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Abstract— The highly stochastic nature of wireless environ- Further, due to wireless characteristics such as fading and
ments makes it desirable to monitor link loss rates in wireless sen- nterference, wireless sensor networks are subject togstnt
sor networks. In a wireless sensor network, link loss monitoring o qwidth resource constraints. One can not rely on the
is particularly supported by the data aggregation communication f acti K led t hich i labl
paradigm of network traffic: the data collecting node can infer use o ac. ve a(.: .nowe g.men S — W ICh are not scalable
link loss rates on all links in the network by exploiting whether OF bandwidth-efficient — in the design of sensor network
packets from various sensors are received, and there is no needalgorithms.
to actively inject probing packets for inference purposes. In  Motivated by the needs (fault-tolerance and reliabilitgpia
this paper, we present a low complexity algorithmic framework constraints (bandwidth and computational power) illustla

for link loss monitoring based on the recent modelling and b in thi h bl f eff
computational methodology of factor graphs [2]. The proposed above, in this paper, we concentrate on the problem of effi-

algorithm iteratively updates the estimates of link losses upon Ciently determining link loss rates in wireless sensor 1oeks.
receiving (or detecting the loss of) recently sent packets by the Particularly, we attempt to efficiently determine link lastes
sensors. The algorithm exhibits good performance and scalability, pased on thedata aggregationcommunication paradigm in
and can be easily adapted to different statistical models of qonqor networks. Due to the obvious need of centralized
networking scenarios. In particular, due to its low complexity, . L .

the algorithm is particularly suitable as a long-term monitoring sensor data processing and monitoring, the paradigm of data
facility. aggregation, also referred to data fusion has been critical to

the effective operation of sensor networks. Work in thisaare
has been previously presented (refer to [1] as an example)
and continues to be actively researched. In the process of
data aggregation, a subset of nodes in the network attempts t
. INTRODUCTION forward the sensor data they have collected back terter

Recent technological advances have made it feasible to (@~ sink) node via areverse multicast tree
ploy large-scale sensor networks using low-cost senscesiod More specifically, in the process of data aggregation, leefor
However, as the scale of sensor networks becomes larger, 8aode sends its data to the next node in the path tsittkeit
key challenges potentially arise. Firstpde failures Due to Waits to receive data from all of its child nodes in the regers
their inherent instability and energy constraints, semsmtes Mmulticast tree (or until a specified period of time has eldpse
are prone to failures. It would thus be useful to determinEhe node then aggregates its own data with the data it has
which set of nodes or which geographical areas within thgceived from its child nodes, and forwards this aggregated
network are experiencing high loss rates. Such informatondata to thesink via the reverse multicast tree. Information
potentially valuable to the design of fault-tolerant pamits about which nodes’ data is present in the aggregated data mus
or monitoring mechanisms, so that the problem areas may ago be sent to theink Thus, data fusion saves communication
re-deployed, and critical data may be rerouted to avoidethe@verhead at the cost of additional computation and memory
failure-prone areas suffering high loss rates. Seceghurce resources. Fig. 1 depicts a simple example of a sensor rletwor
constraints. Since sensor nodes have limited computationging the data aggregation paradigm.
resources, any algorithms developed for wireless senger ne In wireline networks, the field of network inference, also
works must not rely on the assumption of unlimited resoyrce€ferred to as network tomography, involves the estimation
and must sparingly use the limited resources that do exigf. network performance parameters using measurements. In
wireline networks, inferring link losses requires eithetwork
The first auth_or i_s with the School of_ Information Technologgda mylticast support (which is not always the case), or sending
Engineering, University of Ottawa, 800 King Edward Ave, &th, On- . . . .
tario, KIN 6N5, Canada; the other authors are with the Edw8rd series of back-to-back packet pairs with unicast (See" €.g.
Rogers Sr. Department of Electrical and Computer Enginegritgver- [3], [4] and the references included therein). In the case
sity of Toronto, 10 King's College Road, Toronto, Ontario 581 3G4, of multicast-based link loss inference, a center node sends
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out a batch of multicast probing packets to all terminals
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e @ O e.g., [3], [4], [13]-[16], [19], [26]).

O

O (A,B,C) O The remainder of the paper is organized as follows. We will

o A o O o) first present the formulation of the problem in Section lidan
. o O o introduce the algorithm in Section lll. We will then give the
. O o simulation results and some discussion in Section 1V anseclo

B © this paper with a brief conclusion in Section V.
e o O O o
o O o O sonsor Nodes Il. MODEL AND PROBLEM FORMULATION
O @)
o O o O O We consider a sensor network as a directed graph, where

each node represents either a terminal (sensor), a routée o
Fig. 1. Data aggregation (fusion) in wireless sensor nétaioan example. CENter (data collecting) node, each directed edge repgsesen
Node B sends it data, (B), destined for the center node, te #odNode C the link between these nodes, and the direction of an edge

similarly sends its data, (C), destined for the center nodleyode A. Node ;. 4: ; ; ;
: ; indicates the direction of th ta flow on the link.
A then aggregates is own data, (A), with that of nodes B andn@, sends dicates the direction o e data flow 0 € Based on

the fused data, (A,B,C) to the center node. With data agtjegaeach node the data aggregation paradigm, we consider a reverse amsiltic
is only required to transmit once per data collection rounowever, without  tree rooted at the data collecting node, where messagesridre s

data aggregation, nod_eAwouId have to transmit three timedgtarcollection from leaf nodes to the data Collecting node. We will not ajlow
round: once to send its own data to the center node, once wafdrnode . '
B's data, and once to forward node C’s data. except for the data collecting node, degree-two nodes in the
graph; that is, if a degree-two node is not the data collgctin
node, it is suppressed in the graph. In this setting, what we
whether these probing packets are received, performstitati refer to as a “link” is not necessarily in its physical sense,
inference on the link loss rates. In addition to requiring thsince a “link” can be a path consisting of several connected
multicast protocol to be supported by the network, such physical links as long as no other paths are branched from an
strategy perturbs the network by sending out extra packétsermediate node in the path. It can be verified that such a
solely for the purpose of probing. Similar observationsamo notion of “link” is defined without loss of generality, as fas
be made in the case of inference with unicast-based pacKess rates are concerned. In this paper, the term “path” of a
pair measurements, though it does not require specific suppwetwork refers to a path that starts from a terminal node and
from the network layer. Injecting additional traffic will filner ends at the center node.
aggravate the link losses at the loaded links, which makeswe assume that all terminal nodes send packets constantly,
it impractical as a long-term monitoring daemon in sens@t a synchronous manner, to the center node along the tree (in
networks, given existing resource constraints. Section 1V, we will briefly discuss the possibility of relaug
In this paper, we propose and examine a new and efficights assumption). Each intermediate node in the tree, upon
mechanism to monitor link losses in wireless sensor netsvorkeceiving the packets from its children, creates an ag¢edga
In a wireless sensor network, a set of terminal (sensor) siogecket and forwards it to its parent. Here the notion of “ditk
send data, concerning some measurements of the physisalso more conceptual than implementational. For example
world, to a center (data-collecting) node via a set of wigslg we will not require packets sent by different nodes to have
connected links. We take advantage of the data aggregatiba same size, and rather assume that the aggregated packet
communication paradigm in sensor networks, where the dasent by any intermediate node is large enough to “bundle” all
carrying traffic flows from the terminals to the center via #he information contained in its children’s packets. Tlylout
reverse multicast tree. Such a characteristic potentibles this paper, a packet sent from a sensor is said to be “received
the implementation of simple protocols and algorithms farr to “have arrived” if the data contained in the packet
constant link loss monitoring at virtually no cost. Our amg is received by the data collecting node in the aggregated
contributions are two-fold: First, we present a novel alfpon  packet. As part of the transmission protocol, for every pack
for the purpose of link loss inference, based on the recdrmansmitted by a terminal node, the center node expects it to
methodology of factor graphs and the Sum-Product Algoritharrive within a certain time frame; and if the packet is not
[2]. We show that this algorithm has very low complexityreceived within that time frame, then a packet loss is suggdes
and demonstrate by simulations its excellent performant®have occurred on one of the links along the path. Based on
and scalability. Second, we are one of the first to considguccessive observations on whether packets from eachrmi
network inference exploiting reverse multicast trees fatad have arrived, the center node can infer the link loss rates on
aggregation in sensor networks. Most existing research ah links in the network.
this area has dealt with the traditional multicast and wtica Formally, we will useF to denote the set of links of the
communication paradigms in wireline networks, where psobaetwork of interest, and? to denote all the paths in the
are sent from a single source to one or several receivers (setwork. Associate to each link € F a state z., taking



values from{0, 1}; when link e is at state0 (“bad state”),
no packet will pass through, and when linke is at statel

(“good state”), all packets can pass throughFor each path
w € W, let its statex,, be the logicAND of all the links
consisting ofw, for which we write

b
= @ Te,
ecw P

where@ denotes the logi&ND operator andé € w” reads ‘e
is a link contained inv”. For example, in the toy example of a
sensor network in Figure 2, there are three liakls andc, and
two paths{a, b} and{c, b}; and the links states and path states I1l. THE FACTOR GRAPH APPROACH
are related byr, j, = v, ©xp, andz .y = z. Dy Clearly,
if and only if when the state,, of pathw is 1 can packets pass
throughw. Then whether a packet will be received essential
indicates the state of the path along which the packet is
travel.

At any time instant, the state. of every link e can be
regarded as a Bernoulli random variable with probabiity
taking valuel and with probabilityl — «a, taking value0. In
this paper, we use

Fig. 2. A toy example of a sensor network.

Link loss inference belongs to the relatively recent area of
etworking research, network tomography (see [3], [4]]H13
%2] [26], [27] etc.). Typical network tomography problem
ncIude the inference of link loss or delay characteristics
from end-to-end measurements [3], [13]-[19], [22], [2&]7],
the estimation of origin-destination traffic intensitiesorh
link measurements [23]-[25], and the inference of network
topology [20], [21].
Prior to this work, most of the literature on link loss
o r=1 inference concerns wireline networks, where multicaskpac
B(z,a) = { 17_ 0. = 0? ets are sent actively to probe the network. When multicast
7 addressing is not supported by the network, there have been
to denote the probability mass function of a Bernoulli ramdo alternative proposals on link loss inference based on sgndi
variable parametrized by. unicast probing packets, where clever protocols (for examp
We will assume thaty, at each link is quasi-static, namely,using back-to-back packets) are incorporated which eisdlgnt
over a relatively small time window in which hundreds oturns the inference problem to a multicast problem (see, for
thousands of packets may be sent by any terminalstays example, [13], [14]).
as a constant. Suppose that during a time window, thereFor the multicast link loss inference problem, Cacezeal.
aren batchesof synchronized packets transmitted from eacf8] present an ML (maximum likelihood) estimator for thelin
terminal to the center, where th&" batch of packets are loss rates that imsymptotic optima{namely, approaching the
transmitted at time;,: = 1,2,...,n, from all the terminals true ML estimator for asymptotically large number of prgbes
synchronously Lelrﬁ) be the Ilnk state ot at timet;, then The Expectation-Maximization algorithm is also preserdasd
the path state'? of pathw at timet; is a solution to this problem [15], [26]. It may be arguable
that these techniques can be applied to link loss inference
wf,f) = @xg)7 in wireless sensor networks, a main perspective of thispape

_ _ . is however the concern of the algorithm complexity when
experienced by the packet transmitted;and traveling along jt js used as a long-term monitoring daemon. Comparing

w; the observation whether the packets in tHebatch have it previous works, the factor graph approach we present,

arrived indicates the states Of all paths at titpe _ although sub-optimal, demonstrates good performance and
CoIIectlver, we denoteY ) := {zt” : ¢ € B}, X)) = most importantly, very low complexity.

{zh) + w € W} Xy m {X() : 1 < i < m}, In this section, we will first give a brief introduction on

X =Xy 1 << m} andag == {a. : e € E}.  the factor-graph framework as an modeling inference method

The problem of link loss inference in the network is then th§|ogy and then proceed to introduce our algorithm. The

problem of estimating:» based on the observation af;". performance of the algorithm will be shown in the next settio

In this paper, we set up the problem as, for eaehF, fmdmg
& that maximizes the posterior probabilify[ae\X%’")] of
a. conditioned on the observatioﬁéé’”). In addition, it is
important to realize that. changes with time. Thus we ideally Recently, the notion of factor graphs has attracted intense
desire an algorithm to have a sufficiently low complexity scesearch interest in areas of electrical engineering amna co

as to serve as a daemon tracking the link loss rates constamqilter science, since it was recognized that the framework

A. Factor Graphs and the Sum-Product Algorithm



Then the joint PMF of the four random variables may be
represented by the factor graph in Figure 3, where we may
interpretf; (x1, z2) as the joint PMF oX; andXs, fa(x2, x3)
as the conditional PMF ofX3 given X,, and fs5(z2,z4)
as the conditional PMF oKX, given X,. We note that the
interpretation off;, fo and f3 is in general not unique; for
example,f; (x1,z2) may represent the conditional PMF Xf;
given X, fo(x2,x3) may represent the conditional PMF of
o X3 given X, and f3(z2,2z4) may represents the joint PMF
Fig. 3. The factor graph representiffg(z1, z2) f2 (22, z3) f3(z2, z4). of X, and X,. That is, as a probabilistic model, a factor
graph representing a joint PMF fundamentally specifies a set
] ] ] of conditional independence relationships and the funstio
of factor graF’hS and an.lteratlve algorithm, ca!l the Sllmzfactors) represented by the function vertices may take an
Product Algorithm, operating on factor graphs unify a viyrie arbitrary scale, subject to the constraint that the prodiict

of previously discovered important algorithms, such as tl?ﬁe functions satisfy as a PMF or PDF (the sum or integral of
Viterbi algorithm, BCJR algorithm, Kalman filtering, FFT,the product over all variables equals tp

bfl'ef. p:ﬁpagatlon, f.cirwa;rd—backward tglgorltf;rn eti‘ ,lmm:i A useful function for representing a deterministic constra
ular, in the community of error correction coding, 1S s Win a factor graph is the constraint indicator function: d&tx)

that factor graphs and the Sum-Product Algorithm underlbee a constraint (a boolean proposition) on a possibly vector

the methodology of the most celebrated error control COdir\'/%Iued variablez, then the constraint indicator function of
schemes, turbo codes [8] and low-density parity-check sodg () is defined 5’15'

O
=
DE
=
O

s

[O]-[11].
To date, the notion of factor graphs includes multiplicativ 1, if C(x),
factor graphs and convolutional factor graphs [2], [5],.[6] 9[C ()] ::{ 0, otherwise.

In this paper, we will mainly deal with multiplicative fagto
graphs, referred to as factor graphs from here on, for s('mpnThat is, the constraint indicator function evaluated tid the
ity. constraint is satisfied, and fbotherwise.

A factor graph is a bi-partite graph representing the fac- Unifying various algorithms, the Sum-Product Algorithm
torization structure of a multivariate function into a puatl is an algorithm that operates iteratively on a factor graph
of functions (factors), each involving only a subset of thby “passing messages” between function vertices and vari-
variables. There are two types of vertices in the graphaiéei able vertices. The "messages” are essentially functioos (f
vertices, representing the variables of the global muitta continuous-valued variables) or tables (for discrete elu
function, and function vertices, representing the factiors variables) computed in the intermediate steps of the algo-
the factorization; a variable vertex is connected to a fonct rithm. If f(z1,22,...,2,) is a function that factors ac-
vertex by an edge if the variable is an argument of theording to a factor graph having no cycles, it is known
factor. For example, Figure 3 is a factor graph representitigat the Sum-Product Algorithm can simultaneously com-
the factorizationf1 (.%‘1, Z‘Q)fg(.ﬁg, l‘g)fg(l‘g, .%‘4), where each pute szl f(xl, e ,.’Em)7 ZNIQ f(xh R 7l'm), ..., and
square box is a function vertex representing fagtarf> or >, f(z1,...,2,) in parallel, where): ., refers to
/3, and each circle is a variable vertex representing variallemmation? over all variables except;. For a concrete
1, T2, X3 OF T4. understanding of the Sum-Product Algorithm, the reader is

A factor graph can be used as a probabilistic graphicaferred to [2] and [7]. In essence, what underlies the Sum-
model which represents a joint probability mass functioRroduct Algorithm is the distributive law between multipli
(PMF) of random variables. In this case, each variable nodation and summation (or the generalized distributive law
represents a random variable, and each factor represémts eion any semiring, with arbitrarily defined multiplication can
the joint or conditional joint PMF (PDF) of a subset ofsummation [7]).
random variables, and conditioned upon any subset of randonWhen the functionf(z1, ..., z,,) represented by the factor
variables corresponding to a cut-set of the graph, the atgghr graph is a joint (or conditional joint) PMF, then the objeeti
two subgraphs (induced by removing the cut-set vertices) af the Sum-Product Algorithm coincides with the objectife o
independent. For example, &, X,, X3 and X, be a many inference problems, i.e., finding the maximizing config
set of random variables where conditioned ¥n, random

variables X;, X3 and X, are independent of each other. 2In fact the summation operation here can be made more general. In
particular, if the summation operation is theax operation, the Sum-Product
Lor probability density function (PDF). For simplicity, we Wwoften omit  Algorithm is referred to as the Max-Product Algorithm. Sesoalootnote 3
mentioning the term PDF. below.



uration for marginal PMFy__ -~ f(z1, ... , )3, Clearly, our from independent link loss rates, we have
formulation for the link-loss inference problem in the pgoais

section is such an example. By(Xg,ap) = gB(Ie’ae)' (1)
When the factor graph representing the function . ) (1,m) (1,n)

f(z1,....z,) contains cycles, it has been shown in Then the joint PMF ofp, X3~ and Xy, factors as

various recent works that the Sum-Product Algorithm cah sti P(aE,XS’”)vXéé’”)) -

be used as an excellent approximation algorithm, partigula n 4 4 ' @

when the objective is to find the maximizing configuration for HBE(XS)@E)PWW(XW,XS)),

Zw f(x1,...,z,) and not the maximum itself. In fact, the i=1

decoding methods for turbo codes [8] and low-density paritynere PW\E(X{E{i/)ng)> is a the conditional PMF ofX&i}
check codes (see e.g., [11]) are precisely the S”m'PmdBRfenX
Algorithm applied on factor graphs with cycles, and the , ,
performance of the Sum-Product Algorithms enables these  Pwie(Xy, X)) = [] ol = @], 3)
codes to achieve the Shannon limit of digital communication wew ecw

An intuitive explanation on why the algorithm works solhen our objective becomes finding. for eache € E that
well is that the factor graphs used in these schemes &p@ximizes

large and sparse, and the effects of cycles fades away aftep|q,| X%’”)] - Z Plag, Xg’”), X%’”)]

S), and in fact,

a few iterations. Also due to the fact that the graphs are ~ae
sparse, the complexity of the algorithm is essentially dne " @) @) ()
in the average vertex degree, which make the Sum-Product x Z HBE(XE sap) P p(Xy, Xg)-

~aoe 1=1

Algorithm highly scalable. 4)
In the cases when the factor graph contains cycles the o o

passing of messages in the factor graph may be carried Bl?t“?e.that Athe ObJeCt'_Ve of finding for each € E, the

in various orders, typically referred to as tlsehedulesof maximizing &. for function

the algorithm [2], [28]. For example, a popular schedule, - i i i

known as the “flooding” schedule, is that in each iteration, N;HBE(XSE)’O[E)P"V'E(X‘(’V)’XEE))

all variable vertices first pass messages and then all famcti o

vertices pass messages, where the message-passing maled FF T, :

definitions of the messages) stay the same. Summary messaag%%mhm » and function

may also be computed at each iteration for the purpose of

identifying convergence. The algorithm is usually terniéta

upon convergence of the summary messages or upon reacri]énglso ready to be represented by a factor graph as of Figure

a pre-set number of iterations. .4 (a). That is, the sum-product algorithm can be used to
It should be noted that when the factor graph contains C%/i_multaneously findh, for all ¢ € E in parallel
e .

cles, any schedule of the Sum-Product Algorithm will lead to If we further express the factoly 5 (-) and Bx(-) in (5)

a sub-optimal solution to the maximization problem. Howeveaccording to (3) and (1), the factor graph can be expanded to

it ha_s been reported that by _ao!justing the spheqlule of tQeform similar to Figure 4 (b). Note that in the factor graph
algorithm there can be extra gain in the sub-optimality, the of Figure 4 (b), we consider the case where= 2 and the

found solution can be closer to the true optimal configuratichetwork takes the topology in Figure 2 to simplify the factor

[28]. graph, merely for illustration purpose.

The Sum-Product Algorithm will be applied on the factor
graph in Figure 4 (b) to obtain the estimate of . for
eache which maximizes (4). Although the factor graph in

We assume that, for eache takes discrete values from sefrigure 4 (a) is cycle-free, typically its expanded form as of
§:={1/L,2/L,...,1}, whereL is a positive integer. With Figure 4 (b) contains cycles. This makes the applicatiomef t
no a priori knowledge, we assign to each a uniform prior - sym-Product algorithm an approximation algorithm. Notice
overs. ‘ Figure 4 (b), the factor graph consists of “layers” of sulpiisy

Let the joint PMF ofX |’ parametrized by be denoted each corresponding to a time instant This allows a natural
by Br(XE,ar). Upon the assumption that each link suffergchedule for message-passing in the Sum-Product Algorithm

i.e., first passing messages in each layer, which we refer to
3In some inference problems, the objective is to find the maximizin
configuration for the joint PMFf(z1, ..., zm); this can be solved using  “More rigorously speaking, the objective of the Sum-ProdugoAthm is
the Max-Product Algorithm on the factor graph representingee [2]. to find the marginals, not the maximum of the marginals.

cisely coincides with the objective of the Sum-Product

[ Be(XY, ap)Pwip(Xy), X1) 5)

i=1

B. Proposed Algorithm



iteration to iteration; this is simply because thE) vertices
are leaf vertices. We will then use to denote function vertex
[] that connects ta'”, e to denote variable vertex'”.

The message-passing rule for Step 1 is summarized as
follows, where each message is a single number representing
the (posterior) probability of a link taking state (this is
possible since each message is originally a function defined
on {0,1}, but since the values of the function @tand at1
are dependent, i.e., summing to 1, one can reformulate the
message as a single number).

In the initialization phase, each vertexpasses message
le—qw fepresenting the uniform distribution over the link state
z. to every adjacend[-] function vertexw € N (e). That is,
te—w = 1/2.

In the propagation phase, then messages are passed iter-
atively between the variable vertices € E and function
verticesw € W. Similar to the “flooding” schedule in
Subsection IlI-A, each iteration begins with every funatio
vertexw passing messages to all its adjacent variable vertices
N (w); then every variable vertex passes messages to its
adjacent vertices\(e); the message sent from any vertex
to any of its neighbor vertex is calculated using only the
incoming messages fromV/(u) \ {v}. The message passed
from a function vertexw to a variable vertex is given by

(b) .
1, if 20 =1,
. . . — 1- H Hel . 6
Fig. 4. (@ The factor graph representing the function Hw—e e/ eN(w)\{e} if l_(z):0 ()
" Bp(XY,ap)Pyp(Xy), X)) and (b) its expanded form, 2_6/@/}7{”)\{6}#6/#1”, w :

by letting n = 2 and taking the network as of Figure 2.
and the message passed from a variable vertexa function

) ) vertexw is given by
as “intra-layer” message passing, and upon convergench, ea

layer of the graph passes messages to the vertices rejpngsent ,eNg)\{ }/‘w/—m
a., Which we refer to as “inter-layer” message passing. With pte—w = .
h a schedule, th ing of the path state at each fi pwe AL )
such a schedule, the processing of the path state at each time weN(\{w} w EN(E\{w}
instant can be carried out independently, this will serve to (7)
significantly reduce the complexity in long-term monitajn At the end of each iteration, a summary messagés com-
as will be addressed in Section IV. puted for each variable vertexusing all incoming messages
We now present the algorithm. toe, as
Step 1. Intra-Layer Message Passiige goal of this step I fw—e
can be understood as obtaining the posterior distribution f _ T, EN(e*) ®)
each link state at time instafy, conditioned upon observation ‘ [T pw—et II Q= pw—e)
T, €N (e) 2,0 €N (e*)

on thei'™" batch of packets. In each layer, we use a “flooding”
schedule similar to what was explained in Subsection IlI-A. The iterative process is terminated when the summary mes-
One may follow the recipe discussed in [2] for the derivatiopages converge to a steady state or when a pre-set maximum
the message-passing rule, where for ifidayer, the involved number of iterations is reached.

vertices are variable vertices represent'nﬁ@ and;cg,f) and the We will denote the computed valye. in the i*" layer of
function vertices representingj-|]. Following the derivation, the graph byug). One may verify that when each layer of
one should see that the message-passing rule can be in flaetfactor graph is cycle-free, then the algorithm conwerge
made more compact by, in each layer, disregarding the esrticlefinitely with a finite number of iterations, and the complute
representinggcq(j) and passing messages only between théi) is precisely the posterior aof. given the observatioﬁ(‘(,é).

0[-] function vertices and the;gi) vertices — note that the  Step 2. Inter-Layer Message Passihg this step, we ap-
messages passed from m@ vertices stay as constant fromply the Sum-Product algorithm by passing-messages from




netv;g[)kos'ze I'm;sgp?ath patzhi/z“nk a. — G.. For each simulated network, the root mean square
10000 371 3.46 error (RMSE) is computed as
20000 7.41 7.10
50000 6.33 6.16 L9\ 12
loe — el
TABLE | RMSE = Z . .
ecl ‘ |

THE AVERAGE NUMBER OF LINKS THAT A PATH CONTAINS AND THE

AVERAGED NUMBER OF PATHS THAT A LINK JOINS . .
B. Simulation Results

Figure 5 and Figure 6 show the RMSE as a function of the
. numbern of batches, and as a function of the respectively,
every layer of the graph to verticgs.. : ¢ € E} (through the ¢ e4ch simulated network. These results exhibit the géner
vertices representing functiofi(-)), to compute the posterior neformance trend of this algorithm, which is also observed
Pla.|X},™]. Due to the simple cycle-free graph structure g oiher parameter settings of our simulations.
this level (that shown in Figure 4 (a)), this step of the Sum- gjrqt the estimation error decreases as the number of

product algorithm can be in fact formulated in the followinga¢ches increases. However, it is worth noting that errdir wi
closed form: have a lower bound of /2L, the quantization error of.. If

we can infinitely quantize., as the number of packet batches
P[ae\X‘(,;’")] x H (Iuéi)ae (1= )1 — oze)) . (9) n approaches infinity, we expedt approaches the actual.. '
i=1.n Secondly, the algorithm favors large networks. That is,
We then choosei. that maximizes (9) as the estimate ofh general, the larger the network, the better the algorithm
a.. This can be done by evaluating the function for evefyerforms. This is because, as the network grows, the factor

element ofS = {1/L,2/L,...,1} numerically and finding 9raph corresponding to the network becomes more sparsely
the maximizing valuei. € S. connected; to a certain extent, Table | indicates the dpauki

the factor graphs. This result is consistent with the olz@m
of the Sum-Product Algorithm in other applications where
the factor graph graph contains cycles (see, for example,
[11]), since the independence assumption [2] of the incgmin
To investigate the performance and the scalability of ”‘rﬁessages in that case is a closer approximation.
proposed algorithm, we generate sensor networks with rando Thirdly, without the need of increasing the number of
tree topologies, consisting 6000, 10000, 20000, and50000  patches, the same or better estimation accuracy can be
nodes. Table | lists the averaged number of links that a pafbhieved for large networks. For practical purposes, auusi
contains in a network and the averaged number of paths tigfons suggest thai00-2000 packet batches are sufficient for
a link joins. inferring the link loss rates in large networks.
To each edge (linky in the network, a random loss rate Fyrthermore, the estimation error decreases &screases.
(1 — a.) is assigned, wherex. is drawn from distribution Thjs implies that more batches are required for the same

IV. SIMULATION AND DISCUSSION
A. Simulation Setup

with probability density function estimation error, as the average loss rate increases. theano
experiment, we observe that in the000-node network, based
fla) = A e (0,1]. on the observations 0d2000 batches of packets, the RMSE

{ngeases fron9.03 to 0.11, asa decreases from.8 to 0.7.
That is, significantly more batches are needed for an aeurat
At time instantt;, the stater” of edgee is generated from inference of the latter loss rates. This is consistent whih t

the Bernoulli distribution parametrized hy., and the state discussion in [3], [15]. Fortunately, in reallty, actionasfid
x%) of each pathy is observed by the center node via the have been taken befo_re the_: network expengnce_s such heavy
link losses, and there is unlikely a need for inferring thek i

batch of packets. In each simulation, the numhesf packet
batches is chosen &), 100, 200,500, 1000, and 2000, and ©SSes for these cases.
In summary, the simulation results suggest that the lags-ra

the average value of a. over all the links of each network ) ’ "
is chosen a$.9.0.92. 0.94.0.96. and 0.98 estimates obtained from the proposed algorithm are sufflgie

For Step 1 of the algorithm, we conservatively set ghceurate for any practical purpose.
maximum number of iterations 89 (we observe in simulation
that in the majority of cases, the algorithm converges withC- Implementation and Complexity
a small number of iterations, within 10-15 iterations.). In The complexity of this factor-graph based algorithm isdine
the second step of the algorithm, we discretizeto L = in the numbenr of batches and in the numbdr| of links. This
100 levels. Estimation error is computed for each link ais in the same order as the existing algorithms (e.g., [3] and

Easy to generate and tune, this random variable has
expected value\/(1 + \).
(4)
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Fig. 6. RMSE withn = 2000 (left) and withn = 500 (right), as a function ofx.

others). However, as we will explain next, when the alganith and find the maximizingy.. After this initial computation, at
is implemented as a constantly-running monitoring daemcemy later time instant;, £ > n, the posterior of the link-loss
its complexity for inferring loss rateat any time instanis rate for any linke can be simply updated recursively by

in fact independent of the number of packet batchesThis

. . P X(k—n—i—l,k) _p X(k—n,k—l) %
makes the proposed algorithm much more suited for long-term el Xy ] [ove | Xyy ]

- . . (k) +(1- (k))(l— )
monitoring purpose, as compared with other algorithms. We He e He Qe)
describe this implementation next. pF M ag + (1 - g1 - a)

As one may notice, a salient feature of this algorithm That is, at any time instant;, we only need to compute
is its independent processing of the path states obtained@ﬁ?) according to Step 1, and reuse the previously computed
observing each batch of packets. That is, in practice, we mpgsterior ofa.. This significantly decreases the required com-
implement the link-loss monitoring daemon based on the pgihtation. In this implementation, the computational coemjiy
states obtained by observing a moving window of the mofir inferring link loss rates at any time instant becomes
recentn batches of packets, and little computation is in faéhdependent of.. Comparing with other existing algorithms
needed to infer the current link loss rates. In detail, we firay as mentioned earlier (the complexity of which all increases
a choice ofn; then as the monitoring daemon is initiated, upowith n), this translates to an appealing computational saving
observing the arrival or loss of the packets in the batch, of hundreds or thousands of folds, if the algorithm is to be
we start computingﬁ) (for all e € E), fori = 1,2,...,n, implementated as a monitoring daemon.
sequentially. This only involves Step 1 of the algorithmtekf It is worth noting that with this “moving window” imple-
obtaining the arrival or loss of the packets in th& batch, mentation, one should expect a trade-off between the estima
we finish computingu(b?). Then we move to Step 2 of thetion accuracy and the estimation sensitivity to the charfge o
algorithm and for eacl € F, compute the the posterior link-loss rates. That is, for a small window sizethe estimate

is less accurate, but can better track the change.oiith
P[ae\X‘(,[l,’")] x H (M(i)ae (- ug))(l - ae)) (10) time; whereas for a large window sizg the estimate is more

e

iZ1m accurate (provided the link loss rates stay static), buess |



sensitive to the change of link loss rates.

D. Extension to Other Models

Until this point, we have assumed that packets are congtal
sent from the terminals to the center in a synchronous man-
ner. In fact, the proposed approach can be adapted to other
network scenarios where packets are sent by the terminals
asynchronously, or when the terminals do not send packets
continuously. However, in those cases, there will be a need
of a reliable signaling mechanism from the terminals to ﬂ}_qg. 7. The factor graph for the example in Figure 2 whageand o, are
center, or a delicate protocol that allows the center to b&r@w modeled as dependent. The function nagg is to model this dependency.
of a packet sent from a terminal. For example, an out-of-band
signaling mechanism may be employed whereby each terminal
node !nforms t.he center node directly or via multiple hop& aph representing the above factorization is shown inreigu
when it transmits a packet to the center. Then the center n

, ) i . For real networks, it is possible that the loss rates at a
will expect the arrival of the packets sent from the ternmsnal . .
- L number of links have dependency. This would correspond to
upon receiving (or not receiving) the packets, the centeleno

X . ) function node(s) in the factor graph connecting the vaeabl
can perform link-loss inference using the method presentec? () grap g

in this . . . (podes representing the loss rates at these links.
paper. Alternatively, similar mechnisms may be made

possible via higher-level protocols. For example, with TCP The Sum-Product Algorithm can be derived similarly on
when a short series of out-of-order packets are received, c8Uch a graph for the inference ofy. Specifically, one may
gestion is assumed to have occurred and source transmis§igfice as in Figure 7 that such a factor graph still con-
rates are reduced using window-based flow control. Built d@ins “intra-layer” connections and “inter-layer” contiecs.
TCP, by checking the order of the received packets, a nod@wever, it is possible in this case that the structure of
(intermediate node or center node) can decide whether ‘4Her-layer” connections contains cycles (Figure 7 rist
expected packet has arrived — it is safe to assume, with h@q;,ch an example; if we introduced two extra function nodes
probability, that an expected packet is lost, if a numberwf o ®ec cONnectingas, and o and ¢q. connectinga, and a,
of-order packets are received. With this strategy, theildes the resulting graph would be such an example). On such
such a protocol will depend on the data-fusion mechanistn9raph, one may still carry out the two-step passing of
employed in the sensor network. messages for the Sum-Product Algorithm. The “intra-layer”

The i.i.d assumption of link losses in our model is perhapg8€sSsage passing may remain the same as we presented earlier,
in reality over simplified. In those cases, direct applimatof Whereas the ‘inter-layer” message-passing may poteptiall
the algorithm presented in this paper may lead to less aecuraeed modification. Alternatively, one may consider diffeére
estimates. Nevertheless we note that the frameowork ofifaci’€Ssage-passing schedules. We expect the trade-off betwee
graphs is a universal language for probabilistic modelarg] estimation accuracy and computational complexity to ddpen
can be applied to models with arbitrary dependency stractuPn the structure of the graph and the choice of messagengassi
By using the simple i.i.d assumption, this paper estabiishe schedules. In practice, more careful investigation fos trade-
“proof of concept” for applying factor graph-based appiwes: Off is likely to be necessary.
to link-loss inference in sensor networks. To demonstrate h  Finally we remark that the Sum-Product Algorithm is not
to extend the presented method to more realistic (non-i.ithe only algorithm for factor-graph based inference. Other
loss models, we give a small contrived example: in the thggorithms, such as the Max-Product algorithm, the EM al-
toy example shown in Figure 2, we will allow loss rates ofjorithm and various variational meth§dsave also been
link a and link b to be dependent. Then this dependency cafeveloped in the framework of factor graphs (see, e.g., [2],
be modeled by introducing a functiah,;, (., o) to the joint  [29]). The performance and complexity of these algorithms
distribution P(ax, X 5™, X{p™), ie., for solving the problem of this paper certainly deserverfert
investigation.

Plag, X3, X0

n
Gab(Cta, ) HBE(XS)7 aE)PW|E(X1(/:/)7Xg))7
=1 5In fact, it has been shown that in a variational formulatidme Sum-
where functiong,, accounts for the dependency between Proo!uc_t Allgorithm on factor graphs with cycles may be unmma_s it_erative
. . . maximization of Bethe free energy [30]. Such a nature appearsas to
and oy, By properly choosing functiom,,, one can obtain the method of [31], where the true likelihood function is appmated by a
any desired dependence model betwaegrandc;,. The factor “pseudo likelihood function” for computational tractabyli



V. CONCLUSION [15]

In this paper, we exploit the data-aggregation charatieris
of wireless sensor networks in the implementation of a Iinlﬁ6
loss monitoring daemon, where the network-wide link loss
rates are inferred upon observing whether packets sent from
terminals have arrived. We present a factor-graph based alff’]
rithm for this purpose. We show that with very low complexity
this algorithm gives a good estimation of link loss rates,
and the algorithm scales particularly well for large netkgor [1g]
We are one of the first to explore the design space towards
efficient network inference algorithms in large-scale sens
networks with respect to link loss rates, and the first to ude!
the factor-graph model and the Sum-Product Algorithm to
derive suboptimal but computationally lightweight infece 2]
mechanisms. We also take the communication paradigm of
data aggregation into consideration in our design, whiekde
to the development of a network inference algorithm withfH
virtually no costs of active probes.

[22]
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