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Abstract—With the popularity of deep learning applications, the privacy of training data has become a major concern as the data

sources may be sensitive. Recent studies have found that deep learning models are vulnerable to privacy attacks, which are able to

infer private training data from model parameters. To mitigate such attacks, differential privacy has been proposed to preserve data

privacy by adding randomized noise to these models. However, since deep learning models usually consist of a large number of

parameters and complicated layered structures, an overwhelming amount of noise is often inserted, which significantly degrades model

accuracy. We seek a better tradeoff between model utility and data privacy, by choosing directions of noise w.r.t. the utility subspace. We

propose an optimized mechanism for differentially-private stochastic gradient descent, and derive a closed-form solution. The form of

the solution makes the mechanism ready to be deployed in real-world deep learning systems. Experimental results on a variety of

models, datasets, and privacy settings show that our proposed mechanism achieves higher accuracies at the same privacy guarantee

compared to the state-of-the-art methods. Further, we extend the privacy guarantee to a mutual information bound, and propose a

general form to the utility-privacy problem.

Index Terms—Privacy, data mining, machine learning, optimization

Ç

1 INTRODUCTION

THE recent proliferation of deep learning has empowered
a wide spectrum of data analytical applications on

crowdsourced data, which are collected from a crowd of
participants. The data is typically sensitive and thus the
deep models are required to preserve privacy. Fed with
large volumes of data, deep models capture the intrinsic
logic between data and tasks, with a huge number of model
parameters and complicated model structures. Unfortu-
nately, these models, trained and stored in smartphones can
be sources of severe privacy leakage as shown by many
studies, and such privacy leakage poses significant threats
to sensitive training data. As examples, the model inversion
attack [1] is able to recover class representatives, which can
be sensitive facial features; the membership inference attack
[2] can be used to infer whether an identity participates in
the training or not, which may be able to single out a single
training record. Regardless of the specific form of these
attacks, it is widely recognized that deep learning models

are privacy-leaking, and therefore privacy-preserving
mechanisms are required to be implemented.

Differential privacy was proposed as a class of privacy-
preserving mechanisms for releasing data statistics, and
recently for publishing models. These mechanisms usually
introduce randomness so that adversaries cannot distin-
guish adjacent input distributions when given the output of
the mechanism [3]. In the context of deep learning, differen-
tial privacy mechanisms are applied with the purpose of
‘hiding’ a single input instance in the training dataset, i.e.,
despite the existence of the instance, no attacker can tell the
difference in the released features, prediction outputs, or
model parameters. Specifically, some mechanisms choose to
insert randomized noise at each training iteration to guaran-
tee that model parameters are differentially-private [4], [5],
[6], [7]. Some mechanisms train differentially-private mod-
els on randomized prediction outcomes of other trained
models [8], [9]. And some train the model towards a differ-
entially-private objective function to fulfill the privacy guar-
antee [10], [11].

A key problem in deep learning with differential privacy
lies in the fundamental tradeoff between model utility and
data privacy. To guarantee differential privacy, randomized
noise is inserted into the model, and such noise may signifi-
cantly affect the utility of the model. It is likely that an over-
whelming amount of noise perturbs the model to a degree
that the model is not usable at all. The problem is even more
severe with over-parameterized deep neural networks. For
example, Abadi et al. [5] only achieve an accuracy of 95% on
the MNIST dataset with a two-layer ReLU network at a
medium privacy level (� ¼ 2:0; d ¼ 10�5), whereas an unper-
turbed model can easily achieve an accuracy of over 99%.
Although [6], [7] have shown significant improvement with
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new privacy budget allocation methods, their performance
is still inferior to the unperturbed case.

Although the tradeoff between utility and privacy is
inherent, we found that a better tradeoff can be obtained by
taking the utility subspace of the model into account. Specif-
ically, we observe that when the same amount of noise is
inserted, the model would result in different accuracies
depending on the noise directions. As a larger amount of
noise is added to the less important directions of the utility
subspace, the model suffers less accuracy loss. While pursu-
ing a noise direction with optimal utility, it is still critical to
guarantee differential privacy at the same time.

We formulate the problem of arbitrating the utility-pri-
vacy tradeoff as a constrained optimization problem, which
seeks an optimal noise direction w.r.t. the utility subspace
while preserving differential privacy. Our proposed mecha-
nism follows the convention of differentially-private stochas-
tic gradient descent [4], [5]. The privacy mechanism and
setting are publicly known. The adversary can access the
model parameters and any auxiliary information. In our pro-
posed mechanism, we perform stochastic gradient descent
on the training data, and add directional noise to the gra-
dients. The directional noise is generated from a distribution
which is obtained by solving the differential privacy con-
strained optimization problem. Due to the large number of
model parameters, such a large-scale optimization problem
is intrinsically inefficient to solve. Fortunately, we found a
closed-form solution to our problem, which can be efficiently
deployed in practice.

Since our optimizedmechanism is proposed as an additive
noise scheme, we further introduce a general form of the util-
ity-privacy problem and establish its connection with the dis-
tortion-rate function. The ‘utility’ describes the perturbation
impact to the original model, also known as the ‘distortion’ of
themodel. The ‘privacy’ is defined by themutual information
between the released model and the original one. By proper-
ties of the distortion-rate function, we are able to give a theo-
retical lower bound to the utility-privacy problem.

From an engineering perspective, we have implemented a
differential privacymodule for the proposedmechanism. The
module is composed of an optimization submodule and a
noise generation submodule. The former contains tensor
operations solving the optimization problem and apply differ-
entially-private noise to the gradients. Tensor operations can
be processed byGPUs in batches. The latter is implemented to
efficiently generate randomized noise given the distribution
solved by the former component. Experimental results show
that our implementation achieves higher accuracies com-
pared to the baseline atmoderate computational overhead.

Highlights of our original contributions are as follows.
First, we novelly take into account the utility subspace in
the design of differentially-private stochastic gradient
descent, with the observation that it is possible to guarantee
the same privacy with higher utility. Second, we formulate
the problem of arbitrating the utility-privacy tradeoff as a
constrained optimization problem that seeks the optimal
noise distribution, and find a closed-form solution to the
problem. Third, we extend the problem to a general form
and establish a link with the distortion-rate function. Last,
experiments on a variety of state-of-the-art deep learning
models and datasets have shown that our mechanism can

significantly improve model accuracy compared to previous
works under the same privacy constraints.

2 RELATED WORK

Our work is related to works in the following categories.

2.1 Deep Learning With Differential Privacy

Models trained over sensitive data can be a significant
threat to the privacy of such data [1], [2]. To mitigate pri-
vacy risks, a number of algorithms have been proposed to
achieve deep learning with differential privacy.

Following the principle of differentially-private stochastic
gradient descent [12], Shokri et al. [4] let participants train
their own datasets privately, and selectively share small sub-
sets of their models’ key parameters. Even that a small per-
centage (<0:1) of the parameters are perturbed and shared,
their composition method still consumes a large amount of
the privacy budget, which is way beyond a meaningful pri-
vacy guarantee. By exploiting higher moments of the privacy
loss variable, the accounting method proposed by Abadi
et al. [5] reduces the total amount of additive noise signifi-
cantly. However, it only achieves an accuracy of 90% (with a
privacy budget of � ¼ 0:5; d ¼ 10�5) onMNIST.

Inspired by [4], [5], our work characterizes the relation-
ship between model utility and the privacy constraints for
the first time. So far, existing differential privacy mecha-
nisms are mostly heuristic. Given the probability distribu-
tion function (pdf) of the perturbation noise, one could
guarantee the privacy a heuristic can achieve using existing
mechanisms, but knows little about its utility performance.
This is detrimental to the results since an overly conserva-
tive privacy constraint usually requires an overwhelming
amount of noise to be added. Another critical drawback in
existing works is that their composition methods are subop-
timal. In contrast, we adopt the optimal composition theo-
rem [13] and further amplify the privacy guarantee with
input sampling [14].

Differential privacy mechanisms may not be directly
applied to themodel parameters, but rather to themodel fea-
tures [15], prediction outcomes [8], [9] or the objective func-
tions [10], [11]. A common property of all these mechanisms
is that the differential privacy property holds no matter the
adversary can only query the system as a black-box, or can
view the model internals as a white-box. In [15], the authors
propose to adaptively inject noise into features based on the
contribution of each to the output, while in our work, noise is
injected to the gradients w.r.t. their sensitivity to the output.
Our work shares a similar principle to [15], but takes a differ-
ent approach. In [8], a set of teacher models are trained on
sensitive data privately while their perturbed predictions are
aggregated to train a public student model. Compared to [4],
[5], a noisy voting/aggregation mechanism [8], [9] achieves
an impressive learning accuracy, but only works for classifi-
cation tasks and requires non-sensitive data to be present.
We show our experimental results achieve similar accuracies
at higher privacy regime compared to their works.

2.2 Differentially-Private ERM

When the cost function is convex or strongly convex, some
approaches have been proposed to achieve optimal or near
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optimal utility bounds with differential privacy. The prob-
lem is called differentially-private empirical risk minimiza-
tion (ERM) as the utility is defined as the worst-case (over
inputs) expected excess empirical risk [16]. The approaches
include gradient perturbation [16], [17], [18], output pertur-
bation [16], [18], [19], [20], and objective perturbation [19]. In
our work, we do not rely on the convexity of the cost function
and focus on the algorithm’s real-world performance.

2.3 Advanced Mechanisms in Differential Privacy

Awide variety of literature tries to improve the utility of dif-
ferential privacy mechanisms from different perspectives.
Geng et al. have proposed the optimal �-differentially private
mechanism under the general utility-maximization frame-
work for single real-valued query functions has staircase-
shaped noise probability density functions [21], [22]. Geng
et al. further show that the nearly optimal mechanisms in
ð�; dÞ-differential privacy for integer-valued query functions
under the utility-maximization framework. We follow their
convention in formulating the general utility-maximization
(or cost-minimization) objective function, but give the opti-
mizedmechanism for real-valued vectorized queries.

The scale of the perturbation noise typically depends on
the global sensitivity of the query over the private datasets.
We use the clipping value of the gradients as the global sen-
sitivity for each query, but it is also likely to use local sensi-
tivity [23] to further reduce the noise magnitude. Advanced
results include the one introduced by Wu et al. in [20] that a
new bound on the l2-sensitivity of the stochastic gradient
descent (SGD) algorithm allows better convergence of SGD
under the same privacy guarantee. Pichapati et al. [24] use a
coordinate-wise adaptive clipping of the gradient for differ-
entially-private SGD algorithm. The work shares the same
purpose with ours but takes an orthogonal approach.

When accessing datasets multiple times with differential
privacy mechanisms, the overall privacy level would
degrade on the union of those outputs, which is addressed
by the composition theorem [25]. Abadi et al. adopt higher
moments of the privacy loss variable to obtain tighter esti-
mates [5], and our work takes a similar approach to compose
differential privacy mechanisms over iterations. Theoreti-
cally optimal composition theorem has been proposed in
[13], but is limited in practicality due to some constraints.
R�enyi differential privacy [26] proposes a relaxation of differ-
ential privacy based on the R�enyi divergence, which could
usemore compact composition.

3 PRELIMINARIES

We will introduce some preliminaries for better understand-
ing this work.

3.1 Differential Privacy

Differential privacy is originally introduced to ensure that
the ability of an adversary to compromise the privacy of
any set of users is independent of whether any individual
opts in to, or out of, the dataset [3]. Such an ability prevents
any adversary from gaining additional information about
any individual. The privacy guarantee is expressed by the
logarithmic distance between the posterior probability
distributions of two adjacent inputs given the outputs.

Adjacent inputs are defined on two sets between which
their distance is one unit, e.g., the two sets differ by a single
entry. We use � to define the upper bound of the distribution
distance and d to denote the residual probability. Formally,
letting X and X0 be the pair of adjacent inputs, O be the out-
put set and K be the private mechanism, we have

Definition 1. A mechanism K is ð�; dÞ-differentially private if
for all adjacent inputs X and X0, and all possible output O,

Pr½KðXÞ 2 O� � e� � Pr½KðX0Þ 2 O� þ d: (1)

In the special case of d ¼ 0 we call K �-differentially pri-
vate. An intuitive interpretation of the differential privacy
concept above is that, with the definition, we are constrain-
ing how well an adversary can distinguish the input X from
X0 given only the output of KðXÞ and KðX0Þ. A common par-
adigm for approximating a function fð�Þ with differential
privacy is to add noise gauged by the sensitivity of fð�Þ,
which is defined by the maximum of the distance
kfðXÞ � fðX0Þk.

3.2 Stochastic Gradient Descent

In general, a deep neural network is denoted by a multi-
dimensional function F : X 7! Y featured by a set of param-
eters uu. We use uu 2 Rd to represent the flattened vector of
parameters where d is its dimension. X 2 X is a training set
from the training data space and Y 2 Y is the corresponding
targeted output. Let the cost function C be the discrepancy
between the output predicted by F and the target Y. The
training process is to find uu such that

minimize
uu

C: (2)

Various forms of the cost function can be applied, such as
square error for linear regression, or the logistic regression
cost function. With SGD, we repeatedly pick training exam-
ples (usually in mini batches) and compute the gradient of
the cost function with respect to each parameter. The
parameters are updated in the opposite direction of the gra-
dients to minimize the total cost.

4 OPTIMIZED ADDITIVE NOISE FOR DPSGD

General Settings. The solution of Eqn. (2), or the updated
parameters uu, may leak the secret of training data. Particu-
larly, as pointed out by [27], there is a clear dependence
between membership inference and overfitting. In the threat
model, an adversary with auxiliary knowledge may infer
about a particular record in the sensitive training set, from
the released model parameters.

Differentially-private SGD (DPSGD), or noisy SGD, is an
application of differential privacy on stochastic gradient
descent which is a common optimization technique in
machine learning, and the mechanism has been adopted in
[4], [5], [12], [24]. A way of performing DPSGD is to add
noise to the gradient, which inhibits the adversary from
inferring information about the training data. In particular,
randomized noise is generated with respect to the sensitiv-
ity of the parameter uu such that an individual change in the
training data alters uu so little that one could hardly discern
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the difference. We will follow the convention of DPSGD and
formulate our problem in this section.

Prior to the problem formulation, we first observe that
perturbation on parameters have different impact on the
cost which is closely associated with resulting accuracies.
Based on the observation, we propose an optimized addi-
tive noise scheme for DPSGD, i.e., the randomized noise is
generated being aware of the resulting accuracy. The prob-
lem is formulated as an optimization one and a closed-form
solution is given. Finally, we explicitly provide our privacy
mechanism based on the optimized noise scheme.

4.1 Utility Subspace

We ask the question: for a trained model, if inserting the
same total amount of perturbation, would different levels of
perturbation to each of the model weights yield the same
model accuracy? We refer to the accuracy as the utility, and
use the cost to gauge utility: the lower the cost, the higher
the utility. In this section, we introduce preliminary experi-
ments conducted to explore the utility subspace, i.e., how
the change in the model parameters affects the cost.

Similar to the sensitivity analysis by Papernot et al. [28],
and the influence function of the input by Koh et al. [29], we
study how the perturbation of model parameters affect the
resulting cost. The example in analysis is a tiny multi-layer
perceptron architecture (Fig. 1a). The architecture can be
considered as a basic unit of a deep neural network, consist-
ing of an input layer fx1; x2g, a hidden layer fh1; h2g,
weights across different layers fu1; . . . ; u6g, and the output
y. Neurons in the hidden layers apply the sigmoid function
fðtÞ ¼ 1

1þe�t to the weighted input layer. Given input x,
h1ðxÞ ¼ fðu1x1 þ u3x2 þ b1Þ where u1; u3 are weights and b1
is a bias, and the output is y ¼ u5h1 þ u6h2 þ b3: Weights
and biases are tuned during training.

We use the model in Fig. 1a to evaluate a function
fðx1; x2Þ ¼ x1ANDx2 which outputs a binary number given
x1; x2 2 ½0; 1�. When x1; x2 are not integers, they are rounded
up to the closest integer. For example, fð0:3; 0:7Þ ¼ 0. We
train on 1000 samples for 150 epochs to minimize the binary
cross-entropy loss. The training accuracy achieves over 98%
in the end. Then, we randomly choose any two parameters
to perturb by z1; z2, and record how the resulting cost
changes with respect to varying values of z1; z2.

In the experiments, we perturb u1 and b3 by a value in
ð0; 0:3Þ and get the resulting costs as shown by Fig. 1b.

Likewise, Fig. 1c shows the cost when u6 and b3 are per-
turbed. From Fig. 1b, one can tell that the least amount of
additive noise (coordinate ð0:0; 0:0Þ) does not always yield
the least cost. Actually, the cost decreases when a larger
positive noise is added to u1, which is in accordance with
the direction indicated by @C

@u1
. On the contrary, the cost

increases when a larger positive noise is added to b3. Over-
all, if we are inserting a given amount of perturbation, we
should spread more to u1 to keep the cost minimal. We have

similar observations in Fig. 1c. As @C
@u6

; @C
@b3

> 0, any positive

noise would increase the cost and such increase is even
higher if we add a greater amount of noise to b3 than to u6
since @C

@u6
< @C

@b3
.

A lesson learned from the experiment is that, non-uni-
form perturbation may incur less cost when carefully con-
sider the perturbation impact of different parameters.
Further, such impact can be estimated by each parameter’s
derivatives. In the follows, we will formulate a problem in
seek of a directional noise that leads to less cost while
guaranteeing differential privacy.

4.2 Problem Formulation

Following the DPSGD framework and our observation in
Sec. 4.1, we choose to add carefully calibrated noise to each
clipped gradients. The additive noise is sampled from a
multi-dimensional distribution that minimizes the total per-
turbation cost.

Assume that

w ¼ ðw1; w2; . . . ; wdÞ 2 Dd

represents the impact of each parameter on the cost, which
can be evaluated/approximated through multiple ways.
For example, one can use domain knowledge that some fea-
tures are more critical to the cost than others so that the
parameters associated with those features have higher
impact. It is also possible to derive the directions from
SVD/PCA of the feature matrices to decide the impact. In
this work, we simply use parameters’ derivatives to esti-
mate w. However, such estimation would require access to
the private training data and thus is privacy-leaking. We
will later discuss how to compensate such leakage by
spending additional privacy budget to turnw into ~w.

Our additive noise mechanism is KðxÞ ¼ xþ z where z ¼
ðz1; . . . ; zdÞ is drawn from a multi-dimensional probability

Fig. 1. (a) A multi-layer perceptron architecture. (b) The cost variation when perturbing u1 and b3.
@C
@u1

2 ð�0:048;�0:017Þ and @C
@b3

2 ð0:017; 0:049Þ. (c)
The cost when perturbing u6 and b3.

@C
@u6

2 ð0:013; 0:022Þ and @C
@b3

2 ð0:033; 0:056Þ.
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distribution designed by our optimized noise scheme. Let-
ting pð�Þ 2 P denote the probability density function for z,
we aim to minimize the expected magnitude of the noise
weighted by ~w. For example, the weight of zi is j ~wij: a larger
j ~wij indicates that the unit increment in ui will lead to a
larger perturbation in the output, and thus it is desirable to
keep the corresponding additive noise zi small. Our optimi-
zation goal is as follows:

minimize
p2P

Z
z2Rd

k ~w � zk1pðzÞdz: (3)

In the equation above, ~w � z represents the entry-wise prod-
uct of the two vectors. dz is short for dz1. . .dzd.

Next we study the privacy conditions that P should sat-
isfy. We identify two leakage sources in our scenario: the
utility subspace w, which distinguishes the significance of
the weights, as well as the released gradients computed on
a randomly sampled input batch. We use gt to denote the
gradients calculated at the tth iteration. Generally, let gt and
g0t be two gradient vectors respectively computed respec-
tively on X and X0, where the two differ by a single example
instance. The global sensitivity is defined as

a ¼ sup
8X;X0

kgt � g0tk2; (4)

where k � k is the l2 norm.
For our mechanism K to satisfy the differential privacy

constraint, we split the total privacy budget ð�; dÞ up to assign
partial budget to w for optimization, and the rest to the
release of the gradients. For example, we assign ð�=8; d=8Þ to
w and ð7�=8; 7d=8Þ to gt. The noisy copy of ~w is used instead
ofw in the latter computation.Nextwe discuss how to release
a noisy gt whichmeets the condition of differential privacy.

Our key observation is a sufficient condition for differen-
tial privacy:

Lemma 1. We have two datasets X and X0 that differ by a single
instance and DD ¼ gtðXÞ � gtðX0Þ. For any output set O, if

Pr
h
ln

pðzÞ
pðzþ DDÞ > �

i
< d;

KðgtÞ ¼ gtðXÞ þ z is ð�; dÞ-differentially private.
Proof. We let gt ¼ gtðXÞ and g0t ¼ gtðX0Þ, and kDDk � a: We

consider two events S ¼ fz : ln pðzÞ
pðzþDDÞ > �g; and Sc ¼ fz :

ln pðzÞ
pðzþDDÞ � �g: The sufficient condition can be written as

Pr½S� < d. And the event of Sc represent the case where K
satisfies �-differential privacy in that, for any output setO:

Pr½KðgtÞ 2 O� � e� Pr½Kðg0tÞ 2 O�
,Pr½gt þ z 2 O� � e� Pr½g0t þ z 2 O�
,Pr½z 2 O� gt� � e� Pr½z 2 O� g0t�
,Pr½z 2 O0� � e� Pr½z 2 O0 þ gt � g0t�
,Pr½z 2 O0� � e� Pr½z 2 O0 þ DD�;

(5)

where O0 ¼ O� gt , f8o : o� gtg. Since the inequality
has to hold for any O, �-differential privacy is met if and

only if z 2 Sc. Therefore, we can deduce the following if

the sufficient condition of Pr½S� < d holds

Pr½KðgtÞ 2 O� ¼ Pr½gt þ z 2 O�
¼ Pr½gt þ z 2 O \ Sc� þ Pr½gt þ z 2 O \ S�
� e� Pr½g0t þ z 2 O \ Sc� þ Pr½S�
� e� Pr½g0t þ z 2 O� þ d

¼ e� Pr½Kðg0tÞ 2 O� þ d;

which means that K satisfies ð�; dÞ-differential privacy.

The first inequality holds due to the definition of Sc and

the second inequality holds because of the sufficient con-

dition Pr½S� < d. Proof completes. tu
We assume z is drawn from the probability density

function pðzÞ. If we define the privacy loss variable c ¼
ln pðzÞ

pðzþDDÞ as the logarithmic distance between two adjacent
noise distributions, it suffices to show Pr½c > �� < d for
any z and for all DD that kDDk � a to ensure ð�; dÞ-differential
privacy.

To simplify the problem, we assume z is drawn from a
multi-dimensional Gaussian distribution with zero mean
and standard deviation ss ¼ ðs1; . . . ; sdÞ. Each dimension is
assumed to be independent of each other. That is to say, zi �
Nð0; s2

i Þ. In essence, we search a probability distribution of
the noise w.r.t. the cost direction while satisfying the differ-
ential privacy property:

minimize
s1;...;sd

Z
z2Rd

k ~w � zk1pðzÞdz

s.t. Pr
h
ln

pðzÞ
pðzþ DDÞ > �

i
< d; 8z 2 Rd; 8kDDk � a;DD 2 Rd:

(6)

Prior to our work, Geng et al. [22] proved that the optimal
pdf of the random noise to minimize its l1 norm is a sym-
metric and staircase-shaped function when d ¼ 2. However,
adding the least amount of noise is not exactly what we
want according to the observation in Sec. 4.1. Our goal is to
release a perturbed model with high accuracy while satisfy-
ing differential privacy property at the same time.

4.3 Main Result

We assume a multivariate Gaussian noise p is applied
where each of its dimensions is independent of one another
(we assume the independence of different dimensions of
the noise, not the gradient). Thus we present the pdf in a
product form: pðzÞ ¼Qd

i¼1 piðziÞ with each piðziÞ being the
pdf of Nð0; s2

i Þ from which the random noise zi is drawn.
We will show that Eqn. (6) can be transformed into a form
which has a closed-form solution.

First, we rewrite the objective function as

Z
z2Rd

k ~w � zk1pðzÞdz ¼
Z
z2Rd

Xd
i¼1

j ~wizij � pðzÞdz

¼
Xd
i¼1

Z
zi

j ~wizij � 1ffiffiffiffiffiffi
2p

p
si

exp
�
� z2i
2s2

i

�
dzi

¼ 2
Xd
i¼1

j ~wijffiffiffiffiffiffi
2p

p
Z þ1

0

zi
si

exp
�
� z2i
2s2

i

�
dzi ¼

Xd
i¼1

ffiffiffiffiffiffiffiffi
2=p

p
j ~wijsi:
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The last equation is due to
Rþ1
0 xexpð�x2Þdx ¼ 1=2: Thus

the objective is transformed to minimizing over the
weighted sum of ss ¼ ðs1; . . . ; sdÞ.

Next we analyze the constraints. We rewrite c with the
expression of Gaussian distributions, and let DD ¼
ðD1; . . . ;DdÞ to get

c ¼ ln
pðzÞ

pðzþ DDÞ ¼ ln
Yd
i¼1

pðziÞ
pðzi þ DiÞ

¼ ln
Yd
i¼1

exp
�
� z2i =2s

2
i

�
exp
�
� ðzi þ DiÞ2=2s2

i

� ¼
Xd
i¼1

2ziDi þ D2
i

2s2
i

:

Since zi � Nð0; s2
i Þ, we have

c � N
�Xd

i¼1

D2
i

2s2
i

;
Xd
i¼1

D2
i

s2
i

�
:

We consider the composition of differential privacy
mechanisms over k iterations. Due to the additive and scal-
ing properties of Gaussian distributions, the composed pri-
vacy loss variable also follows the Gaussian distribution. If
we assume the privacy loss variable in each iteration is
drawn from the same distribution, we have

c � N
�
k
Xd
i¼1

D2
i

2s2
i

; k
Xd
i¼1

D2
i

s2
i

�
:

We adopt the idea from moments accountant [5] to use a
higher moment of the privacy loss variable c to give a larger
feasible range of the constrained variables, which facilitates
the finding of a globally optimal solution to Eqn. (6). By
Markov inequality, we transform the constraint as:

Pr½c > �� ¼ Pr½bc > b�� ¼ Pr½expðbcÞ > expðb�Þ�
� E½expðbcÞ�=expðb�Þ � d;

(7)

for any positive integer b.
It is worthwhile to point out that our composition is not a

basic composition in which the privacy budget is simply
added up. The composition method bears a similar princi-
ple to [5] in that a higher order of the privacy loss variable is
adopted to derive the differential privacy constraint. How-
ever, in moments accountant, the privacy loss variable
includes the sampling procedure while ours does not specif-
ically include it. Hence in principle, our composition shares
the same tightness bound as [5].

Incorporating the expression of c into the inequality, we
have

E½expðbcÞ�
expðb�Þ ¼ exp

� kðbþ b2Þ
2

Xd
i¼1

D2
i

s2
i

� b�
�
� d;

i.e.,
Xd
i¼1

D2
i

s2
i

� 2 � �þ ðln dÞ=b
kð1þ bÞ :

Letting tð�; dÞ , 2 � �þðln dÞ=b
kð1þbÞ , Eqn. (6) can be rewritten as

minimize
ss

Xd
i¼1

j ~wij � si (8a)

subject to
Xd
i¼1

D2
i =s

2
i � tð�; dÞ (8b)

8Di; such that
Xd
i¼1

D2
i � a2: (8c)

We observe that Eqn. (8a) is an affine function of si, and
Eqn. (8b) is a convex function of si. And thus Eqn. (8) satis-
fies the strong duality condition. The Lagrangian function
is:

Lðss; �Þ ¼
Xd
i¼1

j ~wij � si þ �
Xd
i¼1

D2
i =s

2
i � tð�; dÞ

 !
; (9)

and the dual problem can be written as:

max� gð�Þ; s.t. � 	 0; (10)

where gð�Þ ¼ infss Lðss; �Þ: Observing that Lðss; �Þ is convex
on ss, by applying the first-order condition, we have

s

i ¼

2�D2
i

j ~wij
� �1=3

: (11)

Substituting Eqn. (11) into Eqn. (10), we obtain a concave
problem about �. By applying the first-order condition on �
we have

�
 ¼ 3tð�; dÞ
c1
Pd

i¼1ðDi ~wiÞ2=3
" #�3=2

; (12)

where c1 is a constant. By substituting �
 back to the dual
problem and the problem becomes:

max
DD

Xd
i¼1

Di ~wið Þ23

8Di; such that
Xd
i¼1

D2
i � a2:

The problem is convex on DD and when the optimality is
achieved, it must hold that

Pd
i¼1 D

2
i ¼ a2: Together with the

first-order condition, one can obtain

D

i ¼

a ~wi

ðPd
i¼1 ~w2

i Þð1=2Þ
: (13)

Combining Eqns. (11), (12) and (13), we can obtain the opti-
mal s


i to problem (8) and hence problem (6).
Sampling and composition. In each iteration of training, we

sample a batch of training instances to perform stochastic
gradient descent. Hence the differential privacy guarantee is
amplified according to [16]. Letting the total guarantee be
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ð�; dÞ and sampling rate be q, the probability that each
instance is chosen is reduced by q throughout the training
process, and hence the amplified privacy budget is ð�=q; d=qÞ
overall.

In the previous proof, we compose the privacy loss varia-
bles over iterations, which is different from the composition
that the moments accountant [5] has adopted. We take
advantage of the fact that the privacy loss variable is a
Gaussian random variable which is additive, to compose
differential privacy mechanisms over k iterations.

4.4 Optimized Additive Noise Mechanism

Our mechanism can be considered as an instantiation of the
differentially-private SGD. Overall, to achieve ð�; dÞ-differ-
ential privacy for k iterations of SGD, we split the privacy
budget to ð�w; dwÞ and ð�g; dgÞ for w and g. In each iteration,
we sample a batch of data at each iteration with sampling
rate q, and the total privacy budget for releasing g is ampli-
fied as ð�g=q; dg=qÞ. To compute the noise parameters, we
first substitute ~w in Eqn. (6) with 1 to solve ss to generate the
noise for w. Then we generate randomized noise for w
given ss and compute ~w. Note that ss only need to be com-
puted once but fresh randomized noise is required for dif-
ferent ws in each iteration. With ~w in Eqn. (6), we can
compute the optimized noise parameters for gt and generate
the randomized noise in each iteration. The detail of the
proposed mechanism is shown in Algorithm 1.

Algorithm 1. Optimized Additive Noise Mechanism

Input: Training dataset ðX;YÞ, total number of training exam-
ples n, cost function Cð�Þ, clipping value a, learning rate ht,
total iterations k, privacy parameters ð�; dÞ

Output:kth iteration parameters uuk

1: Split the privacy budget to ð�w; dwÞ and ð�g; dgÞ.
2: Compute sw1; . . . swd by substituting w ¼ 1; a; � ¼ �w; d ¼ dw

to Eqn. (6).
3: for t 2 f0; . . . ; k� 1g do
4: Computewt ¼ 1

n � @CðX;YÞ
@uut

.
5: Generate the randomized noise z ¼ ðz1; . . . ; zdÞ such that

zi � Nð0; s2
wiÞ and compute ~wt ¼ wt=maxð1; kwtk=aÞ þ z:

6: Randomly sample a batch B of training data ðXB;YBÞwith
probability q.

7: for ðx; yÞ 2 ðXB;YBÞ do
8: Compute gtx ¼ ruutCðuut; x; yÞ:
9: Clip by a: �gtx ¼ gtx=maxð1; kgtxk=aÞ:
10: end for
11: Compute the average: �gtB ¼ 1=jBjPx2B �gtx:
12: Compute s1; . . . sd by substituting ~w;a; � ¼ �g=q; d ¼ dg=q to

Eqn. (6).
13: Generate the randomized noise z ¼ ðz1; . . . ; zdÞ such that

zi � Nð0; s2
i Þ and add them to �gtB: ~g

t
B ¼ �gtB þ z:

14: Update uutþ1 ¼ uut � ht~gtB:
15: end for
16: Return uuk.

In practice, we do not need to insert additive noise for
every batch, but only apply the mechanism for every lot. A
lot usually consists of multiple batches such that gradients
are released every lot. We only consider the composition of
the privacy mechanisms between different lots. We show
that

Theorem 1. Algorithm 1 satisfies ð�; dÞ-differential privacy.
Proof. To prove that, we need to show the definition of dif-

ferential privacy holds true for any pair of adjacent
inputs. Let X and X0 be any pair of training dataset with a
single entry difference, and w.l.o.g., we have X ¼ X0 [ x:
One can easily derive from Lemma 1 that ~w satisfies
ð�w; dwÞ-differential privacy. In each iteration of training,
the sampled batch on the two datasets B;B0 differ by x
with probability q. By the privacy amplification rule, the
privacy budget consumed is ð�g; dgÞ in total for the release
of ~gtB over k iterations. Hence Algorithm 1 satisfies
ð�; dÞ-differential privacy overall. tu
Convergence. The convergence of Algorithm 1 is similar to

that of the moments accountant [5] or stochastic gradient
descent, since the noise added is of zero mean. We only
manipulate the standard deviation of the noise to be added.
Intuitively, the generated noise follows a distribution which
in expectation yields the least impact to the output whereas
satisfying differential privacy.

5 A GENERAL FORM AND A LOWER BOUND

In this section, we extend the optimized additive noise
problem (Eqn. (6)) to a more general form. The general
form extends the differential privacy concept to the well-
understood mutual information, which shares the same
spirit with [30], and provides insight to the utility-maxi-
mization framework in Sec. 4.2. In fact, the problem
interestingly links to the celebrated distortion-rate func-
tion in communications, where the minimum distortion
(maximum utility) can be derived under rate (privacy)
constraints.

5.1 Privacy as Mutual Information Constraints

We consider the privacy constraint from an information the-
oretic perspective. Assuming g and ~g are the gradients vec-
tor before and after perturbation, i.e., KðgÞ ¼ ~g; we would
like to directly constrain how much information ~g reveals
about g.

Conventionally, mutual information IðY ;ZÞ represents the
reduction in the uncertainty of Y given the knowledge of Z,
and is defined as the relative entropy between the joint dis-
tribution pðy; zÞ and the product distribution pðyÞpðzÞ. Thus
Iðg; ~gÞ is a measure of the information leakage of the real
gradients due to the release of ~g. To link to our setup, we
show that the differential privacy constraint on g implies
that mutual information Iðg; ~gÞ is bounded, i.e.,
Theorem 2 (differential privacy ¼) mutual informa-
tion bound). If mechanism KðgÞ is �-differentially private,
then Iðg; ~gÞ � �ðe� � 1Þ=2:
We first introduce several notions of divergence between

distributions and some properties.

Definition 2 (KL-Divergence). The KL-Divergence, or
relative entropy, between two random variables Y and Z is
defined as

DKLðY kZÞ ¼ EY�Y
h
ln
PrðY ¼ yÞ
PrðZ ¼ yÞ

i
;
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where if the support of Y is not equal to the support of Z, then
DKLðY kZÞ is not defined.

Definition 3 (Max Divergence). The Max Divergence betw-
een two random variables Y and Z is defined as

D1ðY kZÞ ¼ max
O�SuppðY Þ

h
ln
PrðY 2 OÞ
PrðZ 2 OÞ

i
;

where if the support of Y is not equal to the support of Z, then
D1ðY kZÞ is not defined.
With the Max Divergence, we can rewrite the definition

of �-differential privacy as follows:

Definition 4. A mechanism M is �-differentially private if for
all adjacent inputs I and I 0, and all possible output O,

D1ðOjIkOjI 0Þ; D1ðOjI 0kOjIÞ � �:

The relation between the Max Divergence and KL-Diver-
gence is proven by [31] such that:

Lemma 2 ([31], Lemma 3.8). For any two random variables Y
and Z such thatD1ðY kZÞ; D1ðZkY Þ � �;

DKLðY kZÞ � �ðe� � 1Þ=2:

Lemma 2 indicates that when the Max Divergence
between two distributions are bounded, the KL-Divergence
indicating the average distance between the two is also
bounded. Now we formally prove Theorem 2.

Proof (Theorem 2). We start by assuming KðgÞ satisfies
�-differential privacy. By Definition 4 and Lemma 2, the
KL-Divergence between the conditional probabilities
Prð~gjgÞ and Prð~gjg0Þ is bounded. On the other hand, we
have

Iðg; ~gÞ ¼ Ið~g; gÞ ¼ Eg½DKLð~gjgk~gÞ�:

The second equality is obtained from the relation
between mutual information and KL-Divergence. Next,
we bound DKLð~gjgk~gÞ for each instance g. For any g0

such that kg� g0k � a;we have

~g ¼ Eg0 ½~gjg0�:

Hence, for each g;

DKLð~gjgk~gÞ ¼ DKLð~gjgkEg0 ½~gjg0�Þ
� Eg0 ½DKLð~gjgk~gjg0Þ�
� �ðe� � 1Þ=2:

The first inequality is due to DKLð�Þ is convex in the sec-
ond argument; and the second one follows from the KL-
Divergence between each pair of instances ~gjg and ~gjg0 is
bounded. Therefore, we prove that the average of the
above KL-Divergence over all instances of g is bounded,
thus we have

Iðg; ~gÞ � �ðe� � 1Þ=2:

To summarize the proof, we have: �-differential privacy
implies KL-Divergence is bounded, and the latter implies
mutual information is bounded. tu
The conclusion is similar to Lemma 1 of [30] except that we

define the neighboring inputs based on their l2-norm distance
rather than the Hamming distance. Themathematical intuition
is the same: differential privacy is defined on ‘pairwise’
requirements on distinguishability which can be considered
as ‘worst-case’ privacy, but the mutual information measures
the ‘average’ amount of information about g in ~g, and thus
defines an ‘average-case’ privacy. Cuff et al. prove the equiva-
lence between differential privacy and conditional mutual
information in [30]. However, they only show the case where
the inputs are from a finite set, and the conclusion cannot be
directly extended to continuous variables.

5.2 A General Form

Now we give a general form of the privacy-constrained cost
optimization by relaxing its differential privacy constraint
to the mutual information constraint: Iðg; ~gÞ � R where
R , �ðe� � 1Þ=2: Instead of searching the optimal probability
density function pðzÞ that minimizes the total projected ran-
dom noise, we assume the probability distribution of g —
Pr½g� is given and try to find the optimal posterior probabil-
ity distribution Pr½~gjg� over which the weighted perturba-
tion is minimal. Note that this expression over ~g is more
general than the additive noise mechanism since we do not
impose on how ~g is obtained. Letting w be the impact of
each parameter on the cost, we express the objective func-
tion as the expectation over the distributions of g and ~g
such that:

E½D̂ðg; ~gÞ� ¼
Z
g2Rd

Z
~g2Rd

Pr½g�Pr½~gjg� � kw � ð~g� gÞk22d~gdg:

Thus the general form of the privacy-constrained cost opti-
mization turns out to be:

minimize
Pr½~gjg�

E½D̂ðg; ~gÞ� (14a)

subject to Iðg; ~gÞ � R: (14b)

For known prior distribution of g, we seek the optimal
posterior probability distribution of Pr½~gjg� that mini-
mizes the expected distortion while satisfying the mutual
information constraint. We interestingly found that the
problem has a form of the classic distortion-rate problem
if the privacy constraint is considered as the rate con-
straint. As a convention, we use DðRÞ to denote the distor-
tion rate function, which is the infimum of all distortions D
for a given rate R such that ðR;DÞ is in the rate distortion
region

DðRÞ ¼ min
Pr½~gjg�:Iðg;~gÞ�R

E½D̂ðg; ~gÞ�:

The distortion rate function defines the boundary of the
rate distortion region, which contains all achievable rate dis-
tortion pairs. Our main result is a lower bound of the
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distortion rate function DðRÞ for the privacy constraint R
under the following assumptions: 1) each element in g is
independent of each other; 2) ~gi is only associated with gi,
and E½~gi� ¼ gi; 8i: Our formal statement is as follows:

Theorem 3 (Distortion Rate). Let hðgÞ denote the differential
entropy of g in nats. Then for any R; DðRÞ 	 D
ðRÞ such that

bi ¼ w2
i e

2hðgiÞ=ð2peÞ; (15aÞ

Di ¼
� if � < bi

bi if � 	 bi

�
; 8i 2 f1; 2; . . . ; dg; (15bÞ

R ¼ hðgÞ �
Xd
i¼1

1

2

�
1þ ln

�
2pDi

w2
i

��
; (15cÞ

D
ðRÞ ¼
Xd
i¼1

Di: (15dÞ

The boundary of the rate distortion region DðRÞ can be
equivalently expressed as the rate distortion function RðDÞ.
For a given distortion D, the rate is:

RðDÞ ¼ min
Pr½~gjg�:E½D̂ðg;~gÞ��D

Iðg; ~gÞ:

An important property of RðDÞ is its convexity:
Lemma 3 ([32] Lemma 10.4.1.). The rate distortion function

RðDÞ is a non-increasing convex function ofD.

Likewise, we can also prove DðRÞ to be a non-increasing
convex function of R. To prove Theorem 3, we first prove a
lower bound of the rate distortion function:

Lemma 4 (Rate Distortion). Let hðgÞ be the differential
entropy of g in nats. Then for anyD, RðDÞ 	 R
ðDÞ such that

bi ¼ w2
i e

2hðgiÞ=ð2peÞ; (16aÞ

Di ¼
� if � < bi

bi if � 	 bi

�
; 8i 2 f1; 2; . . . ; dg; (16bÞ

D ¼
Xd
i¼1

Di; (16cÞ

R
ðDÞ ¼ hðgÞ �
Xd
i¼1

1

2

�
1þ ln

�
2pDi

w2
i

��
: (16dÞ

Proof. Let g ¼ fg1; . . . ; gdg; ~g ¼ f~g1; . . . ; ~gdg be random vari-
ables before and after distortion. The distortion vector is
z ¼ fz1; . . . ; zdg of which each dimension is independent.
By definition,

Iðg; ~gÞ ¼ Iðz; ~gÞ ¼ hðzÞ � hðzj~gÞ (17aÞ

¼
Xd
i¼1

hðziÞ �
Xd
i¼1

hðzijz1; . . . ; zi�1; ~gÞ (17bÞ

¼
Xd
i¼1

hðziÞ �
Xd
i¼1

hðzij~giÞ (17cÞ

¼
Xd
i¼1

Iðzi; ~giÞ ¼
Xd
i¼1

Iðgi; ~giÞ; (17dÞ

where 8i ¼ 1; . . .; d:We have for each i,

Iðgi; ~giÞ ¼ hðgiÞ � hðzij~giÞ (18aÞ
	 hðgiÞ � hðziÞ (18bÞ
	 hðgiÞ � hðN ð0;E½z2i �ÞÞ (18cÞ

¼ hðgiÞ � 1

2

�
1þ ln

�
2pDi

w2
i

��
: (18eÞ

The inequalities of (18b) follow from the fact that con-
ditioning reduces entropy. Inequality (18c) is because the
normal distribution maximizes the entropy for a given
second moment (a given l2-norm distortion). We also
have E½D̂ðgi; ~giÞ� ¼ w2

iE½ðgi � ~giÞ2� , Di; which leads to
Eqn. (18e). Apparently, the equality of Eqn. (18b) cannot
be achieved, hence the rate R
 cannot be within the
achievable ðR;DÞ region.

Since Iðgi; ~giÞ 	 0; the problem of finding the lower
bound of rate distortion function becomes the following
convex optimization problem:

R
ðDÞ ¼ minP
Di¼D

Xd
i¼1

max
n
hðgiÞ � 1

2

�
1þ ln

�
2pDi

w2
i

��
; 0
o
:

By introducing Lagrange multipliers, we construct:

JðDÞ ¼
Xd
i¼1

 
hðgiÞ � 1

2

�
1þ ln

�
2pDi

w2
i

��!
þ �

Xd
i¼1

Di:

(19)

We use the KKT conditions to find the minimum in Eqn.
(19), that is:

@J

@Di
¼ � 1

2

1

Di
þ �;

where � should be chosen such that

@J

@Di

¼ 0; if Di < bi;
� 0; if Di 	 bi:

�
(20)

It is easy to verify that Eqn. (16d) satisfies Eqn. (20), and
the KKT conditions are satisfied by Eqn. (16). tu
Now we prove Theorem 3 with the help of Fig. 2.

Proof. (Theorem 3.) We prove it by three steps. First, as
R
ðDÞ is another expression of D
ðRÞ, any ðR
; D
Þ pair
on R
ðDÞmust be onD
ðRÞ: And the opposite is true.

Fig. 2. Left: an illustrative example for the minimum distortion. Right:
Rate distortion region, rate distortion function and a lower bound R
.
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Second, we show that any ðR;DÞ pair on RðDÞ is also
on DðRÞ by contradiction. Let ðRðD1Þ; D1Þ be any point
on RðDÞ. We assume DðRðD1ÞÞ 6¼ D1: If DðRðD1ÞÞ >
D1; it does not agree with the definition of distortion rate
function, since there exists a point in ðR;DÞ region with
smaller distortion when R ¼ RðD1Þ: If DðRðD1ÞÞ < D1;
by the complementary argument of Lemma 3, RðD1Þ 	
D�1ðD1Þ as DðRÞ is a non-increasing function of R. It
turns out RðD1Þ has to be larger than D�1ðD1Þ since
RðD1Þ 6¼ D�1ðD1Þ by our assumption. However,
RðD1Þ > D�1ðD1Þ violates the definition of rate distor-
tion function since ðD�1ðD1Þ; D1Þ is achievable. Hence
this assumption is wrong in the first place: for any D1 on
RðDÞ, DðRðD1ÞÞ ¼ D1: We can also prove any point on
DðRÞ is on RðDÞ as well.

By Lemma 4, we have R
ðDÞ � RðDÞ; 8D: Now we
proveD
ðRÞ is no larger thanDðRÞ for anyR by contradic-
tion. Assume 9R
 on R
ðDÞ such that D
ðR
Þ > DðR
Þ:
By the non-increasingness of RðDÞ; RðD
ðR
ÞÞ �
RðDðR
ÞÞ ¼ R
: SinceR
 is the lower bound ofRð�Þ; it has
to be RðD
ðR
ÞÞ ¼ R
; which leads to DðRðD
ðR
ÞÞÞ ¼
DðR
Þ: Note that we also have DðRðD
ðR
ÞÞÞ ¼ D
ðR
Þ
since any ðR;DÞ pair on RðDÞ is also on DðRÞ. Hence we
have D
ðR
Þ ¼ DðR
Þ and arrive at a contradiction. The
theorem is therefore established.

Eqn. (15a) gives a lower bound to the expected distor-
tion in the distortion rate function DðRÞ, which is also a
lower bound to the privacy-constrained cost optimiza-
tion problem. Proof completes. tu
Given the distribution of g and the privacy constraint R,

there are dþ 1 unknown variables in Eqn. (15c) and Eqn.
(15b). Hence we can decide the values for D1; . . . ; Dd, from
which D
ðRÞ can be determined. It is obvious that when the
privacy constraint is given, D
ðRÞ gives a lower bound to
the minimum of the expected distortion E½Dðg; ~gÞ�. Since
Eqn. (14b) is a necessary condition on �-differential privacy
according to Theorem 2, the mutual information bound is
more relaxed than the differential privacy constraint. Thus
D
ðRÞ is also a lower bound to the expected distortion given
the differential privacy constraints.

The left subfigure of Fig. 2 shows an illustrative exam-
ple of the distortion results by Theorem 3. When the pri-
vacy is constrained by R, the minimum distortion is akin
to reverse water-filling, in that all distortions above a
constant � is expressed, and all that less than � adopts �
as the distortion. It means for independent Gaussian per-
turbations, there is a minimum perturbation threshold
for each gi to meet the mutual information privacy
constraint.

6 EVALUATION

Despite its theoretical guarantee, it remains a challenge to
solve Eqn. (6) due to the high-dimensional model param-
eters. In this section, we introduce our setup on three con-
ventional machine learning datasets and classic models.
Implementation details on the privacy mechanisms on
TensorFlow andPytorch are followed. Finally, we
compare the evaluation results of our design against the
state-of-the-art.

6.1 Experimental Setup

The default experimental setting is given in Table 1. MNIST
is a standard image dataset for handwritten digit recogni-
tion, with each image containing 28� 28 gray-level pixels.
LeNet is used as the base model and if trained without per-
turbation, the model reaches 98:32% testing accuracy.
SVHN is a real-world dataset which comes from house
numbers in Google Street View images. We adopt a modi-
fied AlexNet with kernel sizes of all convolutional layers set
to 3 and it reaches 93:01% testing accuracy when unper-
turbed. Each image in CIFAR-10 dataset follows 32� 32� 3
RGB format and is trained using ResNet-18. The unper-
turbed accuracy of CIFAR-10 reaches 91:43%. We perform
DPSGD from the start for all model parameters of MNIST.
While for SVHN and CIFAR-10, as we have found few
working DPSGD methods on large-scale models in the cur-
rent literature, we compromise by performing DPSGD on
compressed (pruned) gradients and update the model by
those gradients. In each iteration, we prune the gradients by
their magnitude and add differentially-private noise to the
left gradients. The pruned gradients are set to zeros. Models
are updated only by the non-zero gradients while the prun-
ing error is compensated according to Algorithm 2 of [33].
Pruning errors in each iteration are added back in the next
iteration to the gradients between line 8 and 9 of Algorithm
1. The pruning ratio defaults to 0.9. Note that different from
[5], we do not pre-train models and all models are trained
from scratch.

6.2 Implementation

We have implemented a general-purpose framework on
TensorFlow and Pytorch, and it supports conventional
and customized datasets with pluggable models and pro-
vides a convenient user interface. The privacy mecha-
nisms have been implemented as a noise generation
module in our framework. The module contains four
noise generators: 1) Gaussian: a Gaussian noise generator
following the implementation of moments accountant in
[5]; 2) AdaClip: a Gaussian noise generator with adaptive
gradient clipping schemes from [24]; 3) a version of our
optimized noise generator without assigning the privacy
budget in computing ~w but simply setting it to 1, denoted
as Ours (w ¼ 1); 4) a full version of Algorithm 1, denoted
as Ours in the following. For the latter two noise genera-
tors, we built in the optimal solutions obtained by Eqn.
(11), (12) and (13). The noise generator is implemented as
a part of the computation graph using tensor operations

TABLE 1
Experimental Setup

MNIST SVHN CIFAR-10

train/test instances 55000/5000 73257/26032 60000/10000
model LeNet AlexNet ResNet-18
pruning ratio 0 0.9 0.9
batch size 64 256 256
lot size 512 256 256
clip value 0.1 2.0 2.0
training epochs 60 30 100
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to take advantage of GPU batch processing. The Pytorch

version implements gradients pruning and error
feedback.

For fair comparison, we adopt the same training hyper-
parameters as in Table 1 across all experiments. For Gauss-
ian and AdaClip, moments accountant is used as the
composition method. For AdaClip, we pick the best g

according to the accuracy performance. On MNIST, g is set
to 0.01 meaning that 99% of all gradients are clipped.

To evaluate the additional computation overhead
incurred by the privacy mechanisms, we measured the
average batch processing time of each scheme by the Ten-

sorFlow implementation on RTX 3090. The results are
shown in Table 2, which suggest that the computation over-
head of Ours (w ¼ 1) only increases mildly (11%) over the
Gaussian on MNIST, due to the additional distribution
parameter generation step, which shows the efficiency of
the closed-form solutions. The computation overhead of
Ours is comparatively higher since it requires to compute ~w
in each iteration. The batch processing time of AdaClip is
between Ours and Ours ( ~w ¼ 1).

6.3 Comparison

We compare our mechanisms with the unperturbed case
and state-of-the-art baselines in this section. The unper-
turbed accuracy represents the performance of the model
without privacy. The Gaussian method implements the
moments accountant method which tightly composes pri-
vacy budget over iterations, whereas AdaClip improves
over conventional differentially-private SGD by adap-
tively clipping gradients. We compare AdaClip with our
method on MNIST since it was previously conducted on
MNIST [24].

Accuracies versus Iterations. We first show the testing
accuracy per training iteration on the three datasets in
Figs. 3a, 3b, and 3c, where we pick three representative

curves at different privacy levels. It can be observed for
the unperturbed case, accuracies ramp up quickly in the
first few epochs. From Fig. 3a, we can tell that our
method obtains the highest accuracy among all, with
highly stable performance, followed by Ours (w ¼ 1) and
Gaussian. AdaClip is weaker than Gaussian and is quite
unstable according to our observation. We think this may
be because varied clipping values at the lot aggregation
step leading to unpredictable gradient descent directions.
On SVHN (Fig. 3b) and CIFAR-10 (Fig. 3c), we observe
Ours (w ¼ 1) obtains the highest accuracies followed by
Ours. The moments accountant method is inferior in
accuracy, especially on large models like ResNet-18. As
the gradients are pruned on SVHN and CIFAR-10, it is
analyzed that each single gradient is more sensitive to the
noise and thus Ours performs worse since it inserts
higher noise than Ours (w ¼ 1). This also explains the
accuracy drop around Epoch 25 in Fig. 3b that the pertur-
bation effect takes over training. But still, the optimized
additive noise mechanism is better than the baseline.

Accuracies versus Privacy Parameters. One may argue that
it is not fair to argue the superiority of our algorithm’s per-
formance since the baselines may not converge at the same
number of training epochs. In fact, the increase of training
iterations has contradictory effects to accuracy: while it con-
tinues to improve training accuracy by minimizing the cost
function, the model also suffers from further perturbations
as additional noise is inserted. To eliminate the concern
about the stopping condition, we conduct experiments with
different budget schemes and privacy parameters where we
report the highest testing accuracies throughout training in
each setting.

We show the results in Figs. 4a, 4b, and 4c. First of all,
our method exceeds other baselines by a large margin in
the high privacy regime on MNIST: the gap between
Ours and Gaussian is up to 9% when � ¼ 0:2. On SVHN,
Ours (w ¼ 1) yields 92:47% accuracy when � ¼ 5:0, fairly
close to the unperturbed case while the moments accoun-
tant reaches less than 40% accuracy at that privacy level,
showing the advantage of optimizing noise hyperpara-
meters. On CIFAR-10, our methods show a greater
improvement at the low privacy level (e.g., � ¼ 15:0), and
this may be because CIFAR-10 on ResNet is more compli-
cated to learn, and our method is less competitive when

TABLE 2
Average Batch Processing Time (s) on MNIST

Unperturbed Gaussian Ours Ours (w ¼ 1) AdaClip

1.50 1.53 2.19 1.70 1.95

Fig. 3. Testing accuracy versus training epochs on MNIST (a), SVHN (b), and CIFAR-10 (c). Our method obtains the best convergence and accuracy
performance among all. Ours (1/4) represents our method in which �w ¼ 1

4 �.
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the privacy level is high. For all mechanisms, the accuracy
enhances with a growing �, showing the tradeoff between
privacy and utility. We also found that the privacy bud-
get assignment only mildly affects the accuracy perfor-
mance. In general, when we assign a slightly larger
budget to �w, the accuracy is higher. The results verify
that our optimized additive noise mechanisms are effec-
tive in both low and high privacy regimes.

6.4 Sensitivity to Hyperparameters

Privacy and accuracy cannot be discussed without mention-
ing the hyperparameters and the specific neural network
structures. We show that our optimized mechanism is
robust in most cases. We mainly consider the following
hyperparameters: lot sizes, gradients pruning ratios, and l2
clipping values. We reuse the previous setting except that
the batch size is set to 128 on SVHN and CIFAR-10 for the
lot size experiments.

By Figs. 5a, 5b, and 5c, we find that the accuracy per-
formance in general decays with the lot size. In particular,
the accuracies drop to around 20% on SVHN at lot size
512 for both Ours and the moment accountant method
but surge up at a larger lot size. As we analyze, growing
lot sizes have contradictory impact to the accuracy: both
the inserted noise magnitude and the total training itera-
tions reduce. Hence it is possible to yield deteriorated
performance when an inappropriate lot size is chosen.
Pruning ratios should also be taken into consideration in

the design. In Fig. 5d, it is observed that when the prun-
ing ratio is extremely high (over 0.9), training does not
converge in Ours. But even at a high pruning ratio (e.g.,
0.99), the training performance of Ours (w ¼ 1) and the
moment accountant method is not much different from
any lower pruning ratio. This may due to inaccurate
approximation of the impact of each parameter. The sen-
sitive ranges of clipping values vary across different data-
sets. For example, on MNIST (Fig. 6a), the performance is
robust to clipping value variation in the range of 0.01 to
0.1 while degrades significantly with a larger clipping
value. On SVHN (Fig. 6b), our methods are not sensitive
to the change of clipping values in the entire range from
0.5 to 6.0, while the moments accountant decays over
larger clipping values.

Fig. 4. Testing accuracy versus privacy parameters on MNIST (a), SVHN (b), and CIFAR-10 (c). d ¼ 10�5 in all cases. On MNIST, the comparison with
baselines show our method surpasses others across a variety of privacy settings. On SVHN and CIFAR-10, results under different privacy budget
schemes are displayed, e.g., Ours (1/3) denotes the scheme in which �w ¼ 1

3 �. Our methods yields higher accuracy than the Gaussian under all pri-
vacy budget schemes.

Fig. 5. (a)(b)(c) Testing accuracy versus lot sizes on MNIST, SVHN and CIFAR-10. We set ð� ¼ 1:0; d ¼ 10�5Þ on MNIST, ð� ¼ 10:0; d ¼ 10�5Þ on
SVHN, and ð� ¼ 5:0; d ¼ 10�5Þ on CIFAR-10. (d) Testing accuracy versus pruning ratios on CIFAR-10 ð� ¼ 5:0; d ¼ 10�5Þ.

Fig. 6. Testing accuracy versus clipping values on MNIST ð� ¼ 0:3; d ¼
10�5Þ and SVHN ð� ¼ 10:0; d ¼ 10�5Þ.
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7 CONCLUSION

In this work, we seek an optimized differential privacy
mechanism for deep learning with stochastic gradient
descent. The problem is formulated as a constrained opti-
mization which minimizes the loss over a set of differen-
tial privacy constraints. The high dimensionality of the
problem is a major obstacle, so we tackle it from both a
theoretical and an engineering perspective. Further, a
general form of the problem is introduced, which has a
theoretical solution rooted in the distortion-rate problem.
Evaluations on a variety of datasets and settings have
demonstrated that our proposed privacy mechanism
improves the model accuracy at all privacy levels under
proper choice of hyperparameters.
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