properties while differ in othergitherT; or 75 is 1 bit per second. Although these two
As compared in the table below, both fluid flow anflows share their first link, It is still possible to multicast
information flow need to confine to the network topolinformation to both7}; and 75 at the rate ofl bit per
ogy, and to respect link capacities. However, informatigecond. We can send just one copy of the flow at the
flows may be replicated or encoded, while fluid flowshared link, then replicate it into two identical copies
may not. and forward one along each downstream link.

Replication and encoding have been shown to beln the second example, the max-flow rate frahto
fundamental capabilities in achieving high informatioeither 77 or 75 is 2 bits per second. Again these two
multicast rates [1], [2], [3]. Multicast refers to the fornflows share a common relay link in the middle of the
of one-to-many data transmission. Ahlsweeteal. and network. This time the problem can be resolved by data
Koetteret al. recently proved that, in a directed networkencoding. Two distinct unit rate incoming flows,and
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b, are encoded at the tail of the shared link, using-the each of which we then apply Lagrangian relaxation
operation defined in the Galois field. The encoded flotechniques. Lagrangian dualization has been proven to
which also has a unit rate afbit per second, is then sentbe an effective method both for deriving max-min style
through the shared link to its head, where the encodidconditions [5], and for designing efficient distributed
flow is replicated and further routed to both receiversolutions for convex optimization problems [8], [9].
Each receiver can recover the two original flowsnd  The necessary and sufficient condition we derive in
b from the two flows they receive. this paper is a generalization of the well known condi-
For directed networks, the aforementioned result dtiens for the unicast and broadcast cases, and is obtained
to Ahlswede et al. and Koetteret al. constitutes a through studies of the Lagrangian dual of the primal
nice necessary and sufficient condition for multicast rali@ear program. Applying Lagrangian relaxation on the
feasibility. It further leads to an efficient solution fordual program leads to a subgradient solution, which
computing the maximum multicast rate. One just neetlas an appealing intuitive interpretation: it iteratively
to compute a maximum flow from the multicast sendémproves an existing orientation of the original network
to each receiver, independently. Then the minimum phsed on the link saturation level, until an optimal one is
these max-flow rates is the maximum achievable rate f@ached. Then a number of maximum flow computations
the entire multicast connection. are invoked to determine the maximum flow rate and
However, these results do not directly apply in ththe corresponding flow routing strategy. Our algorithm
more general undirected network model [4], for which ntakes advantage of the underlying network flow structure
non-trivial necessary and sufficient feasibility conditionf the problem, and consists of mostly max-flow/min-cut
is known, and no efficient algorithm for computing theomputations. It outperforms general solution techniques
maximum rate has been proposed. In an undirected n@leh as the simplex method, which solves the linear
work model, each link is bi-directional, and flows in botlprogram as a black-box and ignores its background. We
directions share its capacity. The study of the undirectatbo show that our algorithm allows a fully distributed
network model is supported by the following justifiimplementation.
cations. First, as past research in network flow theoryThe rest of the paper is organized as follows. We
[5] and information theory [4] suggests, the undirectgstesent related work in Sec. Il, give linear programming
network model has its own rhythm, and results obtainggrmulations of our problem in Sec. Ill, derive the
there may be drastically different from those obtain€f condition in Sec. IV, and construct the subgradient

in the directed network model. In fact, the undirecteglgorithm in Sec. V. We then conclude the paper in
model is more general in that, a solution constructed fgec. VI.

undirected networks can usually be applied to solve the
same problem in directed networks, but not vice versa. II. RELATED WORK
This is particularly true for our problem and solution in
this paper. Second, undirected links provide the completeRecent research in information theory discovers that
flexibility in capacity allocation, and consequently leaduting alone is not sufficient to achieve maximum
to higher transmission rates that better represent théormation transmission rate across a data network [1],
optimal information delivery rate, compared to static link2]. Rather, applying encoding and decoding operations
capacity allocation in directed networks. Finally, in speat relay nodes as well as at the sender and receivers, are
cial network scenarios such as wireless ad hoc networksgeneral necessary in an optimal transmission strategy.
the communication link is naturally undirected, in th&uch coding operations are referred ton@swork cod-
sense that data transmission along both directions of thg. The pioneering work by Ahlswedet al. [1] and
wireless link share the available spectrum [6], [7]. Koetteret al.[2] proves that, in a directed network with

In this paper, we study the maximum multicast rateetwork coding support, a multicast rate is feasible if
problem in undirected networks. Our objectives includ&nd only if it is feasible for a unicast from the sender to
both a necessary and sufficient feasibility conditio®ach receiver. Let al. [10] then prove that linear coding
and an efficient, distributed algorithm to compute thesually suffices in achieving the maximum rate.
maximum multicast rate. Towards this direction, we first In [11], Sander®t al. study efficient code assignment
formulate the maximum multicast rate problem into m directed acyclic networks. They design polynomial
linear network optimization problem. We present aniiime algorithms that determine the coding operations to
interpret both the primal and dual linear programs, die applied at each node, in order to achieve the maximum



multicast rate. Their result improves the previous alga:F(21).
rithm of Li et al, which performs exponentially many Traditional network flow theory studies the transmis-
linear independence inspections [10]. Code assignmeitdn of goods within a capacitied transportation network.
is complementary to our work in this paper. Our subgrdhe maximum transmission rate between two nodes is
dient algorithm finds the optimal routing strategy, whicbharacterized by the celebrated max-flow min-cut theo-
specifies how much flow is to be routed through eacbm [5]: a flow ratey between nodes andv is feasible,
link. Code assignment then determines the contentibfand only if every cut between and v has size at
these flows,i.e.,, their linear relation with the original leasty. Various algorithms may compute the maximum
information flows at the sender. flow efficiently, some of which allow fully distributed

In [3], we show that for undirected networks, thémplementationg.g, the push-relabel algorithm [5] and
potential of network coding to improve multicast ratéhe e-relaxation algorithm [8].
is rather limited: bounded by a factor ®fin theory (the  Our work in this paper was also inspired by a prelim-
bound2 is for the fractional case; in the integral case, theary version of [9], in which Lunet al. successfully
best known bound i26 implied by Lau’s recent work design subgradient algorithms for computing the min-
[12]), and usually much smaller in practice. Howevegost multicast topology in directed networks. Both their
the introduction of network coding dramatically reduceslgorithm and ours target efficiency and potential for
the computational complexity of finding the maximundistributed implementation. Their algorithm works on
multicast rate and the strategy to achieve it. Withoat partial Lagrangian dual of the primal problem, and
network coding, the maximum multicast rate probleramploys primal recovery techniques to obtain the entire
is equivalent to Steiner tree packing, which is a welbptimal solution. Our algorithm applies Lagrangian re-
known NP-complete problem [13]. With network codinglaxation on the dual problem, and compute the entire
the maximum multicast rate can be computed via lineaptimal primal solution from partial primal solution
optimization. In [4], we show that for either a singleéhrough pure combinatorial computations.
communication session or multiple sessions, either with
network coding support at all nodes or at edge nodes
only, the maximum transmission rate problem can be
formulated into linear network optimization. While [4] In [4], we have given the primal linear program for the
gives only the primal linear program without a solutiofif@ximum multicast rate problem in undirected networks.
method, we work on both the primal and dual linear prddere we present this LP again for completeness. We
grams in this paper, and provide an efficient, distributédso give the dual program, which will be used in the
solution. design of our subgradient algorithm in Sec.V. Our primal

On the application side, network coding resear@nd dual linear programs have an underlying structure
has spawned a number of coded multicast system @-network flow and cut, respectively. For the ease of
sign recently. These systems are usually built updderstanding and later reference, we present the max-
application-layer overlay networks or wireless ad hdtow and min-cut linear programs first.
networks, where each node is a fglly-functiqr_wgl hosk  the max-flow LP and the min-cut LP
and therefore possesses data encoding capabilities. These

systems differ from previous multicast protocols in that L&t G = (V. E) b% the network topology, and the
information is no longer transmitted along a singl§onstant vector’ € Q7 be capacities of the undirected

multicast tree, or a collection of multicast trees. FJINKS, whereQ . denotes the set of nonnegative rational
instance, Zhuet al. utilize network coding to buildc- numbers. In the max-flow LP['S is a directed virtual
redundant multicast mesh in application-layer overldipk with infinite capacity, going from the destinatidh
networks [14]. Chouet al. design robust de-centralizedto the sourceS. N(u) denotes the set of neighbors of
network coding schemes for broadcast transmission [18pde u. f € Qﬂ is the flow vector, whered = {u_{;
Wanget al. [16] completed a real-world coded multicast vu luv € E} is the set of directed arcs. The scalar
implementation targeting near-optimal throughput. It iny is the overall end-to-end flow rate. The max-flow LP
cludes art-relaxation based algorithm for computing thessentially maximizes the end-to-end flow rate, with link
maximum-rate multicast topology, a randomized code aspacity limits and flow conservation requirements (total
signment component, and a coding library that supporteoming flow rate at a node equals its total outgoing
network coding operations over finite fieldF'(2°%) or flow rate). Flow conservation at source and destination

[1l. M AXIMUM MULTICAST RATE : LINEAR
PROGRAMMING FORMULATION



. . iy Maximize
nodes are possible due to the virtual lifiks we add, X

. Subject to:
the flow rate on which exactly equals the overall flow _
rate fromsS to 7. x < fi(T;S) Vi (1)
The max-flow linear program filuw) < C(@ VLY w#TS  (2)
L — EUGN(u) fi(uv) = EUEN(U,) fi(vu) Vi, Vu (3)
Maximize x = f(TS) cluv) + c(vu) < C(uv) Yuv #£ T;S (4)
Subject to: - - -
. c(wv), fi(uv),x >0 Vi,V uv
{ flav) < Cluv) V aw£TS
ZveN(u) f(’LL’U) = ZvEN(u) f(vu) Y
f(uw) >0 Y w

the senderS to each receivefl; — and do so in an
optimal way, in that the minimum of the independent
max-flow rates — which by the result of Ahlswe@¢
al. [1] equals to the multicast rate — is maximized. A
Minimize > a Cluv)y(uv) feasible solution to the primal LP provides an orientation
Subject to: of the original networkc(uv); a flow routing scheme,

{ JE) 4 p(0) > plu) Y o TS f(uwv) = max; f;(uv); and a feasible multicast rate,
( >1

The min-cut linear program

C. The dual linear program

y(uv) >0 Y ww The dual linear program for the maximum multicast
rate problem is:

In the min-cut LP, vector indicates which links are
“cut”. This LP always has an optimal solution that i inimize S, C(uv)z(uv)
integral, where each entry ip is valued to eitherl supject to:
or 0, indicating whether the corresponding link is in

the min-cut or not. The constraints imply that, for eac I(“ﬁ) z 2 yi(uv) Vuv iT’?Sﬁ (5)
path P connecting the sourcé to the destinatiori, yi(uwo) +pi(v) > pi(u) Vi,V uw#LS  (6)
Y opyi > 1, ie, at least one link along the path is| Pi(T:) —pi(S) =z Vi (7)
cut. The objective is to minimize the total link capacity 2z 21 (8)

being cut. z(uv), yi(uv), 2 > 0 Vi, ¥ uv
B. The primal linear program

In the primal LP for the maximum multicast rate

problem, vectorc : Q4 stores capacities for directed \ypjle the primal LP is in the form of flow maximiza-
links, i.e., the allocation of the undirected link capacityﬁon’ the dual LP is in the form of cut minimization. In
in both directions. The se.nder nodeSisand the receiver g optimal solution, each dual variable in vectarsy
nodes arefy, ..., Ty. x is the overall multicast rate. anq, js valued between and1. In the dual constraints,
Vectors f; € Q¢ denotes a network flow from sendeyg) gistributes weights among the cuts betwe®rand
S to each receivefl;. Directed linksT;S with infinite each7;. (6) and (7) require each cuf to be a valid
capacity are again introduced for a concise presentaticut, except that an edge in the cut will now be cut to
of the LP. percentage;, rather thanl00% as in the minimum cut
Constraints in the primal program require capacitied®. Then the cut values of a link in thedifferent cuts
allocated to both directions not to exceed the undirectace added up in (5). If the summations in both directions
link capacity (4), each flow; to be a valid network flow differ, the larger one is taken to be the cut value for the
(2)(3), and the multicast rate not to exceed any of thesadirected link.
network flow rate (1). Essentially, the primal LP tries The variable-constraint correspondence in the primal
to establish an orientation of the undirected networknd dual LPs is given in the table below. It will later
within which to set up independent network flows fronmelp us decide which constraints to relax.



primal| (1) | (2) | ) | (4) | c f(uv) f(TjS) x | explain how it generalizes the conditions in unicast and
dual |z |y |p |z |(5)](6) @) (8) | broadcast cases, and provide an interpretation from the
perspective of bandwidth efficiency.

A. The condition as a theorem

D. Performance of general LP solvers Theorem 1. A multicast rate is feasible in an undirected

Both the primal and the dual LPs ha@&km) number networkG, if and only if for every link distance function
of variables andD(km) number of constraints, whele 1 ¢ QF,
is the number of multicast receivers, amd= |E| is the

number of links in the network. Since linear program- ¢ _

ming is polynomial time solvable in general, it follows M'nx(f)=1’f‘w B

that the maximum multicast rate can be computed in _
polynomial time, even for undirected networks. In the theorem above|G|, denotes the size of

However, experiences show that for network flow typ® network under distance vectar, i.e, |G|, =
problems with extra side constraints,g, the multi- 2w C(u0)z(uv). f € Q4 denotes a multicast topology,
commodity flow problem, the performance of gener&' @ flow routing scheme; andf|, = > . f(uv)z(wv)
linear programming techniques are often below accep- the size of the multicast topology, under distance
able levels, when the size of the problem is relativeNectorz. Min, (s_;|f|. denotes the size of the minimum
large. For the multicast rate problem in particular, waulticast topology that achieves unit multicast rate. Note
have experimented with both the simplex method afdmulticast topology is not necessarily a multicast tree
the primal-dual interior-point method, as implemented- the second multicast transmission in Fig. 1 constitutes
in gl pk 4. 4 [17]. We apply both methods to solve thed counter example.
primal LP as a black-box, on networks and muIticag_ The proof of correctness

groups with various sizes. Our findings show that, on _ ] _
a typical Pentium IV computing platform, the interiorProof of Theorem 1Consider the primal multicast rate

point method may handle networks with a few thousarkd” 9iven in Sec. lll-B. We now formulate its Lagrangian
links within a reasonable amount of time (on the ord&u@l by relaxing the undirected link capacity constraints
of seconds), as long as the multicast group is smkf: a_nd mtrqduce corresponding prices into the objective
(k < 5). For networks that are larger, or for a broadcafynction, which becomes:

network with a few hundred nodes and less than one Y — Zx(uv)A(uv).

thousand links, the computation easily takes hours. The -

performance of the simplex method is constantly WOISe  ihe  modified objective  function  above

than that of the interior-point method. — —
. . . A = — d tes th t
Another critical drawback of applying general linea (uv) = c(uv) + c(vu) — Cluv) denotes the amoun

_ thods. is that th thod bf capacity over-use at linkw, and z(uv) is the
programming methods, 1S that these methods are m'igrangian multiplier acting as the unit price charged
herently centralized, requiring global information bein

lected t iral point of at Th for capacity over-use. At this point, the primal multicast
collected fo one central point of compttation. the S?éte LP is transferred into the Lagrangian subproblem:
lution we construct in Sec. V solves both problems. It

decomposes the maximum multicast rate computation L(xz) = Maxp[x — Zx(uv)A(uv)],
into a sequence of max-flow/min-cut computations, for ww

which very efficient algorithms exist and can be appliedyith P being the following polytope:

It also allows the computation to be distributed onto each

node in the network, where only local information is x < fi(Tjs) Vi
collected. P fi(zﬁ)) < C(u—;}) ViV £ TLS
IV. M ULTICAST RATE FEASIBILITY: THE NECESSARY ZE)EN(U) Jz(uv) = ZvEN(u) fi(vu) Vi,Vu_}

AND SUFFICIENT CONDITION c(uv), fi(uv),x >0 Vi,V uv

We now apply Lagrangian relaxation on the primal The Lagrangian dual problem is then:
LP to derive the necessary and sufficient condition for The Lagrangian duality theorem assures that each
multicast rate feasibility in undirected networks. Wéeasible value ofL(x) is an upper-bound for a feasible



Mlnl_m|ze L(z) C. Interpretation and discussions
Subject to: x>0
Comparison with unicast and broadcast cases

A unicast is an one-to-one data transmission, and a
multicast ratesy. Furthermore, this bound is tight inbroadcast is an one-to-all data transmission. It is known
the sense that the minimum value d@f(x) exactly that for unicast or broadcast, encodability does not make
matches the maximum achievable rgte.e., the optimal a difference in the maximum achievable transmission
objective values of the primal LP and the Lagrangiamte [3]. Therefore, each atomic unicast topology is a
dual are equal. Consequently, the maximum multicas&th, and each atomic broadcast topology is a spanning

rate xy* can be computed as: tree. The maximum unicast rate problem is equivalent
to the path packing or maximum flow problem, and

X" = Ming>o{Maxp[x — Zx(uv)A(uv)]} the maximum broadcast rate problem is equivalent to

uv the spanning tree packing problem. For unicast rate

_ . ~ feasibility, the max-flow min-cut theorem constitutes an
We now perform manipulations on the expression @fegant necessary and sufficient condition. For broadcast

x*, and provide justifications for each step. rate feasibility, Tutte-Nash-Williams’ theorem takes the
> role [18], [19]: A capacitied networks containsy pair-
wise capacity-disjoint unit spanning trees, if and only
=1 Mingso{Maxp[x — 3, z(uv)A(uv)]} if for every partition that separates the network into
components, the total cross-component link capacity is
=2 Mingzo{Maxp[x — 3 z(uv)c(uv) at least(k — 1)x.
+ >0 T(uv)C(uv)]} Unicast and broadcast are special cases of multicast,
with the number of receivers beirigandn, respectively,
=3 Min,>o{Maxp[x —[fl. +[G[.]} wheren = |V| is the size of the network. Consequently,

Theorem 1 is a generalization of both the max-flow min-
cut theorem and Tutte-Nash-Williams’ theorem. For any
0 _ Te! give_n cut (vertex partiti_on) .Of the network, we can assign
220,Min, ()= |/ 21171 a distancel to each link in the cut (partition), and a
distance0 to all the other links. Then the condition

=1 Min__oMin., .y s.o1{Maxe[x = [l +[Gl.]}

=5 Mi

= Min ; Gl. . . . .\ .\

¥ £20Min 5,171, =11 in Theorem 1 implies the cut condition (the partition
M Gl connectivity condition) in the max-flow min-cut theorem
-7 Ne>0 M 2171, (Tutte-Nash-Williams’ theorem).

In the derivations aboves; holds due to LagrangianA bandwidth efficiency perspective

duality, as discussed early=; and =3 are due t0  gjnce the total bandwidth capacity of a network is
definitions. =, is due to dual feasibility. The innerfixeq, the achievable multicast rate closely depends on
maximization subproblem is unbounded in cases wheff pandwidth efficiency of the multicast transmission.
Min,(p=1lfls < 1 — one may scale up flows iff Generally speaking, the higher the bandwidth efficiency,
to arbitrarily large, and hence scaling up the differengge higher the achievable multicast rate. Theorem 1
betweeny and|f|, to arbitrarily large.=; is due to the egsentially claims that these two quantities are exactly
fact that when Mig )| f|. > 1, we havex—|[f|. <0, proportional to each other, once we account for the fact
and Max[x — | fls + |Gle] = |Gl. =6 is due to the tnat prolonging or shrinking an internal branch without
observation that for every where Min y—1|f| > 1. changing its capacity does not affect the achievable
there exists another vectaf = z/Min, (1| flz, SUCh mylticast rate. We now reformulate Theorem 1 in this
that Min, =1/ flor = 1, and |Gl < |Gl,. Finally, =7 gjrection, after giving two definitions. Ank contraction
is due to the fact that if we scale link distancesain means replacing an 2-hop internal path-v (internal
proportionally, the ratidG|./|f|. remains at the samemeans degree af is 2) with a linkuv, and seC'(uv) =
value. min{C(uz),C(zv)}. Link expansions the inverse op-
Now we can claimy* = Minzzommlit%lm, and eration for link contraction, where a linkv is replaced
that concludes the proof of Theorem 1. O with a 2-hop pathi-z-v, with C(uz) = C(zv) = C(uv).




Theorem 1.a. For a multicast connection in an undirecte®ubject to:
network G, a sequence of link contraction and link N
expansion operations can be applied @1 after which {

the maximum multicast rate equals to the bandwidth

capacity of the network divided by the minimum band-
width consumption required for multicasting one bit

information. L(c) =Minp, > " c(uv)y;(uv) (5.1)

where

V. EFFICIENT SOLUTION. THE SUBGRADIENT
ALGORITHM

with P, being the polytope:

yi (W) + po(v) > pilu) Vi, ¥ avATyS

In order to construct a subgradient solution for the
d pi(T) —pi(S) >z Vi

maximum multicast rate problem, we have the choicds : Y > 1
of applying Lagrangian relaxation on either constraints in = -

the primal program (dual subgradient), or constraints in yi(uv), z 2 0 Vi,V uv

the dual program (primal subgradient). We have decidedTwo critical observations justify our choice of the
to take the later approach, due to the following factdualization strategy above. First, the price variables
First, dual subgradient methods do not always yieldtroduced through relaxation and optimized through
optimal primal solutions, which contain the optimasubgradient iteration¢, is exactly the orientation of
routing information we need. Second, as we will showhe network, the optimal values of which is essential
our primal subgradient algorithm decomposes the entie decide the maximum multicast rate and the optimal
problem into a sequence of max-flow/min-cut computaeuting strategy. Second, the minimization subproblem
tions, and allows appealing combinatorial interpretation(5.1) is separable, and may be decomposed intain-

We now present the primal subgradient solution in threet computations. We shall come back to these two facts
steps: the dualization strategy, subgradient iteratiand, in the presentation of the subgradient iterations and the
maximum rate computation. maximum rate computation, respectively.

B. Subgradient iterations

. ) i . Choosing the initial primal solution
Consider the dual linear program given in Sec.lll-C

for the maximum multicast rate problem. We choose To start the subgradient iterations, we need a valid set

to relax constraint group (5), which corresponds tgfinitial values forc(u_{)),i.e., an initial orientation of the
primal variable%(zﬁ;). Recall thatc(zﬁ;) specifies the multicast network. A possible choice that is promising

capacity of each directed link, and therefore determinB§th n theory and in practice, is to selo)(uv) =
an orientation of the original undirected network. TheC(uv), ¥ uv. Using Nash-Williams’ graph orientation

A. The dualization strategy

objective function is modified to: theorem (strong version) [20], it can be shown that
such a balanced orientation is 2-competitive,, if the
> Cluv)z(uv) + 3 - c(uwo)(X, yi(wv) — z(uv)) maximum multicast rate in an optimal orientationyis,
then the balanced orientation may support a rate of at
= 30 2(u)(C(uw) — c(uv) — c(vn)) least$x* [3].
+ 30 (e(uv) 32, yi(uv))

Updating dual variables

= 3.3 c(un)yi(w) — 3, w(ww) Auv) During each roundk, given current values of(k] we
" solve subproblem (5.1) to obtain new dual valuesg|i.
Note whenA(uv) > 0 for any uv, the modified As previously mentioned, this subproblem has a nice
objective function does not have a lower bound, witseparable structure, in the form of a weighted minimum
z(uv) freely chosen fron{O,ﬁoo). ThSrefore dual feasi- cut computation. Note that when, z; = 1,
bility requiresA < 0, i.e,, ¢(uv) + c(vu) < C(uv), Yuv.
Ming, 35, 3,5 el (i)

The Lagrangian dual we obtain is then: L(c)

—

Min;[Minp, 3~ - c(uv)y; (uv)]

Maximize L(e)



where P; is the standard cut polytope: Step size selection and convergence

Step size rules play an important role in subgradient
optimization. It governs both the ultimate convergence in
= - theory, and the speed of convergence to optimal solution

y(uv) 2 0 vV uy in practice. Large step sizes may be unstable, while small

i.e, the weighted minimum cut equals to the ministep sizes lead to slow convergence speed. Therefore it
mum cut when all weights sum tb. Further note that iS common practice to use varying step sizes: take a
>,z = 1 must be satisfied in any optimal solutionsmall number of large steps to reach the proximity of
since dual complementary slackness conditions requife optimal solution, then switch to small steps to avoid
x(>>, zi — 1) = 0. Therefore, for our specific problem,overhitting. In our case, where the original program is
we can computg|k] by first computingt minimum cuts, linear, designing step sizes that satisfy the following

i.e., one minimum cut between the sendgrand each conditions will guarantee convergence:
receiverT;:

y(uv) +p(v)

> pu) ¥ avAT,S
Py:q p(Ti) —p(5) 2 1

y; = argminep, > c[k](uo)y(uv)
uv One simple sequence that satisfies the conditions
above, is9[k| = a/(bk + ¢), for some positive constants
a, b and ¢. Below we give an example to illustrate
the input, output, and convergence of the proposed

algorithm.

> 1 = =
0[k] > 0, lim 0[K] O,and;e[k] 00

Then letj = argmin 3 . c[k](uv)y; (uv), we update
y as follows:
y;[k] = yj,and

yilk] = 0,¥i # j.

Updating primal variables

Primal variables in the orientation are updated in
two steps. First, we compute a new orientation veetor
as follows:

= c[k] + 0[k] > yilk] (5.2)
wheref is a prescribed sequence of step sizes. The 4
new vectorc is not feasible in general. Therefore we D13
need to project it into the feasible simplex, to obtain a %127
valid new vector for updating. One possible way of g
projection is to take a feasible point that is nearest' to g
§ 10
clk 4 1] = argminq r<ollc — €| (5.3) .
Here ||/|| denotes the geometrical length of a vector 8 ‘ ‘ ‘ ‘
l,i.e, forl = (llv R vlh)’ HZH = (Z?:l l?)l/Q' Another ° = Ite‘r‘:tion numGk:?er % 0
simpler way of projection, is to normaliz€ according
to: Fig. 2. A test case of the subgradient algorithm: input network,
output orientation, and convergence sequence.
.  (uv) A’ (uv) <0
clk +1](uv) = ) () Aluv) > 0 In the example shown in Fig. 25 is the multicast

¢ (uv)+¢' (vu) sender/l; and7; are the multicast receivers. The max-
(5.4) imum multicast rate possible i83.5. Rate computed by
the subgradient algorithm converges to rafige4, 13.5]
where A’ (uv) = ¢ (uwv) 4 ¢ (vu) — C(uv). After both  within 100 iterations. The network in this example is
primal and dual variables are updated, the next iteratiantually among the most adversary to our algorithm, in

starts. that network flows towards different receivers constantly



compete for link bandwidth in opposite directions. OuE. Computing the maximum rate
experiences show that the convergence speed is usuallwhen the subgradient algorithm converges, it yields

much faster for randomly generated multicast nem’"”@ptimal primal values ir:, but not necessarily optimal

dual values iny — the dual values upon convergence
may not even be feasible. Although there exist convex
We now take a retrospect at the subgradient algoritrsombination techniques to recover these optimal dual
just presented, and show that it has a very appealivgues [9], [21], it is not necessary in our solution. We
combinatorial interpretation. First, the algorithm takes @n directly recover the whole set of optimal primal
guessed orientation of the network as a starting pointlues from optimal values in.
Then during each iteration, it updates the orientation Recall that a feasible vecterspecifies an orientation
according to (5.2), (5.3) and (5.4). In (5.2), larger valuesf the undirected network. Therefore optimal values
for >, vi[k] leads to larger values far, which in turn of ¢ give an optimal orientation. Once the orientation
leads to larger values fot[k + 1] in (5.3)(5.4). Note is determined, the undirected maximum multicast rate
that non-zero values fog;(uv) means the linkuv is problem boils down to a directed onee., computing
in the S-T; min-cut, and is therefore the “bottleneck’the maximum multicast rate in a directed network. By
for the S—T; transmission. From the flow perspectivethe result on directed multicast rate feasibility proven
non-zero values of/(uv) meansf(uv) = c(uv), since by Ahlswedeet al. and Koetteret al, this can be
dual complementary slackness conditions requjfev accomplished by invoking a maximum flow computation
)(f(uv) — e(uv)) = 0. Therefore links with non-zerg; from senderS to each of thek receiversT;. Let f;
values are saturated links in the—T; max-flow. We denote the resulting—7T; flow vector, and| f;*| denote
conclude that the new capacity allocation in (5.2), (5.8)e corresponding flow rate. Then our final solution to
and (5.4) favors links with largey ", y; k] values, which the maximum multicast rate problem is:

are links that are more saturated. « maximum multicast ratey = min; |f;|

Therefore, during each iteration of orientation re- « optimal routing strategy of information flows:*,
finement, the algorithm computes the max-flow/min-cut  where f*(uv) = max; f;(w), ¥ uve A
from the sender to each receiver, and increases th@s an illustration, the two network flows computed in
capacity share for more saturated links, while decreasgg previous example are shown in Fig. 3.
the capacity share for under-utilized links. This has been
summarized in Table I. s

Algorithm interpretation

Ty

TABLE |
MAXIMUM MULTICAST RATE : SOLUTION SUMMARY 4

(1) Choose initial orientation€.g, balanced orientation)

(2) Repeat
ComputeS—T; max-flow,Vi
Refine orientation:
increase bandwidth share for saturated links
decrease bandwidth share for under-utilized links

Until convergence D. Discussions on distributed implementation

— optimal orientation obtained Beside simplicity and efficiency, the potential for dis-
tributed implementation remained as another goal during
our design of the subgradient algorithm. After all, all
protocols that work in real-world networks need to be
(4) Randomized code assignment decentralized. we now take a step-by-step examination
— complete transmission strategy obtained of the entire solution, and discuss how each step can
be transferred into distributed, pure local computations,
where each node maintains only local information about
its incident links and one-hop neighbors.

Fig. 3. Output network flow to each multicast receiver.

(3) ComputeS—T; max-flow,Vi
— optimal multicast rate and routing strategy obtained




In the initialization phase of the dual subgradierty decomposing the problem into a sequence of max-
algorithm, it is sufficient to have each nodeompute its flow/min-cut computations. Combined with randomized
local orientation, by setting(uv) = c(vu) = +C(w), code assignment, which incurs essentially zero overhead
for each of its incident linkuv. in both computation and communication, our algorithm

Primal variable update is achieved through pure locadnstitutes a promising approach for generating the en-
computation, since each node can update the capatity maximum-rate multicast strategy.
of an incident directed linkiv according to (5.2), based
on current values of local variable$k](uv), 6[k] and ACKNOWLEDGMENTS
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