
Differentially-Private Deep Learning
from an Optimization Perspective

Liyao Xiang1,2, Jingbo Yang2, and Baochun Li2

1John Hopcroft Center for Computer Science, Shanghai Jiao Tong University
2Department of Electrical and Computer Engineering, University of Toronto

Abstract—With the amount of user data crowdsourced for data
mining dramatically increasing, there is an urgent need to protect
the privacy of individuals. Differential privacy mechanisms are
conventionally adopted to add noise to the user data, so that
an adversary is not able to gain any additional knowledge
about individuals participating in the crowdsourcing, by inferring
from the learned model. However, such protection is usually
achieved with significantly degraded learning results. We have
observed that the fundamental cause of this problem is that
the relationship between model utility and data privacy is not
accurately characterized, leading to privacy constraints that are
overly strict. In this paper, we address this problem from an
optimization perspective, and formulate the problem as one that
minimizes the accuracy loss given a set of privacy constraints.
We use sensitivity to describe the impact of perturbation noise
to the model utility, and propose a new optimized additive
noise mechanism that improves overall learning accuracy while
conforming to individual privacy constraints. As a highlight of
our privacy mechanism, it is highly robust in the high privacy
regime (when ε → 0), and against any changes in the model
structure and experimental settings.

Index Terms—crowdsourcing, data mining, differential pri-
vacy, deep learning, optimization

I. INTRODUCTION

A recent proliferation of machine learning has empowered
many data mining applications, such as image recognition
and product recommendation. Individual data, such as medical
records, personal images, locations, or social media data, are
crowdsourced by third-party authorities such as data min-
ers. Unfortunately, the user data may be sensitive, and can
easily fall prey to adversarial attacks. For instance, with a
membership inference attack [1] or a user-linkage attack, an
adversary can infer whether an individual participates in the
crowdsourcing, even if that individual remains anonymous.

Many recent works have proposed various schemes to
provide users differential privacy guarantee in mining crowd-
sourced data to perform a wide range of tasks such as social
media data outsourcing [2], demand reporting [3], spatio-
temporal data publishing [4], or tree-based mining [5]. Differ-
ential privacy [6] has been proposed as a mathematical con-
cept, as well as a privacy-preserving mechanism to constrain
the adversary’s power to infer about an individual with any
outside information.

In this paper, we focus on the privacy issue in general
machine learning tasks, especially where deep learning is
concerned, as they are gaining popularity as analysis tools

these days. Usually, a trusted third-party authority, such as
Amazon machine learning service, collects private data from
each individual, trains a model over these data, and eventually
publishes the model for use. Differential privacy mechanisms
can be naturally extended to machine learning models. For
example, parameter perturbation [7], [8] perturb the model
parameters with privacy constraints to prevent the white-box
inference about any individual participated in the training.

In our threat model, we assume that the adversary has white-
box access to the learning model on the authority, possesses
arbitrary auxiliary information, and the privacy mechanism
is publicly known. The problem is that, when differential
privacy mechanisms add noise to model parameters, the utility
of the learning result degrades as the privacy requirement
becomes more stringent. For example, Abadi et al. [8] are
only able to achieve an accuracy of 90% with the MNIST
dataset, whereas the accuracy with an unperturbed model can
reach 99%. While Abadi et al. [8], by using the moments
accountant, have already improved the utility significantly over
strong composition [7], the performance is still far inferior
to unperturbed learning, especially in the regime where the
privacy requirement is stringent.

Fundamentally, such a wide performance gap can be at-
tributed to the lack of a rigorous characterization of the
relationship between the model utility and privacy constraints.
In previous work, noise is added to the model parameters
without considering its impact on the learning accuracy.

We have observed that model parameters can be perturbed
in carefully optimized directions such that the model accuracy
loss is minimized. By intentionally adding more noise to
the parameters that have less impact on the output, we can
achieve a higher accuracy while satisfying the differential
privacy constraints. With an approximation of the accuracy
loss, we formulate the challenge of designing the optimal
differential privacy mechanism for deep learning models as an
optimization problem, which searches for a probability density
function (pdf) of the perturbation noise to minimize a weighted
model distortion under differential privacy constraints.

However, such an optimization problem is non-trivial to
solve, due to the high-dimensional parameter space of deep
learning models. From a practical perspective, we propose
to reach a compromise between mathematical complexity
and runtime efficiency, and design a new differential privacy
mechanism with a focus on its efficient implementation.

Highlights of our original contributions in this paper are
as follows. We have introduced an optimized additive noise
mechanism to minimize the perturbation impact on the model
while satisfying differential privacy constraints. Our privacy
mechanism is implemented as a building block to the privacy-
preserving learning framework and is tuned to run efficiently.
Experiments on a variety of learning models and datasets have
shown that, our mechanism is able to significantly improve
the learning accuracy over the state-of-the-art while protecting
individual privacy.

II. RELATED WORK

Models trained over sensitive data can be a significant threat
to the privacy of such data [1], [9]. In the context of differential
privacy, a number of algorithms have been proposed.

Following the principle of differentially-private stochastic
gradient descent [10], Shokri et al. [7] let participants train
their own datasets privately and selectively share small subsets
of their models’ key parameters. Even that a small percentage
(< 0.1) of the parameters are perturbed and shared, their com-
position method still consumes a large amount of the privacy
budget, which is way beyond a meaningful privacy guarantee.
By exploiting higher moments of the privacy loss variable,
the accounting method proposed by Abadi et al. [8] reduces
the total amount of additive noise significantly. However, it
only achieves an accuracy of 90% (with a privacy budget of
ε = 0.5, δ = 10−5) on MNIST.

Compared to [7], [8], our work characterizes the relationship
between model utility and the privacy constraints for the
first time. So far, existing differential privacy mechanisms
are mostly heuristic, which is detrimental to the results as
an overly conservative privacy constraint usually requires an
overwhelming amount of noise to be added. Another critical
drawback in existing works [7], [8] is that their composition
methods are suboptimal. In contrast, we adopt the optimal
composition theorem [11] and further amplify the privacy
guarantee with input sampling [12]. This is the best general
composition result that can be achieved so far.

When the cost function is convex or strongly convex, some
approaches have been proposed to achieve optimal or near
optimal utility bounds. The utility is defined as the worst-
case (over inputs) expected excess empirical risk [13]. The
approaches include gradient perturbation [13]–[15], output
perturbation [13], [15], [16], and objective perturbation [16]. In
our work, we do not rely on the convexity of the cost function
and focus on the algorithm’s real-world performance.

A wide variety of literature tries to improve the differential
privacy mechanism from different perspectives. The optimal
mechanism in differential privacy [17], [18] proves that the
optimal noise probability distribution has a correlated mul-
tidimensional staircase-shaped pdf when dimension d = 2
[17] and the discrete query output settings [18]. However,
their conclusion can hardly be applied to high-dimensional
scenarios which our work targets at.

III. BACKGROUND

In this section, we first introduce some preliminaries related
to the concept of differential privacy, and then review stochas-
tic gradient descent (SGD).

A. Differential Privacy

Differential privacy is originally introduced to ensure that
the ability of an adversary to inflict damage to any set of
users is independent of whether any individual opts in to, or
out of, the dataset [6]. Such an ability prevents any adversary
from gaining additional information about any individual. The
privacy guarantee is expressed by the logarithmic distance
between the posterior probability distributions of two adjacent
inputs given the outputs. Adjacent inputs are defined on two
sets between which their distance is one unit. Different metrics
of the distance can be used, which leads to variations of the
differential privacy concept. We use ε to define the upper
bound of the distribution distance and δ to denote the residual
probability. Formally, letting I and I ′ be the inputs, O be the
output set, and M be the private mechanism, we have

Definition 1. A mechanism M is (ε, δ)-differentially private
if for all adjacent inputs I and I ′, and all possible output O,

Pr[M(I) ∈ O] ≤ eε · Pr[M(I ′) ∈ O] + δ. (1)

In the special case of δ = 0 we call M ε-differentially
private.

A common category of differential privacy mechanisms is
achieved by adding noise generated from a given distribution,
for instance, Gaussian or Laplace distribution, to the output. It
can be proved that the perturbed output satisfies Eqn. (1). It is
widely believed that the tradeoff between privacy and utility
lies in that when the additive noise has a higher magnitude, the
corresponding privacy level would increase, but the resulting
accuracy of the model would decrease.

B. Stochastic Gradient Descent

Stochastic gradient descent (SGD) is a common optimiza-
tion technique in machine learning. Differential privacy mech-
anisms have been applied to SGD for preserving data privacy
in [7], [8], [10], etc.

In general, a deep neural network is denoted by a multi-
dimensional function F : X 7→ Y featured by a set of
parameters θ. We use θ ∈ Rd to represent the flattened vector
of parameters where d is its dimension. X ∈ X is a training set
from the training data space and Y ∈ Y is the corresponding
targeted output. Letting C = ‖F(X,θ) − Y‖, the training
process is to find θ such that

minimize
θ

C. (2)

C represents the cost which is the discrepancy between
the output predicted by F and the target Y. Various forms
of the cost function can be applied, such as square error for
linear regression, or the logistic regression cost function. With
SGD, we repeatedly pick training examples (usually in mini
batches) and compute the gradient of the cost function with

x1x1 h1h1

x2x2 h2h2

yy

θ1θ1

θ2θ2

θ3θ3

θ4θ4

θ5θ5

θ6θ6

Fig. 1. A multi-layer perceptron architecture.

respect to each parameter. The parameters are updated in the
opposite direction of the gradients to minimize the total cost.
Differentially private SGD, or noisy SGD, preserves privacy
by randomizing the gradient at each update, which inhibits the
adversary from inferring about the training data.

IV. OPTIMIZED ADDITIVE NOISE SCHEME

In this section, we first show an observation that pertur-
bation on parameters have different impact on cost which is
closely associated with training accuracy. Based on that, we
approximate the utility depending on the perturbation noise
and formulate the problem as one that seeks the pdf of the
perturbation noise that minimizes the accuracy loss.

A. Model Sensitivity

We ask the question: for a trained model, if its parameters
are perturbed by the same amount of noise, would the per-
turbed model enjoy the same level of accuracy? For simplicity,
we use a cost function to evaluate the model utility — a
smaller cost directly implies a higher utility.

The result of distorting model parameters is usually com-
plicated: it may improve the utility for some input samples,
but undermine the utility of more. Thus the overall influence
of parameter distortion is better gauged by the cost function.
We calculate the derivatives of the parameters w.r.t. the cost
function to approximate the effect of distortion.

The example in analysis is a tiny multi-layer perceptron
architecture (Fig. 1). The architecture can be considered a
basic unit of a neural network, consisting of an input layer
{x1, x2}, a hidden layer {h1, h2}, weights across different lay-
ers {θ1, ..., θ6}, and the output y. Neurons in the hidden layers
apply the sigmoid function φ(t) = 1

1+e−t to the weighted input
layer. For instance, h1(x) = φ(θ1x1 +θ3x2 +b1) where θ1, θ3

are weights and b1 is a bias. The output is y = θ5h1+θ6h2+b3.
Weights and biases are parameters of the model and are tuned
during training.

We use the perceptron to evaluate a function f(x1, x2) =
x1 AND x2 which outputs a binary number given x1, x2 ∈
[0, 1]. When x1, x2 are not integers, they are rounded up to
the closest integer. For example, f(0.3, 0.7) = 0. We train on
1000 samples for 150 epochs to obtain the model parameters.
Then we randomly choose any two parameters to add noise
and record the resulting cost.

In a group of experiments, we perturb θ1 and b3 by a value
in (0, 0.3) and get the resulting costs as shown by Fig. 2(a).
The perturbation also leads to variation in the derivatives ∂C

∂θ1

and ∂C
∂b3

, of which we only show the variation of ∂C
∂θ1

in

Fig. 2(b) due to space constraints. Likewise, Fig. 2(c) shows
the cost when θ6 and b3 are perturbed.

From Fig. 2(a), one can tell that the least amount of additive
noise (coordinate (0.0, 0.0)) does not always yield the least
cost. Actually, the cost decreases with an increasing θ1, which
is in accordance with the direction indicated by ∂C

∂θ1
. On the

other hand, the cost increases with an increase of b3. Naturally,
one would consider adding more noise to θ1 to keep the
cost minimal. We have similar observations in Fig. 2(c). As
∂C
∂θ6

, ∂C∂b3 > 0, any positive noise would increase the cost and
such increase is even higher if we add a greater amount of
noise to b3 than to θ6 as ∂C

∂θ6
< ∂C

∂b3
.

The lessons learned from Fig. 2(a) and Fig. 2(c) are that the
sensitivity of cost function is most likely heterogeneous in the
parameter space, and the derivative can be an indicator of the
sensitivity. For the cost to stay minimal, a higher magnitude of
noise is preferred to add to parameters with a lower sensitivity,
and it also applies the other way around.

B. Problem Formulation

Following the SGD framework and our observation in
Sec. IV-A, we choose to add carefully calibrated noise to each
clipped gradients. The additive noise is sampled from a multi-
dimensional distribution that minimizes the total perturbation
cost according to their respective sensitivity.

Assume that

w = (w1, w2, ..., wd) ∈ Dd

is the derivative vector of the cost on all training examples
taken w.r.t. a total of d parameters, and Dd ⊆ Rd represents
the feasible domain. Note that w simply represents the model
sensitivity, which is different from the gradient taken to update
the model parameters in each iteration of SGD. Our additive
noise mechanism is K(x) = x + z where z = (z1, ..., zd)
is drawn from a multi-dimensional probability distribution P
defined by the optimization problem shown later.

As discussed in previous sections, to keep the cost minimal,
z should be chosen in accordance with the least sensitive
direction of the cost function, and such a direction is indicated
by w. We express our objective function as

minimize
P

∫
zd

. . .

∫
z1

〈w, z〉P(dz1 . . . dzd). (3)

In this function, w represents the model sensitivity w.r.t.
each parameter. Eqn. (3) can be interpreted as follows: we
project the random noise z drawn from a particular probability
distribution onto a space crafted by the weights w, with the
objective of minimizing the expectation of the total projected
random noise.

More specifically, when the derivative ∂C
∂θi

is larger than 0,
meaning that the cost will increase as θi increases, minimiz-
ing the objective function will push the additive noise to a
direction where zi is less than 0. Likewise, if ∂C

∂θi
> ∂C

∂θj
> 0,

the cost is more sensitive to the changes of θi than to θj . The
objective function suggests a perturbation direction such that

(a) (b) (c)

Fig. 2. (a) The cost variation when perturbing θ1 and b3. ∂C
∂θ1
∈ (−0.048,−0.017) and ∂C

∂b3
∈ (0.017, 0.049). (b) The gradient ∂C

∂θ1
with different

perturbations. (c) The cost when perturbing θ6 and b3. ∂C
∂θ6
∈ (0.013, 0.022) and ∂C

∂b3
∈ (0.033, 0.056).

less noise is added to θi than θj . Similar claims can be made
when the derivative is less than 0.

Next we study the privacy conditions that P should satisfy.
According to the convention [19], the additive noise is drawn
from a probability distribution characterized by the global
sensitivity. To distinguish from the model sensitivity, we use
gt to denote the gradients calculated at the t-th iteration.
Generally, let gt and g′t be two gradient vectors respectively
computed on training dataset X and X′, and the two training
datasets differ from each other by a single example instance.
The global sensitivity is defined as

α = sup
∀X,X′ s.t. d(X,X′)=1

‖gt − g′t‖, (4)

where d(·) represents the Hamming distance, whereas ‖ · ‖
is the l2 norm.

According to Def. (1), we shall have our mechanism K
satisfy that, for any X and X′ that d(X,X′) = 1 and any
output set O:

Pr[K(gt) ∈ O] ≤ eε Pr[K(g′t) ∈ O]

⇒Pr[gt + z ∈ O] ≤ eε Pr[g′t + z ∈ O]

⇒Pr[z ∈ O − gt] ≤ eε Pr[z ∈ O − g′t]

⇒Pr[z ∈ O′] ≤ eε Pr[z ∈ O′ + gt − g′t],

(5)

where O − gt , {∀o : o− gt}. Letting ∆ = gt − g′t, the
privacy constraint w.r.t. global sensitivity can be written as

Pr[z ∈ O′] ≤ eε Pr[z ∈ O′ + ∆] (6)

for any O′ and ‖∆‖ ≤ α. Thus the differential privacy
constraint of Eqn. (1) can be expressed as the probability
distribution constraint on P .

We assume z follow the probability distribution P with pdf
p(z). To satisfy Eqn. (6), it suffices to find p such that the
logarithmic ratio of ln p(z)

p(z+∆) is bounded when ∆ is bounded.
To simplify the problem, we assume p is a symmetric

function and the objective function is also symmetric. Note
that if the objective function is not symmetric, the optimal p
is most likely asymmetric. We consider the perturbation cost
as the total magnitude of the weighted noise. For example,

the weight of zi is |wi|: a larger |wi| indicates that the unit
increment in θi will lead to a larger perturbation in the output,
and thus it is desired to keep the additive noise zi small. We
rewrite our optimization problem as follows:

minimize
p

∫
z∈Rd

‖w ◦ z‖1p(z)dz

s.t. ln
p(z)

p(z + ∆)
≤ ε, ∀‖∆‖ ≤ α,∆ ∈ Rd.

(7)

In the equations above, w ◦ z represents the entry-wise
product of the two vectors. dz is short for dz1 . . . dzd. In
essence, we search a probability distribution of the random
noise that minimizes the expectation of the total amount of
additive noise, and at the same time satisfying the requirement
of differential privacy.

Prior to our work, Geng et al. [20] proved that the optimal
pdf of the random noise to minimize its l1 norm is a symmetric
and staircase-shaped function when d = 2. However, adding
the least amount of noise is not exactly what we want
according to the observations of Sec. IV-A. Our goal is to
release a perturbed model with high accuracy while satisfying
the differential privacy property at the same time.

C. Main Result

To solve Eqn. (7), we further assume p is a multivariate
Gaussian distribution of which each dimension is independent
from each other, so we are able to present the pdf in a product
form: p(z) =

∏d
i=1 pi(zi) with each pi(zi) being the pdf of

N (0, σ2
i) from which the random noise zi is drawn. Thus, the

problem reduces to the follows:

minimize
σ1,...,σd

∫
z∈Rd

‖w ◦ z‖1p(z)dz

s.t. Pr
[

ln
p(z)

p(z + ∆)
> ε
]
< δ, ∀‖∆‖ ≤ α,∆ ∈ Rd.

(8)

In this section, we will show how we solve Eqn. (8). First,
we rewrite the objective function as

∫
z∈Rd

‖w ◦ z‖1p(z)dz =

d∑
i=1

∫
z∈Rd

|wizi| · p(z)dz

=

d∑
i=1

∫
zi

|wizi| ·
1√

2πσi
exp

(
− z2

i

2σ2
i

)
dzi

= 2

d∑
i=1

|wi|√
2π

∫ +∞

0

zi
σi

exp
(
− z2

i

2σ2
i

)
dzi =

d∑
i=1

√
2/π|wi|σi.

The last equation is due to
∫ +∞

0
x exp(−x2)dx = 1/2.

Thus the objective is transformed to minimizing over the
weighted sum of σ = (σ1, . . . , σd).

Next we analyze the constraints. We adopt the idea from
moments accountant [8] that a higher moment of the privacy
loss variable c = ln p(z)

p(z+∆) is used for the differential privacy
constraint. The reason is that the constraint on a higher
moment of c is able to give a larger feasible range of the
constrained variables, which facilitates to find a global optimal
solution to Eqn. (8). By the Markov inequality, we transform
the constraint as:

Pr[c > ε] = Pr[λc > λε] = Pr[exp(λc) > exp(λε)]

≤ E[exp(λc)]/ exp(λε) ≤ δ,
(9)

for any positive integer λ. We rewrite c with the expression
of Gaussian distributions, and let ∆ = (∆1, . . . ,∆d) to get

c = ln
p(z)

p(z + ∆)
= ln

d∏
i=1

p(zi)

p(zi + ∆i)

= ln

d∏
i=1

exp
(
− z2

i /2σ
2
i

)
exp

(
− (zi + ∆i)2/2σ2

i

) =

d∑
i=1

2zi∆i + ∆2
i

2σ2
i

.

Since zi ∼ N (0, σ2
i), we have

c ∼ N
(d∑
i=1

∆2
i

2σ2
i

,

d∑
i=1

∆2
i

σ2
i

)
due to the additive and scaling properties of Gaussian distri-
butions. Then the Markov inequality of Eqn. (9) suggests that

E[exp(λc)]/ exp(λε) = exp
(
λ · 1

2

d∑
i=1

∆2
i /σ

2
i − λε

)
≤ δ,

i.e.,
d∑
i=1

∆2
i /σ

2
i ≤ 2ε+

2

λ
ln δ.

Letting τ(ε, δ) , 2ε+ (2/λ) ln δ, Eqn. (8) can be rewritten
as

minimize
σ

d∑
i=1

|wi| · σi (10a)

subject to
d∑
i=1

∆2
i /σ

2
i ≤ τ(ε, δ) (10b)

∀∆i, such that
d∑
i=1

∆2
i ≤ α2. (10c)

The constraint of Eqn. (10c) can be replaced with an
equality since any solution satisfies

∑d
i=1 ∆2

i = α2,∀∆i

would have to satisfy Eqn. (10c), and it also applies the other
way around. We further transform Eqn. (10) into a minimax
problem equivalently:

min
σ

max
∆

d∑
i=1

|wi| · σi + µ · s
(d∑
i=1

∆2
i /σ

2
i − τ(ε, δ)

)
(11a)

subject to
d∑
i=1

∆2
i = α2, (11b)

µ > 0, (11c)

where s(x) is the step function of which the output is zero
when x ≤ 0 and one when x > 0. We show that Eqn. (11) is
equivalent to (10) when µ→ +∞.

Proof. For simplicity, we use the following notations: g(σ) =∑d
i=1 |wi| · σi, h(σ,∆) =

∑d
i=1 ∆2

i /σ
2
i , and f(σ,∆) =

g(σ) + µ · s(h(σ,∆)− τ(ε, δ)). Assuming σ∗ is the optimal
solution to Eqn. (10) and σ′,∆′ are the solutions to Eqn. (11)
where σ∗ 6= σ′. Then we have f(σ′,∆′) ≤ f(σ∗,∆′) since
σ′ minimizes f(σ,∆).
σ∗ must satisfy Eqn. (10b) for any ∆ that meets Eqn. (10c).

Since σ′ satisfies Eqn. (11b) which indicates the condition of
Eqn. (10c), the value of the step function is set to zero in
f(σ∗,∆′). Hence the step function in f(σ′,∆′) should also
be zero otherwise its value would go to infinity violating the
inequality. For its step function to be zero, h(σ′,∆′) ≤ τ(ε, δ)
must hold for the ∆′ satisfying Eqn. (11b) at the same time,
which means σ′,∆′ can also satisfy Eqn. (10b) and (10c).
This implies that σ′ is the optimal solution to Eqn. (10) since
f(σ′,∆′) = g(σ′) ≤ g(σ∗) = f(σ∗,∆′). It is contradictory
to the condition that σ∗ is the optimal solution and σ∗ 6= σ′.

Therefore, σ∗ = σ′ and thus solving Eqn. (11) is equivalent
to solving Eqn. (10). Proof completes.

To solve Eqn. (11), we use a sigmoid function to approxi-
mate the step function, and alternatively update the value of σ
and ∆ while gradually increasing µ. Since the feasible domain
of Eqn. (11) is non-convex, and is hard to be transformed
into a convex one, standard optimization techniques such as
interior-point methods can be used to find a solution. We adopt
projected gradient ascent (descent): at each step we move in
the direction of the negative gradient, and then ‘project’ onto
the feasible set.

Composition. Solving Eqn. (8) only shows how to provide
privacy guarantee in a single iteration. In practice, the SGD
algorithm takes many iterations until achieving satisfactory
accuracy. Unfortunately, the iterative computation process will
expose the training set multiple times, which leads to a
degraded privacy level.

We adopt the advanced composition theorem for differential
privacy [11] and privacy amplification by a sampling approach
[13] in our mechanism. Assuming that we randomly select a
mini batch from the training dataset with sampling probability

q in each iteration, for k iterations to achieve (ε, δ)-differential
privacy, the t-th iteration should satisfy (εt, δt)-differential
privacy such that:

εt = ε
/√

16q2k log(e+
ε

δ
), δt = δ/2k. (12)

D. Privacy Mechanism

Our mechanism can be considered an instantiation of
the differentially private SGD. Overall, to achieve (ε, δ)-
differential privacy for k iterations of SGD, we first obtain the
differential privacy requirement (εt, δt) for each single itera-
tion, and then adopt the optimized additive noise mechanism
in Sec. IV-C to meet the differential privacy requirement per
iteration. Alg. 1 shows the details of the proposed mechanism.

Algorithm 1 Optimized Additive Noise Mechanism
Input: Training dataset (X,Y), total number of training

examples n, cost function C(·), clipping value α, learning
rate ηt, total iterations k, privacy parameters (ε, δ)

Output: θk

1: Compute per-iteration privacy parameters (εt, δt) by
Eqn. (12).

2: for t ∈ {0, ..., k − 1} do
3: Compute model sensitivity: w = 1

n ·
∂C(X,Y)
∂θt .

4: Compute σ1, ...σd by substituting w, α, εt, δt to
Eqn. (8).

5: Sample z = (z1, . . . , zd) where zi ∼ N (0, σ2
i).

6: Randomly sample a batch B of training data (XB,YB)
with probability q.

7: for (x, y) ∈ (XB,YB) do
8: Compute gtx = ∇θtC(θt, x, y).
9: Clip by α: ḡtx = gtx/max(1, ‖gtx‖/α).

10: end for
11: Compute the average: ḡtB = 1/|B|

∑
x∈B ḡtx.

12: Add noise: g̃tB = ḡtB + z.
13: Update θt+1 = θt − ηtg̃tB.
14: end for
15: Return θk.

Theorem 1. Alg. 1 satisfies (ε, δ)-differential privacy.

Proof. We first show that one iteration of computation satisfies
(εt, δt)-differential privacy. To prove that, we need to show
the definition of differential privacy Eqn. (1) holds true for
any pair of adjacent inputs. Let X and X′ be any pair of
training dataset with a single entry difference, and w.l.o.g.,
we have X = X′ ∪ x. Since n is very large, 1

nC(X,Y) =
1
nC(X′,Y) + 1

nC(x, y) ≈ 1
nC(X′,Y) and thus the model

sensitivity w(X) ≈ w(X′). As the solution to Eqn. (8) only
depends on w, α, εt, δt, the probability distribution of z is
independent to query outputs.

Since d(X,X′) = 1, ‖ḡtB(X) − ḡtB(X′)‖ ≤ α. Let events
S = {z : ln p(z)

p(z+∆) > εt}, and Sc = {z : ln p(z)
p(z+∆) ≤ εt},

for any ‖∆‖ ≤ α. Then for any O,

Pr[K(ḡtB(X)) ∈ O] = Pr[ḡtB(X) + z ∈ O]

= Pr[ḡtB(X) + z ∈ O ∩ Sc] + Pr[ḡtB(X) + z ∈ O ∩ S]

≤ exp(εt) Pr[ḡtB(X′) + z ∈ O ∩ Sc] + Pr[S]

≤ exp(εt) Pr[ḡtB(X′) + z ∈ O] + δt

= exp(εt) Pr[K(ḡtB(X′)) ∈ O] + δt.

The second inequality holds due to the constraint of Eqn. (8).
Thus the t-th iteration of Alg. 1 is (εt, δt)-differentially private,
and the composition result of k iterations is (ε, δ)-differentially
private. Proof completes.

V. EVALUATION

Despite its theoretical guarantee, it remains a challenge to
solve Eqn. (8) due to the high-dimensional model parameters.
In this section, we introduce our implementation of the privacy
mechanisms on TensorFlow and its code-level optimization. In
the latter part of the section, we compare the evaluation results
of our design against the state-of-the-art.

A. Implementation

We have developed a general-purpose framework on Ten-
sorFlow, which supports MNIST, SVHN, CIFAR-10 and cus-
tomized datasets with pluggable models and a convenient
user interface. As a baseline, we train models on different
datasets to their state-of-the-art accuracy without any privacy
constraint.

The privacy mechanisms have been implemented as a noise
generation module in our framework. The module contains
two noise generators: a Gaussian noise generator which imple-
ments the moments accountant method [8] and our optimized
noise generator that implements the optimized additive noise
mechanism in Alg. 1.

To implement the optimized additive noise mechanism, we
first adopted the log barrier method with gradient descent to
solve Eqn. (11), but found it too slow to converge. We finally
use the projected gradient descent which, in each iteration,
moves in the opposite direction of the gradient projected to
the constraint set. The method takes around 50 iterations to
converge.

Despite the optimization technique used, the problem still
faces computational challenges due to its high dimensionality.
For example, with our Numpy version of the noise generators,
it takes significant time to process even a single batch of data.

We realize that Numpy-based optimizer and noise generator
slows the entire process down as it cannot take advantage
of GPUs. In each iteration, it needs to evaluate the model
sensitivity by running a part of, or the entire graph, gets the
value and then run the noise generator on CPU. It is inefficient
as the noise generator is not using the GPU. Thus we re-
implemented the noise generator as a part of the computation
graph using tensor operations. However, while the approach
speeds up the Gaussian noise generator, we surprisingly find
it barely improve the performance of the optimized noise gen-
erator. As we found, it is because generating a random vector

(a) (b) (c)
Fig. 3. Accuracy results at different privacy levels: ε = 0.05, 0.3, 1.0 correspond to high, medium and low privacy levels. Our mechanism achieves
84.24%/85.19%, 87.59%/88.55%, and 94.09%/94.69% training/testing accuracy correspondingly. The figures show a significant improvement over the
moments accountant method.

from a high-dimensional distribution is extremely inefficient
using tensor operations. Hence our final version of the noise
generator includes two parts — a tensor computing the noise
distribution and a Numpy noise generator. The average batch
processing time of the Gaussian scheme, our optimized scheme
and the unperturbed baseline are shown in Table. I, which
shows the noise generator only adds moderate computation
overhead to the baseline. The running time is measured on
AWS EC2 p2.xlarge instances.

TABLE I
AVERAGE BATCH PROCESSING TIME (S)

Unperturbed Gaussian Optimized
MNIST 0.344 0.623 0.937
SVHN 0.341 0.713 0.912

CIFAR-10 0.83 1.437 1.968

B. Experimental Setup
The default experimental setting is given in Table II. A lot

is the set of training instances grouped together for adding
noise, which is independent of the concept batch, but a lot
typically contains multiple batches.

MNIST is a standard image dataset for handwritten digit
recognition, with each image containing 28 × 28 gray-
level pixels. The hidden fully-connected layer contains 128
units. If trained without perturbation, the model reaches
99.79%/99.19% training/testing accuracy after 30 epochs,
which is on par with the state-of-the-art. SVHN is a real-
world dataset which comes from house numbers in Google
Street View images. To apply our privacy mechanisms, we pre-
train the model for 20 epochs, fix its convolution layers and
re-initialize the fully-connected layers. After re-initialization,
the testing accuracy drops from 90% to below 10%, which is
close to random choices. The pre-trained convolutional neural
network has been used in various machine learning services
due to its capability to transfer some information from other
datasets. Each image in CIFAR-10 dataset follows 32×32×3
RGB format. We also adopt the pre-training approach and the
accuracy falls below 10% after re-initialization.

TABLE II
EXPERIMENTAL SETUP

MNIST SVHN CIFAR-10
examples (training/testing) 55000/5000 73257/26032 60000/10000
No. of convolutional layers 2 2 6

No. of fully-connected layers 2 3 3
batch size 500 200 500

lot size 1000 1000 1000
clip value 4.0 0.2 0.2

C. Comparison with Moments Accountant

We compare our mechanism with the baseline and the
moments accountant method on three datasets. The baseline
is the unperturbed case and the latter represents the state-of-
the-art differentially private SGD algorithm in related works.

MNIST. Fig. 3(a)-3(c) give the per-iteration training and
testing accuracies for different mechanisms when the privacy
level is high, medium, and low, which correspond to the cases
that a large, moderate, and small amount of perturbation noise
is added to the model. The results show that the optimized
noise generator surpasses the Gaussian noise generator in
terms of accuracy at all levels, more significantly when the
privacy level is high.

Specifically, when ε = 0.05, training/testing accuracy is as
high as 84.24%/85.19% for the optimized noise generator,
which is much higher (29%/28%) than that of the Gaussian
mechanism. It can be observed that its accuracy ramps up
quickly in the first few iterations. Likewise, we obtain a train-
ing/testing accuracy of 87.59%/88.55% when ε = 0.3, which
still improves by 4% compared to the Gaussian mechanism.
At ε = 1.0, the training/testing accuracy of the optimized
mechanism reaches 94.09%/94.69% which is close to the
unperturbed case. It is clear that our privacy mechanism has
increasing advantage over the previous work as the privacy
constraint gets stricter.

One may argue that Fig. 3(a)-3(c) do not fairly reflect the
tradeoff between privacy and utility since the algorithm runs
for different numbers of iterations at varying privacy levels.
In fact, the increase of iterations has contradictory effects to

(a) (b) (c) (d)
Fig. 4. (a)(b) Testing accuracy on MNIST under a variety of privacy settings: the optimized additive noise mechanism offers a better tradeoff. (c) Testing
accuracy of SVHN: when ε = 0.3/0.7, the optimized mechanism achieves 72.35%/76.15% and the Gaussian mechanism achieves 63.62%/74.69% testing
accuracy. (d) Testing accuracy of CIFAR-10: the optimized mechanism achieves 74.85%/76.1% respectively for ε = 0.3/1.0. And the Gaussian mechanism
obtains 71.75%/75.23% respectively for the same εs.

accuracy: while it continues to improve training accuracy by
minimizing the cost function, the model also suffers from
further perturbations. By Eqn. (12), we adjust the number of
iterations k according to different εs, such that appropriate
privacy parameters can be chosen per iteration.

To eliminate the concern about iteration numbers, we con-
duct experiments for different groups of (ε, δ) where we
report its testing accuracy after the model has been trained
for 30 epochs. The results for the optimized and the Gaussian
mechanisms are respectively shown in Fig. 4(a) and Fig. 4(b).
Training accuracy result is similar thus omitted due to space
constraints. The general trend is that the accuracy grows as
ε or δ increases, which shows the tradeoff between model
utility and privacy. Although both mechanisms achieve a
similar accuracy at the low privacy regime, for example,
(ε = 1.2, δ = 10−2), the difference in the high privacy regime
(ε = 0.01, δ = 10−5) is substantial: the optimized mechanism
achieves a training/testing accuracy of 81.7%/82.87%, while
the Gaussian mechanism only reaches 43.95%/43.75%. This
discrepancy verifies that our optimized noise addition mecha-
nism is particularly effective with tight privacy constraints.

SVHN. Our baseline model for SVHN achieves 91.35%
testing accuracy. The result in Fig. 4(c) shows that the opti-
mized mechanism performs better than the Gaussian at both
low privacy (when ε = 0.7) and high privacy (when ε = 0.3)
levels. The improvement over the Gaussian mechanism is 2%
and 13.7% respectively.

CIFAR-10. Although it is more challenging to achieve high
accuracy on more complicated datasets like CIFAR-10, we
show that our privacy mechanism still maintains its superior
performance even under strict privacy constraints. Fig. 4(d)
shows the per-iteration testing accuracy when the model is
trained with or without the privacy guarantee. While the
baseline testing accuracy is 81.51%, the optimized mechanism
reaches 76.1% and 74.85% respectively when ε = 1.0 and
0.3. And the Gaussian mechanism only obtains 75.23% and
71.75% correspondingly for these two privacy levels. The
result again supports the claim that our mechanism has a larger
advantage in the high privacy regime.

Comparison with prediction perturbation methods.
There is actually no straightforward comparison between our

work and private aggregation of teacher ensembles [21], [22],
as the requirement and pre-processing of the dataset is entirely
different. For example, we do not require public data as in
some cases such data would be unavailable. Nevertheless,
we adopt their reported results on the same dataset to have
an overall idea on the performance. On MNIST, PATE [22]
achieves 98.5% accuracy with ε = 1.97, δ = 10−5, while
we achieve 94.69% accuracy when ε = 1.0, δ = 10−5.
On SVHN, LNMax [21] reaches 82.7% accuracy at ε =
5.04, δ = 10−6 while our mechanism obtains 76.15% at
ε = 0.7, δ = 10−5. In both cases, our mechanism is able to
gain similar accuracy performance over much stricter privacy
constraints. In fact, we consider in reality, differential privacy
is only valid when ε is small (mostly ε < 1.0), but most
previous works have not addressed the accuracy performance
at such a privacy level.

D. Sensitivity to Model Structures

Privacy and accuracy cannot be discussed without the spe-
cific neural network structure. We show that the optimized
mechanism is highly robust to the change of model structures
and hyperparameters. We consider the following hyperparam-
eters which may affect the result: lot size, the number of
hidden layer units, and the l2 clipping value α. For each group
of experiments, we reuse the previous setting except for the
controlled hyperparameters.

From Fig. 5(a) and Fig. 5(b), we observe that the gap
between the optimized and the Gaussian mechanism is larger
when the lot size is smaller. Intuitively, when the lot size is
small, a greater amount of noise is accumulated to the model.
With the moments accountant method, a greater amount of
noise always leads to poorer accuracy. When the optimized
mechanism is applied, the accuracy on MNIST first increases
with the lot size, reaches the peak at around 2000, and then
stays the same. The accuracy on CIFAR-10 merely increases
by 2% at ε = 1.0 and ε = 0.3 as the lot size changes from
500 to 2500. This is consistent with our earlier observation that
a greater amount of additive noise does not necessarily lead
to a lower accuracy. Since the optimized noise mechanism
calibrates noise carefully to minimize the cost, the model
accuracy suffers little from the varying lot size.

(a) (b) (c) (d)
Fig. 5. (a)(b) Testing accuracy vs. lot sizes on MNIST and CIFAR-10: the optimized mechanism is robust to the lot size changes. (c) Both privacy mechanisms
are invariant to model structure changes. (d) The choice of clipping value has moderate impact on both privacy mechanisms.

From Fig. 5(c), we can tell both mechanisms are invariant
to the neural network structure changes. Despite the variation
in the number of hidden layer units, the fluctuation in train-
ing/testing accuracy is less than 2% for both mechanisms.
However, the optimized mechanism is more sensitive to the
change in the clipping value as shown in Fig. 5(d). This
is because when the clipping value is small, the change
in the parameters is constrained by the clipping value thus
the accuracy suffers; but we don’t observe the same trend
in the Gaussian mechanism, since the additive noise is too
overwhelming when the clipping value is large.

VI. CONCLUSION

In this paper, we seek an optimized differential privacy
mechanism for performing privacy-preserving learning over
crowdsourced user data. The problem is formulated as an
optimization that minimizes the accuracy loss over a set of
differential privacy constraints. The high dimensionality of
the problem is a major obstacle, so we tackle it from both a
theoretical and an engineering perspective. Our evaluations on
MNIST, SVHN, and CIFAR-10 have shown clear evidence that
our proposed privacy mechanism improves the model accuracy
at all privacy levels, especially in the high privacy regime, yet
only adding a negligible runtime overhead.

REFERENCES

[1] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
Inference Attacks against Machine Learning Models,” in Proc. of the
2017 IEEE Symposium on Security and Privacy (S&P),. IEEE, 2017,
pp. 3–18.

[2] J. Zhang, J. Sun, R. Zhang, Y. Zhang, and X. Hu, “Privacy-preserving
social media data outsourcing,” in Proc. of 2018 IEEE International
Conference on Computer Communications (INFOCOM). IEEE, 2018.

[3] X. Lou, R. Tan, D. K. Yau, and P. Cheng, “Cost of Differential Privacy
in Demand Reporting for Smart Grid Economic Dispatch,” in Proc.
of 2017 IEEE International Conference on Computer Communications
(INFOCOM). IEEE, 2017.

[4] Q. Wang, Y. Zhang, X. Lu, Z. Wang, Z. Qin, and K. Ren, “Rescuedp:
Real-time spatio-temporal crowd-sourced data publishing with differ-
ential privacy,” in Proc. of 2016 IEEE International Conference on
Computer Communications (INFOCOM). IEEE, 2016, pp. 1–9.

[5] L. Zhao, L. Ni, S. Hu, Y. Chen, P. Zhou, F. Xiao, and L. Wu, “InPrivate
Digging: Enabling Tree-based Distributed Data Mining with Differential
Privacy,” in Proc. of 2018 IEEE International Conference on Computer
Communications (INFOCOM). IEEE, 2018.

[6] C. Dwork, “A Firm Foundation for Private Data Analysis,” Communi-
cations of the ACM, vol. 54, no. 1, pp. 86–95, 2011.

[7] R. Shokri and V. Shmatikov, “Privacy-preserving Deep Learning,” in
Proc. of the 22nd ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS). ACM, 2015, pp. 1310–1321.

[8] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Tal-
war, and L. Zhang, “Deep Learning with Differential Privacy,” in Proc. of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM, 2016, pp. 308–318.

[9] M. Fredrikson, S. Jha, and T. Ristenpart, “Model Inversion Attacks that
Exploit Confidence Information and Basic Countermeasures,” in Proc. of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM, 2015, pp. 1322–1333.

[10] S. Song, K. Chaudhuri, and A. D. Sarwate, “Stochastic Gradient Descent
with Differentially Private Updates,” in Proc. of the 2013 IEEE Global
Conference on Signal and Information Processing (GlobalSIP). IEEE,
2013, pp. 245–248.

[11] P. Kairouz, S. Oh, and P. Viswanath, “The Composition Theorem for
Differential Privacy,” IEEE Transactions on Information Theory, vol. 63,
no. 6, pp. 4037–4049, 2017.

[12] A. Beimel, S. P. Kasiviswanathan, and K. Nissim, “Bounds on the
Sample Complexity for Private Learning and Private Data Release,” in
Theory of Cryptography Conference. Springer, 2010, pp. 437–454.

[13] R. Bassily, A. Smith, and A. Thakurta, “Private Empirical Risk Min-
imization: Efficient Algorithms and Tight Error Bounds,” in Proc. of
the IEEE 55th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE, 2014, pp. 464–473.

[14] D. Wang, M. Ye, and J. Xu, “Differentially Private Empirical Risk
Minimization Revisited: Faster and More General,” in Proc. of the
Advances in Neural Information Processing Systems (NIPS), 2017, pp.
2719–2728.

[15] J. Zhang, K. Zheng, W. Mou, and L. Wang, “Efficient Private ERM for
Smooth Objectives,” in Proc. of the 26th International Joint Conference
on Artificial Intelligence (IJCAI). AAAI Press, 2017, pp. 3922–3928.

[16] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Differentially Private
Empirical Risk Minimization,” Journal of Machine Learning Research,
vol. 12, no. Mar, pp. 1069–1109, 2011.

[17] Q. Geng and P. Viswanath, “The Optimal Mechanism in Differential
Privacy,” in Proc. of the 2014 IEEE International Symposium on
Information Theory (ISIT),. IEEE, 2014, pp. 2371–2375.

[18] ——, “The Optimal Noise-Adding Mechanism in Differential Privacy,”
IEEE Transactions on Information Theory, vol. 62, no. 2, pp. 925–951,
2016.

[19] C. Dwork, A. Roth et al., “The Algorithmic Foundations of Differential
Privacy,” Foundations and Trends in Theoretical Computer Science,
vol. 9, no. 3-4, pp. 211–407, 2014.

[20] Q. Geng, P. Kairouz, S. Oh, and P. Viswanath, “The Staircase Mecha-
nism in Differential Privacy,” IEEE Journal of Selected Topics in Signal
Processing, vol. 9, no. 7, pp. 1176–1184, 2015.

[21] N. Papernot, M. Abadi, Ú. Erlingsson, I. Goodfellow, and K. Talwar,
“Semi-supervised Knowledge Transfer for Deep Learning from Private
Training Data,” in Proc. of the 5th International Conference on Learning
Representations (ICLR), 2017.

[22] ——, “Scalable Private Learning with PATE,” in Proc. of the 6th
International Conference on Learning Representations (ICLR), 2018.

