
1

Ready, Set, Go: Coalesced Offloading
from Mobile Devices to the Cloud

Liyao Xiang1, Shiwen Ye1, Yuan Feng2, Baochun Li1, and Bo Li3

1Department of Electrical and Computer Engineering, University of Toronto
2Department of Computing, Hong Kong Polytechnic University

3Department of Computer Science, Hong Kong University of Science and Technology

Abstract—With an abundance of computing resources, cloud
computing systems have been widely used to elastically offload
the execution of computation-intensive applications on mobile
devices, leading to performance gains and better power efficiency.
However, existing works have so far focused on one application
only, and multiple applications are not coordinated when sending
their offloading requests to the cloud. In this paper, we propose
the new technique of coalesced offloading, which exploits the
potential for multiple applications to coordinate their offloading
requests with the objective of saving additional energy on mobile
devices. The intuition is that, by sending these requests in
“bundles,” the period of time that the network interface stays
in the high-power state can be reduced. We present two online
algorithms, collectively referred to as Ready, Set, Go (RSG),
that make near-optimal decisions on how offloading requests
from multiple applications are to be best coalesced. We show,
both analytically and experimentally using actual smartphones,
that RSG is able to achieve additional energy savings while
maintaining satisfactory performance.

I. INTRODUCTION

Heralded as a primary feature in mobile cloud comput-
ing, code offloading from mobile devices to the cloud has
received a substantial amount of research attention in the
recent literature. The concept of code offloading is intuitively
simple: with an abundance of computing power in the cloud
computing infrastructure and a keen awareness of power
efficiency on mobile devices, it is natural to offload a portion
of the computational requests within computationally intensive
mobile applications. With its roots dating back to the notion of
thin clients in the 1990s, code offloading may be instrumental
in a wide variety of mobile applications, from natural language
processing (e.g., Apple’s Siri) to augmented reality.

Code offloading can be performed at the granularity level of
thread execution [1], [2], method invocation [3], and even full
VM migration [4]. Either way, offloading requests have been
well planned, with the optimization objective of gaining better
application performance and energy efficiency. To achieve the
objective, a typical solution includes a profiler on the mobile
device that collects runtime statistics of the mobile application,
as well as a solver that partitions the computation in a way that
optimizes energy consumption or application performance.

However, existing works have so far focused on one appli-
cation only. In reality, mainstream mobile operating systems

support multitasking, with multiple applications running si-
multaneously on a mobile device. Particularly, there may be
several services running in the background while one or two
applications running on screen. A user may ask Siri (or Google
Now) about a location, viewing the augumented reality street
view on her phone, while in the background downloading a
cloud-sourced video over 3G or 4G mobile networks at the
same time. When multiple applications send their offloading
requests to the cloud independently without any coordination,
the cellular or Wi-Fi network interface needs to be activated
to transmit these requests, entering the high-power state at
arbitrary times. This may potentially consume more energy:
once a network interface enters the high-power state, it lingers
in this state for a period of time, usually seconds, after
completing the transmission of all the existing requests [5].
The amount of energy the network interface consumes in the
high-power state before it enters stand-by again, referred to
as the tail energy, is proportional to the length of time the
interface stays in this state (referred to as the tail time).

In this paper, we propose the concept of coalesced of-
floading, which seeks to achieve additional energy savings
by exploiting the potential for multiple mobile applications
to coordinate their code offloading requests to the cloud.
Coalesced offloading realizes the intuition that, by sending
code offloading requests in “bundles,” the period of time that
the network interface stays in the high-power state can be re-
duced, thus saving additional energy. Our proposed technique
of coalesced offloading is inspired by timer coalescing, used
in the kernel of Mac OS X 10.9 Mavericks, that improves the
energy efficiency by deferring and shifting computation tasks
from multiple applications to the same time interval. To our
knowledge, our work represents the first attempt to improve
power efficiency by bundling offloading requests from multiple
applications in a coalesced fashion.

Since bundling offloading requests may incur additional
offloading delays, we choose to formulate the problem of
coalesced offloading as a joint optimization problem, with
both the energy cost and the response time considered. The
highlight of our original contributions is the design of two
online algorithms, collectively referred to as Ready, Set, Go
(RSG), that are designed to solve our optimization problem.
As the benchmark for evaluating RSG, we first study an
offline algorithm that computes the optimal solution with a

978-1-4799-3360-0/14/$31.00 c©2014 IEEE

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

978-14799-3360-0/14/$31.00 ©2014 IEEE 2373

2

time complexity of O(n2), with the impractical assumption
that the exact arrival times of future requests from all the
applications are known a priori. Without any knowledge of
upcoming offloading requests beforehand, our deterministic
online algorithm is 2-competitive against the optimal offline
algorithm, and our randomized online algorithm is e/(e− 1)-
competitive (1.58-competitive). We analytically show that both
online algorithms achieve the best possible competitive ratios
in their respective cases. Our online algorithms are simple
enough to implement: using both simulations and our real-
world implementation on the iOS platform, we show that the
RSG online algorithm is able to realize an additional energy
saving of up to 20% for the deterministic case and 27% for the
randomized case with a variety of offloading request patterns.

The remainder of this paper is organized as follows. In
Sec. II, we motivate the concept of coalesced offloading,
and then formulate an optimization problem that considers
both the energy cost and performance. In Sec. III discuss an
optimal offline algorithm to solve the problem. In Sec. IV, we
propose and analyze both the deterministic and the randomized
algorithm in RSG. In Sec. V, we evaluate RSG with both
simulations and our real-world implementation. Finally, we
discuss our contributions in the context of related work in
Sec. VI, and conclude the paper in Sec. VII.

II. COALESCED OFFLOADING: MOTIVATION AND
PROBLEM FORMULATION

In this section, we first motivate the notion of coalesced
offloading, and then formally formulate the optimization prob-
lem of making optimal offloading decisions, considering both
the energy cost and application performance.

A. Motivation

With current code offloading techniques, if a portion of the
application code (e.g., a method invocation or a thread) is
to be offloaded to the cloud, an offloading request will be
generated, and the cellular or Wi-Fi network interface on the
mobile device will be activated, incurring a small ramp-up
energy cost, such as the WiFi association overhead. After the
completion of transmitting each request, the interface will not
immediately switch to the low-power state. Instead, it remains
at the high-power state for tens of seconds — an inactive
period referred to as the tail time [5], as shown in Fig. 1
(a). If there is another request coming in during the tail time,
the inactivity timer will be reset, and the interface will stay
at the high-power state until the end of the transmission, plus
another period of the tail time if there are no further successive
requests. The tail time phenomenon is especially critical with
the 3G interface, which consumes nearly 60% of the total
energy consumption [5].

As an important insight that we explore in this paper, the tail
time phenomenon can be alleviated if we bundle the offloading
requests into small batches, and handle them all together.
This reduces the energy consumption as the wireless network
interface on the mobile device is activated for fewer times, and
a shorter tail time is incurred. Naturally, a single application
may not have frequent successive requests for code offloading;

Time

t1

Time

Power State

Power State

(a) Before bundling:

(b) After bundling:

requests
 of app 1

requests
 of app 2

t2 t3 t4 t5 t6 t7

t2(t1') t3 t5(t4') t7(t6')

Fig. 1. The benefits of coalesced offloading.

we focus on the abundant request bundling opportunities
that exist when we consider the offloading requests from
multiple applications running on the device simultaneously.
As the example in Fig. 1 (b) shows, three bundles can be
formed when offloading requests for two applications are
considered at the same time, which lead to a reduced period
of time for the network interface to stay in the high-power
state, as compared to handling each of them independently
without any coordination. Such request bundling from multiple
applications is formally referred to as coalesced offloading in
this paper. It requires all offloading requests to be granted
by an OS-level coalesced offloading framework, possibly with
a delay, before application code is actually offloaded to the
cloud.

B. The Coalesced Offloading Problem

While coalesced offloading is able to reduce energy costs,
request bundling requires the subsequent offloading requests
to wait for a period of time for the next batch to be handled,
which results in additional offloading delays and may ad-
versely affect the application performance. The main challenge
of coalesced offloading is balancing the tradeoff between the
energy cost and the application performance. If requests are
bundled more aggressively, less energy costs are incurred as a
shorter period of time is spent in the high-power state for code
offloading. However, withholding the offloading requests will
inevitably cause longer offloading delays. On the other hand,
sending offloading requests in a more scattered manner can
maintain the high performance of applications, but will incur
a longer period of time in the high-power state, causing more
energy to be consumed. To find the “sweet spot” in such an
inherent tradeoff between energy savings and application per-
formance, we formulate the problem of coalesced offloading
as a joint optimization problem, considering both the energy
cost and application performance in the objective function.

We assume that there are M applications, 1, 2, . . . ,m,
running on the mobile device, and each application generates
multiple offloading requests during their runtime based on
their own profiler and solver. Let a1, a2, . . . be the arrival time
sequence of the offloading requests across all the applications,
and g1, g2, . . . be the granting time sequence, each element
of it representing one transmission from mobile device to
the cloud. Notice that multiple requests can be bundled and

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

2374

3

granted in one transmission. The granting time directly deter-
mines the transitioning time from the low to the high power
state. The device transitions from the high to the low power
state only when the network has been inactive for the length
of tail time. That is to say, the subsequent transmission occurs
at least tail time after the preceeding transmission. We use the
sequence t1, t2, . . . and s1, s2, . . . to respectively denote such
transition time sequence when the wireless interface enters the
high-power state from the low-power state and the inverse.
Let T be the duration of the tail time after the completion
of transmission. Since the duration of a request transmission
is a few orders of magnitude shorter than the length of the
tail time (in the order of seconds), we assume that all request
transmissions are completed instantaneously.

Fig. 2 shows an illustrative example of our model. The
offloading requests arrival time sequence is a1, a2, . . . , a9,
and the granting time sequence is g1, g2, . . . , g5. As we can
see, two offloading requests generated at time a1 and a2 are
delayed to be transmitted at g1, the arrival time of the third
request a3, and the network interface goes into the high-
power state. Since the high-power state remains for at least T ,
requests generated at a4 and a5 are transmitted immediately.
The network interface transits to the low-power state after
idling for time T , and enters the high-power state again at the
next transmission time g4. In a nutshell, we seek to formulate
the problem to find the optimal solution of the granting time
sequence g1, g2, . . . to determine when the wireless interface
of the mobile device should stay at the high-power state for
transmitting offloading requests, such that a combined interest
in both the energy cost and the application performance is
optimized.

Tail Time T

Power State

Time

a3(g1) = t1

High-power State Low-power State

s1a2a1 a5(g3) a4(g2) a6 a7 a8(g4) = t2 a9(g5)

latency(1)

Fig. 2. The coalesced offloading problem: an illustrative example.

Since the actual energy cost is nearly linear to the duration
that the network interface stays at the high-power state, in our
problem formulation, we use that time duration to represent
the energy cost.

Observation 1: If a transmission occurs at gi when the
network interface is in the high-power state, the energy cost
is gi− gi−1. If gi occurs when the network interface is in the
low-power state, the energy cost can be considered as T .

To be more specific, when the transmission gi occurs when
the interface is in the high-power state, it extends that state
for a period of gi − gi−1. If gi occurs during the low-power
state, it contributes the tail time T to the energy cost. If the
duration of gi − gi−1 > T , the high-power state will expire

before gi, so that the gi occurs in the low-power state. Thus,
the energy cost for one transmission is min{gi − gi−1, T}.
The joint optimization problem of coalesced offloading can
be formulated as follows:

min fcost =
∑
j

min{gj−gj−1, T}+α
∑
j

∑
gj−1≤ai≤gj

(gj−ai),

(1)
In the objective function, the first term represents the energy
cost while the second term denotes the total latencies as
offloading requests are postponed by the coalesced offloading
framework. α is introduced to combine the two objectives, and
to balance the conflicting interests between minimizing the
energy costs and minimizing the total latencies for granting
the offloading requests.

At first glance, our formulated problem is similar to the dy-
namic TCP acknowledgment problem [6]. The dynamic TCP
acknowledgment problem discusses the scenario when a num-
ber of subsequent messages are to be acknowledged, whether
we should acknowledge each individual message immediately
upon receiving it, or acknowledge multiple messages with
a single acknowledgment packet. While we amortize the
tail energy by delaying the offloading requests, the dynamic
TCP acknowledgment problem delays the acknowledgments
to alleviate the acknowledgment overhead. That said, the
two problems are actually quite different. In our problem,
the tail energy is determined by the amount of time that
the mobile device stays at the high-power state, since the
transmission time is negligible comparing to the tail time;
while in the dynamic TCP acknowledgment problem, the
acknowledgment overhead mainly depends on the number of
acknowledgements.

III. COALESCED OFFLOADING: AN OFFLINE SOLUTION

In this section, we start to solve the optimization problem
that we have formulated by first transforming it into a discrete-
time optimization problem, and then present an offline solution
based on dynamic programming in this section.

A. From Continuous-Time to Discrete-Time Formulation

By carefully analyzing problem (1), we make the following
two important observations.

Observation 2: All offloading requests should be transmit-
ted either at their respective arrival times or the arrival time
of other requests to minimize fcost.

Proof: We prove that any transmission of requests that
do not satisfy the above conditions increases the total costs.
Suppose two requests arrive sequentially at time 〈a1, a2〉, and
we are to about to schedule their transmission time(s) g with
the objective of minimizing fcost. We have the following three
choices: (1) g ∈ (0, a1], (2) g ∈ (a1, a2), 3) g ∈ [a2, inf).

For the first case, the total cost is

fcost1 = (a1 − g) + min{a2 − a1, T}+ T.

Obviously, when g = a1, the value is the minimum:

fmincost1 = min{a2 − a1, T}+ T.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

2375

4

In the second case, there would be an α(t−a1) delay cost for
the first request. Adding the same energy cost as in the first
case, the total cost would take the form of

fcost2 = min{a2 − t, T}+ T + α(t− a1), a1 < t < a2.

Similarly, the cost in the third case is

fcost3 = T + α(a2 − a1) + 2α(g − a2),

of which the minimum value is:

fmincost3 = T + α(a2 − a1)

when g = a2.
From fcost2, we have
• When a2 − t < T,

fcost2 = α(a2 − a1) + (1− α)(a2 − t) + T.

Obviously, if α < 1, fcost2 > fmincost3. If α > 1, then

fcost2 > (t− a1) + (a2 − t) + T

= a2 − a1 + T ≥ fmincost1.

• When a2 − t > T,

fcost2 = α(t− a1) + 2T > 2T ≥ fmincost1.

Therefore, no offloading request should be granted in times
other than the arrival times if the total cost fcost is to be
minimized. All requests are either granted at their own arrival
times or the arrival time of other requests.

Since tj indicates the time when the wireless interface enters
the high-power state, after which requests will be granted
for transmission as they arrive, tj equals to the arrival time
of one of the requests. Similarly, sj shall be a tail time T
after some arrival time of a granted request. The original
problem is equivalent to determining at which request’s arrival
the interface should be switched to the high-power state,
and from which request’s arrival no further transmissions
should take place. For each request, the scheduling decision
becomes whether to transmit it immediately or to wait until the
next transmission. In this way, we can transform the original
problem of deciding when to power on and off the network
interface into making a decision for each request upon its
arrival, on whether to send it out immediately or to delay it.
Therefore, we may use 1 to represent transmitting the current
request (with or without previously delayed requests), and
use 0 to represent the decision to delay the current request.
We transform the original problem (1) into deciding a binary
transmission sequence 〈1, 0, 0, . . . , 1, . . .〉 for the successively
arriving requests, such that the total cost fcost is minimized.

In a nutshell, if a request is granted immediately, the latency
cost is 0, and the energy cost for transmitting the request
arrives at ai is min{ai − gprev, T}, where gprev represents
the preceeding transmission; if the request is delayed, it
only incurs a latency cost since it will not extend the tail
time. Whenever the request is withheld from transmitting
immediately, the latency cost is α(gnext − ai). Thus, we have

fcost =

{
min{ai − gprev, T}, if granted,
α(gnext − ai), if delayed.

(2)

Let φ represent the sum of the energy cost and latency cost
of transmitting the entire request sequence. We should

minφ, (3)

for 2n combinations of binary transmission sequences accord-
ing to Eqn. (2).

The transformation from the resulted binary transmission
sequence into the time sets 〈t1, t2, . . . , tk〉 and 〈s1, s2, . . . , sk〉
is simple: let t1 be the arrival time of the first 1 appearing in
the sequence. Whenever the interface enters high-power state,
a timer is set to T . If a request is granted before the timer
counts down to 0, the timer will be reset to T . s1 is the time
that the timer firstly counts down to 0. Whenever the binary
transmission sequence turns to 1 again, we set the arrival time
of the request as t2. In this way, we alternatively determine
the time sequence of entering the high-power state t1, t2, . . .
and s1, s2, . . . the time sequence of leaving that state.

B. Optimal Offline Algorithm

We now present an optimal offline algorithm to solve the
problem (1), in which the arrival time sequence a1, a2, . . . , an
are given a priori. The objective is to output a binary
transmission sequence Seq[n], such that the total cost fcost is
minimized. Though it depends on unrealistic assumptions of
knowing the timing of all future requests, our offline algorithm
will serve as the benchmark for us to design and evaluate our
online algorithms.

We use dynamic programming to obtain an optimal offline
algorithm with a time complexity of O(n2). Let Cmin[i] be the
minimum cost of the arrival time subsequence 〈a1, a2, . . . , ai〉
and Seq[i] be the binary transmission sequence for that arrival
time subsequence. For an arrival time sequence of length
i, there are 2i possible combinations of binary transmission
sequences, all of which will be traversed to obtain the one
with the minimum cost.

With respect to the binary transmission sequence, we state
the following facts that will lead us to the offline algorithm.
There are 2i−1 possible binary transmission sequences in
total for the arrival time sequence 〈a1, a2, , ai〉, if the
last request in the arrival time sequence must be transmit-
ted. The cost of the arrival time sequence 〈a1, a2, . . . , ai〉
consists of the sum of min{ai − ai−1, T} and the cost for
〈a1, a2, . . . , ai−1〉, if the granting time sequence of the latter
is a subsequence of the former. If not, the cost of the arrival
time sequence from a1 to ai is the sum of the cost of the
sequence from a1 to ai−j , the latency costs of the requests
from ai−j+1 to ai−1, and the tail time T . We first need to
find out the granting time sequence that minimizes the cost of
all the subsequences of 〈a1, a2, . . . , ai〉 to obtain the granting
time sequence minimizing its total cost. We now give our
optimal offline algorithm, as summarized in Algorithm 1.

Theorem 1: The offline algorithm produces an optimal
solution to the transformed coalesced offloading problem (6).

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

2376

5

Algorithm 1 The Offline Algorithm
Input: a1, a2, . . . , an
Output: Seq[n]
Initialize Cmin[0] = 0
Initialize Seq[0] = 〈〉
Initialize Cmin[1] = T
Initialize Seq[1] = 〈1〉
for i ∈ [2, n] do
Cmin[i] = Cmin[i− 1] + min{ai − ai−1, T}
Seq[i] = 〈Seq[i− 1], 1〉
for j ∈ [2, i] do
C[i] = Cmin[i− j] + α

∑i−1
k=i−j+1(ai − ak) + T

if C[i] < Cmin[i] then
Cmin[i] = C[i]
Seq[i] = 〈Seq[i− j], 01st , . . . , 0j−1th , 1〉

end if
end for

end for

Proof: It is known that if a problem possesses the optimal
substructure property, then any dynamic programming algo-
rithm that explores all subproblems is an optimal algorithm.
To see problem (6) contains the optimal substructure property,
we only need to note that if the sequence Seq[i] optimizes the
total cost of input 〈a1, a2, . . . , ai〉, the subsequence of Seq[i]
— Seq[i− j] must be an optimal solution to the subsequence
〈a1, a2, . . . , ai−j〉. Our algorithm obviously explores all the
possible subproblems to obtain the optimal solution.

IV. READY, SET, GO: ONLINE ALGORITHMS

We are now ready to design Ready, Set, Go (RSG), our
online algorithms to solve problem (1) without a priori knowl-
edge of the arrival time sequence. We begin by considering
the algorithms that probabilistically vary the amount of latency
with a similar approach to the dynamic TCP acknowledgment
problem [6]. We show that the coalesced offloading problem
is a generalized case of this problem, which is known to be a
generalization of the online ski rental problem.

A. The Dynamic TCP Acknowledgment Problem

The dynamic TCP acknowledgment problem is a general-
ization of the online ski rental problem with the following
form. The input is a sequence of the packet arrival times
a1, a2, . . . , an and the output is a set of times t1, t2, . . . , tk
at which an acknowledgment occurs. The latency is defined
as the amount of time elapsed between a packet arrives and it
is acknowledged. The cost of each acknowledgment is 1. The
problem objective is to minimize

k +
∑

1≤j≤k

latency(j).

It has been proved by Karlin et al. that the randomized
algorithm of this problem has an optimal competitive ratio
of e/(e− 1).

We can see that the coalesced offloading problem is a gen-
eralized case for the dynamic TCP acknowledgment problem
with the following analysis.

While the cost for each acknowledgment in the dynamic
TCP acknowledgment problem is a constant, its counterpart in
our problem, i.e., the energy consumption of each transmis-
sion, is a function that depends on the previous transmission
time. To show the dynamic TCP acknowledgment problem is
a special case of our problem, we only need to set T such that
T < (gi − gi−1). Then the energy cost for each transmission
is a constant T . If we set both T and α to 1, then the energy
cost is exactly the acknowledgment cost of the TCP problem,
whereas the latency costs in both problems are equivalent.

B. The Online Algorithm Aθ

Our algorithm Aθ is defined as follows.
Definition 1: Aθ is a randomized algorithm that selects θ

between 0 and 1 according to a probability density function
p(θ). Let R(t, t′) be the number of requests that arrive between
time t and t′, and g1, g2, . . . , gi, . . . is the times at which
requests are granted and transmitted. Algorithm Aθ grants
the next request at gi+1 such that there exists a time τi+1,
gi < τi+1 < gi+1, that satisfies

R(gi, τi+1)(gi+1 − τi+1) = (θ/α)Si, (4)

where

Si = 2(min{τi+1−gi, T}+min{gi+1−τi+1, T})−min{gi+1−gi, T}.

The intuition behind the equation above is simple: given
the previous transmission occurring at time gi, the additional
transmission happens at τi+1 will reduce the latency cost by
θSi. Si is essentially the amount of energy cost increment due
to the additional transmission. It is easy to prove that

min{τi+1−gi, T}+min{gi+1−τi+1, T} ≥ min{gi+1−gi, T},

so that

Si ≥ min{gi+1 − gi, T} ≥ min{gi+1 − τi+1, T}. (5)

Fig. 3 helps to explain our algorithms and proofs. The x-
axis represents the time, and the y-axis represents the number
of request arrivals. The staircase function indicates the arrival
sequence of the requests. gi defines the times at which a bundle
of requests is granted. The shaded area below the staircase
curve and the dotted line above represents the saved latency
cost θSi. Fig. 3 shows an example of the online algorithm A1,
letting τ0 = g0 = 0.

C. Deterministic Online Algorithm: Performance Analysis

We prove that when θ = 1, the deterministic online
algorithm A1 is 2-competitive against the optimal algorithm
AOPT.

Lemma 1: The optimal algorithm grants a request between
any pair of successive transmissions.

Proof: We suppose that A1 grants requests at times
g1, g2, . . . , gi, Enrich the sequence by adding transmis-
sions at time τi+1, gi < τi+1 < gi+1 for all i such that
Eqn. (4) is satisfied. It is obvious to see from Fig. 4 that, by
adding a transmission at time τi+1, the latency cost decreases
at least by min{(gi+1 − τi+1), T} units between gi and gi+1,

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

2377

6

!"

Time

Request
Arrivals

S0

S2

S1

!# !$!$!#!"

%&'(#)'*+!',"-!'./0

-)'*+!',"-!'./0

Fig. 3. The online algorithm A1.

whereas the additional energy consumption incurred is at most
min{(gi+1 − τi+1), T} units. In this case, the new sequence
is at least as good as the original one. It is easy to see the
reduced amount of latency cost by Eqn. (5). To see the addi-
tional energy cost incurred is at most min{(gi+1 − τi+1), T},
we recall that by performing an additional transmission at
τi+1, the energy cost is increased by min{τi+1 − gi, T}
whereas the original energy cost of the transmission at gi+1

min{gi+1−gi, T} is now updated to min{gi+1−τi+1, T} for
one additional transmission. The net increase of the energy
cost satisfies

min{(τi+1 − gi), T} −min{gi+1 − gi, T}
+min{gi+1 − τi+1, T}
≤ min{(gi+1 − τi+1), T}

since τi+1 < gi+1. Hence, there exists an optimal sequence
that grants requests as least once in the interval (gi, gi+1) for
all i.

Theorem 2: Algorithm A1 is 2-competitive.
We leave the proof of the competitive ratio for the deter-

ministic online algorithm A1 in our technical report [7].

Request

 arrivals

Time

AOPT

AθRequest arrivals

L(Aθ\AOPT)

L(AOPT\ Aθ)

Fig. 4. The proof of the competitive ratio of Aθ .

D. Performance Analysis of Aθ
Theorem 3: The competitive ratio between the expected

cost incurred by Aθ and the optimal cost is e/(e− 1).
Proof: We start our proof by first decomposing the total

cost of Aθ. As Fig. 4 has illustrated, L(Aθ\AOPT) is the

latency incurred by Aθ but not AOPT, which is the dark shaded
area above the dotted line and below the solid line. Likewise,
L(AOPT\Aθ) stands for the latency incurred by AOPT but not
Aθ, which is illustrated by the light shaded area above the solid
line and below the lighted line. The latency cost of Aθ is the
area above the curve of Aθ and below the curve of request
arrivals, which is at most the area above the solid curve plus
the dark shaded area minus the light shaded area. Thus, the
total cost satisfies

CAθ ≤ Eθ + (COPT − EOPT)

+ [L(Aθ\AOPT)− L(AOPT\Aθ)]× α,

letting Eθ and EOPT be the energy cost of Aθ and AOPT,
respectively. By the definition of Aθ, the sum of the dark
shaded area is:

L(Aθ\AOPT) ≤ (θ/α)
∑
i

Si

= (θ/α)
∑
i

(2min{τi+1 − τi, T} −min{gi+1 − gi, T})

= (θ/α)(2EOPT − Eθ).

For the light shaded area, we will prove the following lemma.
Lemma 2: The light shaded area L(AOPT\Aθ) satisfies:

αL(AOPT\Aθ) ≥
∫ 1

0

E(x)dx− (1− 2θ)EOPT − θEθ. (6)

To prove the lemma above, we make the following claim. Let
M(E, θ) be the minimum, over all possible granting sequences
W with the energy cost E, of the area above W and below the
Aθ curve as shown in Fig. 5. We omit the request arrivals and
use a line to represent Aθ. We claim that for any u > v ≥ θ,

M(Eu, θ) ≥ [(v − θ)/α](Ev − Eu) +M(Ev, θ) (7)

Time

Au

Av

Area above Aθ

Request
 Arrivals

Rectangle intersecting Au

Rectangle lying

above Au

!! "! #! !$ "$ #%

Aθ

Fig. 5. The Proof of Lemma 3 (to prove the competitive ratio of Aθ)

Proof: Let nu and nv represent the total number of grants
incurred by performing algorithms Au and Av for the same
input. The granting sequence is h1, h2, . . . , hnu for Au and
is g1, g2, . . . , gnv for Av . As shown in Fig. 5, the shaded
rectangles of Av , defined by the definition of Av , intersect

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

2378

7

with the Au curve at most nu times. Therefore, at least nv−nu
shaded rectangles strictly lie above the curve of Au. Pick
exactly nv − nu of them, denote each one of them by its
transmission sequence number i, and define the set of these
rectangles as V ∗. Let

S(V ∗) =
∑
i∈V ∗

Si.

Then the sum of the area of the nv − nu rectangles in V ∗

is (v/α)S(V ∗), and the area of (v/α)S(V ∗) that lies above
the curve of Aθ is at most (θ/α)S(V ∗). Thus the shaded
area below the Aθ curve is at least (v−θ)

α S(V ∗), and this
area strictly lie above the curve of Au. We next generate a
new granting sequence g∗1 , g

∗
2 , . . . , g

∗
n with A∗v such that the

energy cost of it is exactly the same with the energy cost
of the transmission sequence of Av . Also, the new generated
sequence issues a grant at τi,∀i ∈ V ∗. Thus, the shaded area
strictly lies below the curve of A∗v but above the curve of Au
in Fig. 5, which is

M(Eu, θ)−M(Ev, θ) ≥ [(v − θ)/α]S(V ∗). (8)

Note that Ev in Eqn. (8) is the energy cost of the new granting
sequence of A∗v , which is equivalent to the energy cost of Av .
It is still required to prove the following to have Eqn. (7).

S(V ∗) ≥ (Ev − Eu). (9)

By Eqn. (5), we have verified

S(V ∗) ≥
∑
i∈V ∗

min{gi+1 − gi, T}.

For the same input sequence, the entire time duration of the
transmission sequences of Au and Av is the same:

nu−1∑
i=0

(hi+1 − hi) =
nv−1∑
i=0

(gi+1 − gi),

Removing the nv − nu items in V ∗ from the right-hand side
and applying the minimum function to both sides, we then get

nu−1∑
i=0

min{hi+1 − hi, T} ≥
∑
j /∈V ∗

min{gj+1 − gj , T},

Therefore,

S(V ∗) ≥
nv−1∑
i=0

min{gi+1 − gi, T} −
∑
j /∈V ∗

min{gj+1 − gj , T}

≥
nv−1∑
i=0

min{gi+1 − gi, T} −
nu−1∑
i=0

min{hi+1 − hi, T}

= (Ev − Eu).

Combining with Eqn. (8) gives us Eqn. (7).
By rewriting and integrating Eqn. (7), we prove Lemma 3,

the detail of which is given in our technical report [7]. Also,
the rest of the proof of Theorem 2 is given in [7] due to space
constraints.

V. PERFORMANCE EVALUATION

We evaluate both offline and online algorithms using both
model-driven simulations and real-world experiments on a
mobile device. We start with measuring the tail time in our
model to evaluate the cost performance of both offline and
online algorithms. Then we quantify the reduction of energy
utilizations performing the RSG algorithms with real-world
runtime traces from mobile applications.

We run all of our real-world experiments on an iPhone
3GS with iOS 6.1.3, and using the Bell Mobility 3G cellular
network. To measure the energy consumption, we use Pow-
erGremlin [8], a power usage monitor application, to record
run-time battery capacity (mAh) with a sample duration of
one second. All of our measurements are performed under
stable network conditions, with the mobile device running in
a standalone environment in which all other applications and
background tasks are shut off except for our application-level
prototype service, and with the screen off.

A. Measuring the Tail Time

The measurement methodology of the tail time is as follows.
Initially we plan to use PowerGremlin to track the energy trace
of sending a packet, however, this method ends up with a very
subtle energy change that is difficult to detect. We decided
that the tail time is to be measured by transmitting successive
packets of equal sizes, given that the time intervals between
every two transmissions are the same. Our argument is that
when the time interval is smaller than tail time T, the 3G
network interface is kept on from the previous transmission
to the next, thus the variation of the transmission interval will
make no difference to the overall energy consumption. On the
contrary, if the time interval between transmissions is longer
than the tail time T, the 3G network interface enters stand-by
some time T after the completion of the last transmission, thus
the overall energy consumption is reduced.

To measure the 3G tail time, we generate stable sequential
offloading requests over a period of 5 minutes. To eliminate
the effect of varying transmission costs incurred by different
sizes of the packets, we set the packet to be of equal sizes,
and small enough to avoid a heavy transmission overhead.
In our experiments, the time intervals between requests are
designated to span from 3 to 17 seconds. Our measurement
result is in accordance with our argument: the total energy
consumed during the 5-min period keeps the same level when
the transmission time interval varies from 3 to 9 seconds, but
drops dramatically at 9 seconds. As a result, 9 seconds is the
tail time for the 3G interface in iOS 6. We hereby use the
result in our subsequent simulations and experiments.

B. Model-Driven Evaluation

In our model-driven evaluations, the trace of offloading
requests is a sequence of the arrival times 〈a1, a2, . . . , ai, . . .〉,
simulating the timing of multiple offloading requests from
several simultaneously running applications. We categorize
the request patterns into three types: low, medium, and high
fluctuation. With these request sequences as input, we compare

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

2379

8

TABLE I
ENERGY COST REDUCTION COMPARED WITH THE NAIVE STRATEGY.

α Offline Randomized Deterministic
0.3 62.3% 28.2% 14.84%
1.0 36.23% 14.33% 8.49%
1.3 34.09 % 13.86% 8.61%

the total cost fcost of the online RSG algorithms with the
benchmark of the offline algorithm. Each simulation result is
averaged over 500 rounds of tests.

As Fig. 6(a) shows, on average, the cost of the randomized
online RSG is no more than 1.4009 times of the bench-
mark offline algorithm, while the ratio of the cost of the
deterministic online RSG to the offline algorithm is 1.4652.
Both numbers are within the 1.58 and 2-competitive ratio
as analyzed previously. In addition, the randomized online
algorithm generally achieves better performance in terms of
fcost when the fluctuation is higher, while the performance of
the deterministic online algorithm almost remains the same for
different inputs.

Fig. 6(b) compares the energy costs of the naive, determin-
istic online, randomized online, and offline algorithms when
the weight factor α varies. The naive strategy is to send
the offloading request upon its arrival. As stated previously,
the energy cost is proportional to the time that the network
interface stays in the high-power state, which can be used to
estimate the energy costs. As Fig. 6(b) illustrates, the naive
strategy incurs the highest energy costs over all the αs. The
performance of the offline algorithm dominates when α is less
than 1, but approaches the curve of the naive case when α
increases. This conforms with our observation that the offline
algorithm grants more requests immediately upon arrival when
more weights are added to the latency. The curves for the two
RSG online algorithms lie between the naive and the offline
ones, and their energy cost curves climb less dramatically than
the offline curve.

C. Experiments on the Mobile Phone

In our real-world experiments, we choose XML-RPC [9] to
emulate successive offloading requests generated from multi-
ple applications and their transfers to the cloud. We use three
typical types of offloading requests — random, bursty, and
stable — to represent real-world traces. Each measurement
result is averaged over 50 trials, with each trial containing
around 50 transfer requests. Without loss of generality, the
parameter α is set to be 0.3. From our experimental results,
as shown in Fig. 6(c), we have observed that the RSG deter-
ministic online, randomized online, and offline algorithms can
respectively achieve 20.23%, 27.10% and 60.20% of energy
reduction on average, for all three types of requests, compared
to the naive strategy.

When we look into that how the energy costs vary with
α, we find that when α is smaller, RSG bundles requests in a
more aggressive manner so that more energy is saved. Fig. 6(d)
and Table I together illustrate the energy cost reduction of dif-
ferent algorithms compared to the naive strategy with varying
α, with random requests only.

We take a step further to test our algorithms using real-world
traces. To get the trace, we run three typical mobile applica-
tions, Rubik Solver, Email, and online chatting, that are ready
to offload on our iPhone 3GS, and leverage Wireshark [10] to
record their network traffic. The Rubik Solver demonstrates
highly bursty traffic for it is computation-intensive, whereas
Email regularly checks with the server in the background, and
online chatting arbitrarily generates traffic from time to time.
Fig. 6(e) shows the actual transmission times before and after
scheduling. Apparently, with the RSG algorithm, requests from
multiple applications are transmitted in bundles. To further
verify our results, we monitor the raw battery voltage variation
on the mobile device. As Fig. 6(f) shows, the battery voltage
are more stable and decrease more moderately with RSG.
Our experiments have revealed that by performing the RSG
algorithm with our real-world traces, the energy consumption
is reduced by 20.71%.

VI. RELATED WORK

Many existing works in the literature of code offloading
between mobile devices and the cloud only considered the
optimal offloading choice of a single application. Works such
as [1], [3] decided at runtime which parts of the application
are to be remotely executed with an optimization engine, in
order to achieve the best energy savings. Kosta et al. [11]
developed a framework of smartphone virtualization in the
cloud, allowing method-level computation offloading. Gor-
don et al. [2] used a distributed shared memory technique
instead of remote procedure calls to support multi-threaded
applications to run on multiple machines. However, it has
been observed that the on-and-off switching state of the net-
work interface, incurred by offloading requests from multiple
simultaneously running applications, unnecessarily consumes
much idle energy. Without considering that aspect in the
entire optimization framework, it is insufficient to discuss code
offloading alone.

Our work is also closely related to Balasubramanian et
al. [5], as it found that 3G incurs a high tail energy overhead
for lingering in the high-power state after the completion of a
transfer. It also proposed a scheduling algorithm to minimize
the energy consumed while meeting user-specified deadlines.
However, the scheme is only designed for delay-tolerant and
prefetching applications, without taking the length of delays
into account.

Our online strategies are tied to the online algorithm lit-
erature [6], [12], [13]. The dynamic TCP acknowledgment
problem is a generalization of the classical ski rental problem
with the same competitive ratio. We show that our problem is a
generalization of the dynamic TCP acknowledgment problem,
and we prove that the competitive ratio achieves its special
case, which is already proven to be the best possible. A similar
case can also be found in scheduling tasks to minimize the
total power consumption [14], and they presented an effort
to minimize the number of “gaps,” e.g., the idle periods, in
application execution.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

2380

9

low medium high
250

300

350

400

450

500

550

600

T
o
ta

l
C

o
s
t

Randomized

Deterministic

Offline

(a) The fcost of offloading requests with dif-
ferent levels of fluctuations.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
50

100

150

200

250

300

350

α

E
n
e
rg

y
 C

o
s
t

Naive

Deterministic

Randomized

Offline

(b) The estimated energy cost with varying
α.

Random Bursty Stable
0.02

0.03

0.04

0.05

0.06

0.07

0.08

U
n
it
 T

im
e
 E

n
e
rg

y
 C

o
s
t
(m

A
h
)

Naive

Deterministic

Randomized

Offline

(c) The energy consumption on the mobile
device with different types of offloading re-
quests.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

α

U
n
it
 T

im
e
 E

n
e
rg

y
 C

o
s
t
(m

A
h
)

Naive

Offline

Randomized

Deterministic

(d) The energy consumption on the mobile
device with a varying α.

Naive

Online

Time (s)

R
e
q
u
e
s
t
G

ra
n
ts

Rubik Solver Email Chat

(e) The request transmissions on the mobile
device w/o the RSG algorithm.

50 100 150 200 250
4040

4060

4080

4100

4120

4140

R
a

w
 B

a
tt

e
ry

 V
o

lt
a

g
e

 (
m

V
)

50 100 150 200 250
4040

4060

4080

4100

4120

4140

Time (s)

R
a

w
 B

a
tt

e
ry

 V
o

lt
a

g
e

 (
m

V
)

(f) The battery voltage change as measured
on the mobile device. The top figure shows
the result of the naive strategy, and the bottom
one shows the result of the RSG algorithm.

Fig. 6. RSG: Simulation and Experimental Results.

VII. CONCLUDING REMARKS

Coordinating the offloading requests of multiple applica-
tions to achieve greater energy savings while maintaining
satisfactory performance is an important issue in offloading
from mobile devices to the cloud. In particular, how can we
schedule the offloading requests without any knowledge of
the future requests? To answer that, we propose RSG, which
consists of two online algorithms, one deterministic and one
randomized, that dynamically decide when to grant requests
without future information. We prove that the RSG online
algorithm achieves the best possible 2-competitive ratio for
the deterministic case and e/(e− 1) for the randomized one.
With RSG, our real-world implementation on the iOS platform
has shown a substantial amount of energy savings.

REFERENCES

[1] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic Execution between Mobile Device and Cloud,” in Proc. 6th Conf.
on Computer Systems, 2011.

[2] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen,
“COMET: Code Offload by Migrating Execution Transparently,” in Proc.
10th USENIX Conf. on OSDI, 2012.

[3] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making Smartphones Last Longer
with Code Offload,” in Proc. 8th MobiSys, 2010.

[4] B.-G. Chun and P. Maniatis, “Augmented Smartphone Applications
Through Clone Cloud Execution,” USENIX HotOS Workshop, 2009.

[5] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “En-
ergy Consumption in Mobile Phones: a Measurement Study and Impli-
cations for Network Applications,” in Proc. 9th ACM SIGCOMM Conf.
on IMC, 2009.

[6] A. R. Karlin, C. Kenyon, and D. Randall, “Dynamic TCP Acknowledg-
ment and Other Stories about e/(e-1),” in Proc. 33rd ACM Symposium
on Theory of Computing, 2001.

[7] L. Xiang, S. Ye, Y. Feng, B. Li, and B. Li, “Ready, Set, Go:
Coalesced Offloading from Mobile Devices to the Cloud,” 2013.
[Online]. Available: http://iqua.ece.toronto.edu/∼bli/papers/rsg.pdf

[8] “Powergremlin.” [Online]. Available: https://github.com/palominolabs/
powergremlin

[9] “Cocoa xml-rpc framework.” [Online]. Available: https://github.com/
corristo/xmlrpc

[10] “Wireshark.” [Online]. Available: http://www.wireshark.org/
[11] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:

Dynamic Resource Allocation and Parallel Execution in the Cloud for
Mobile Code Offloading,” in Proc. IEEE INFOCOM, 2012.

[12] D. R. Dooly, S. A. Goldman, and S. D. Scott, “TCP Dynamic Acknowl-
edgment Delay: Theory and Practice,” in Proc. 30th ACM Symposium
on Theory of Computing, 1998.

[13] W. Wang, B. Li, and B. Liang, “To Reserve or Not to Reserve: Optimal
Online Multi-Instance Acquisition in IaaS Clouds,” in Proc. IEEE/ACM
ICAC, 2013.

[14] P. Baptiste, “Scheduling Unit Tasks to Minimize the Number of Idle
Periods: a Polynomial Time Algorithm for Offline Dynamic Power Man-
agement,” in Proc. 17th ACM-SIAM Symposium on Discrete Algorithm,
2006.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

2381

