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Abstract—Machine learning algorithms have been widely de-
ployed on decentralized systems so that users with private, local
data can jointly contribute to a better generalized model. One
promising approach is Aggregation of Teacher Ensembles, which
transfers knowledge of locally trained models to a global one
without releasing any private data. However, previous methods
largely focus on privately aggregating the local results without
concerning their validity, which easily leads to erroneous aggre-
gation results especially when data is unbalanced across different
users. Hence, we propose a private consensus protocol — which
reveals nothing else but the label with the highest votes, in the
condition that the number of votes exceeds a given threshold.
The purpose is to filter out undesired aggregation results that
could hurt the aggregator model performance. Our protocol also
guarantees differential privacy such that any adversary with
auxiliary information cannot gain any additional knowledge from
the results. We show that with our protocol, we achieve the same
privacy level with an improved accuracy compared to previous
works.

Index Terms—Differential privacy, decentralized machine
learning.

I. INTRODUCTION

Designed for challenging artificial intelligence problems, the
recent proliferation of machine learning has powered many
data analytic applications, such as image classification, object
recognition, and natural language processing. To pursue a
highly accurate model with better generalization capability,
it is beneficial to perform training over a larger dataset or a
union of datasets from heterogeneous sources. However, the
datasets are often proprietary and are not allowed to be shared.
For instance, to learn the health status of the general public
in an area, it is required to jointly train a model over the
union of private datasets belonging to biomedical companies,
research institutions, or hospitals. Without any sharing, the
model trained on each individual source may be inaccurate or
even biased since the data is most likely homogeneous.

Many computational frameworks have been proposed for
machine learning, in particular, deep learning, to allow a
number of users to train local models on highly sensitive data
and share the knowledge learned. A key challenge in such a
framework is to prevent any private data from being leaked by
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the local models, as it has been known that models are capable
of memorizing a lot of input information. One promising
approach is Aggregation of Teacher Ensembles [1], [2]: each
local training party, acting as a ‘teacher,’ trains its own model
over the private dataset. The aggregator, the ‘student,’ sends
queries to the teachers on a public dataset (usually unlabeled)
and choose the label that the majority of users pick. During
the entire training process, the aggregator does not have direct
access to any user data.

Unfortunately, users’ responses to queries pose as a great
threat to their privacy. The aggregator servers, as well as
other users, could be potentially adversarial and interested in
peeking the user’s data. Thus it is a practice for the aggregator
to perform secure aggregation on responses. However, the
revealing of the aggregated responses still leaks too much
private information: the aggregator can be adversarial and it
is legitimate to send queries to one particular user. Then the
‘aggregation’ would completely expose the user’s response.
In fact, when the aggregated sum does not meet a certain
threshold, the aggregation result should be discarded — it
is very likely that most users do not agree with each other
since local datasets can be highly unbalanced — and thus a
consensus is not achieved across the majority of users.

The requirement raises a contradiction: on one hand, the
aggregation results should not be exposed to avoid leaking
individual information, on the other hand, such aggregation
results are needed to check if the majority of users have
met a consensus. Beyond checking consensus, it is often
desired that minimal information should be revealed during the
computation, and hence only the final output — the label with
the highest vote can be released, but not other labels which
rank below. One can easily tell the scenario cannot be handled
by a single crypto primitive, or a naive combination of them:
while the secure sum protocol aggregates users’ responses, it
cannot check if the results surpass a threshold in blind; the
secure comparison protocol can compare pairs of encrypted
values, but cannot help revealing the comparison result.

The situation is worsened when we enforce differential
privacy guarantee of the final output. If it depends on the
aggregator to apply the differential privacy mechanism to the
aggregated result, the additive noise would have been known,
and thus the true aggregation result would be revealed. If it re-
lies on each user to distributedly apply the differential privacy
scheme, the overall noise level would be too overwhelming



resulting in significantly degraded utility performance.
Therefore, we propose a private consensus protocol, which

is a careful choreography of several cryptographic techniques,
in the context of decentralized learning. The protocol first
sums up all users’ values without revealing each of them, and
compares the results in blind to see if the highest one exceeds
the threshold. To prevent other labels rather than the highest
one are revealed, we design a Blind-and-Permute protocol
to hide the ranking and a Restoration protocol to reveal the
ranking when necessary. To guarantee differential privacy, we
adopt Sparse Vector Technique and Report Noisy Maximum
to ensure minimal amount of information is leaked and thus
a precise amount of noise is added. The overall result is an
improved aggregation utility, while preserving individual data
privacy.

Highlights of our contributions are as follows. First, we
design a security protocol which allows user aggregation,
threshold checking, and ranking in blind. Only if the aggre-
gated votes exceeds a given threshold, can the label corre-
sponding to the highest vote be revealed, otherwise nothing
else is learned. Second, a differential privacy mechanism is
designed to work with our private consensus protocol, such
that a precise amount noise is used to achieve an improved
utility. Finally, we implement our protocol based on several
crypto primitives and within a machine learning framework.
The experimental results on various datasets show improved
accuracy performance of the aggregator model under the same
privacy guarantee.

II. RELATED WORK

The most related works fall into the following categories.
Privacy-preserving multi-party learning. For general clas-

sification tasks, Pathak et al. [3] aims at composing a
differentially-private aggregated classifier by combing several
locally trained classifiers. The resulting classifier is a perturbed
average of all local classifiers. Their threat model is similar to
ours in that the participating users are mutually untrusting and
they depend on an untrusted aggregator to collect their local
results. However, their excess risk of the perturbed aggregate
model is sensitive to the increase of the participating users
and thus not scalable. To overcome the drawback, Rajkumar
et al. [4] introduce a differentially private algorithm which
directly optimizes a perturbed form of the overall multi-party
objective. It improves the model’s generalization performance
compared to [3] but at the sacrifice of privacy guarantee.
Recently, Bayesian learning on distributed data is discussed
in [5] where a secure multi-party sum function is used for ag-
gregation. These three works share a common feature that the
aggregator sum local data (model parameters, noisy gradients,
or data summaries) in a cryptographically secure manner.

The privacy-preserving protocols for deep learning draws
a lot of attention recently. In [6], Shokri et al. designed a
distributed selective stochastic gradient descent mechanism
such that each user trains on its private dataset but exchanges a
fraction of the parameters with others through a global parame-
ter server. The global model suffers significant accuracy loss as

a result that each user overwhelmingly perturbs their uploaded
gradients to satisfy the individual privacy requirement.

In [7], [8], homomorphic encryption algorithms are used to
securely aggregate the noisy gradients from different parties in
an asynchronous stochastic gradient descent update. Zhang et
al. provide a threshold scheme [7] which ensures at least a cer-
tain number of users contribute their gradients. However, they
did not check if the aggregated results surpass a threshold, nor
is their scheme differentially-private. Our problem is harder
as the aggregator needs to compare an unknown aggregation
result with a given threshold.

Secure comparison. By the secure comparison protocol,
the only output revealed is a single bit indicating if the value
possessed by one party is larger than the other but nothing else.
There is a long line of work showing how two or more parties
can securely compare their (shared) secret data, such as bitwise
less-than protocols [9]–[11], protocols based on homomorphic
encryption [12], [13], a non-interactive protocol based on
Goldwasser-Micali encryption scheme [14], a hybrid approach
of additively homomorphic system and garbled circuit [15],
etc. We adopt the homomorphic encryption in [12], [13] for
that it minimizes the amount of data users send.

Privacy via distributed noise generation. Works on the
distributed noise generation to provide differential privacy
guarantee are also related to this work. If a trusted aggregator
exists, it can add calibrated noise to the aggregation result to
ensure privacy. Problems arise as when such a trusted aggre-
gator does not exist, differential privacy has to be guaranteed
through a distributed protocol. Two categories of solutions
are representative: interactive protocols and non-interactive
ones with an untrusted server. In the former such as [16],
[17], Dwork et al. develop a general distributed algorithm for
Gaussian noise generation with fewer executions of verifiable
secret sharing. Although their result is provably better than
non-interactive solutions in terms of accuracy, the protocol is
not very practical as all users need to be simultaneously online
and interact periodically. In the latter ones, users alter their
data via randomized response before sending it to the server
(aggregator in this paper). Our differential privacy mechanism
falls into the non-interactive category.

III. PRELIMINARIES

For ease of understanding, we first introduce some back-
ground knowledge of this work.

A. Semi-Supervised Knowledge Transfer

Our work is based on a decentralized machine learning
framework called semi-supervised knowledge transfer. An il-
lustration of the framework is shown in Fig. 1. The framework
consists of a number of users and an aggregator who would
like to train a joint model over all users’ data. Each user owns a
private dataset and runs learning algorithms locally. The aggre-
gator, who cannot access to users’ data, only has an incomplete
public dataset which is usually unlabeled. When local training
is done, the aggregator sends queries about the unlabeled
instance to each user. Then users transfer the knowledge
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Fig. 1. Semi-supervised knowledge transfer framework.

learned on their private dataset by making predictions on those
unlabeled instances. The aggregator collects answers from all
users to label instances. Finally, the aggregator conducts semi-
supervised learning on the collection of data-label pairs to train
a joint model. Since the aggregator model is trained on the
combination of users’ query answers, it usually enjoys better
generalization capability and higher accuracy.

B. Paillier Cryptosystem and DGK

We adopt Paillier cryptosystem as our additive homomor-
phic encryption tool for aggregating users’ answers in a secure
manner. We choose Paillier due to its efficiency in ciphertext
size and in performing homomorphic operations. It has been
proven its strong security guarantees. The limitation lies in
that it only supports addition and multiplication operations
over encrypted data. There are two types of keys involved:
the public key pk is used to encrypt the plaintext m and the
private key sk is used for decryption. The plaintext m ∈ Zn,
where n is a large positive integer and Zn is the set of integers
modulo n. We denote the encryption of m with public key pk
as Epk[m] and the decryption of ciphertext c using secret key
sk as Esk[c]. The homomorphic properties of the cryptosystem
can be described as

Epk[m1 +m2] = Epk[m1] · Epk[m2], (1)

Epk[a ·m1] = Epk[m1]a, (2)

where a is a constant that a ∈ Zn.
We also use DGK as our secure comparison tool for

comparing each pair of aggregated values. DGK is built on
homomorphic cryptosystem and is proven to be semantically
secure. There are many variants of the protocol depending on
whether the compared values are known to both parties, or
whether the comparison result is kept secret. We adopt the
most primitive one in our work: A has a private integer a,
B has a private integer b and we want to compare a and b
without revealing any party’s value. In the protocol, a and b
are compared by their binary representation in an interactive
way.

C. Rényi Differential Privacy

Rényi Differential Privacy (RDP) [18] is proposed as a
relaxation of the pure differential privacy (δ = 0). It has
natural advantages over the (ε, δ)-differential privacy since
it composes nicely, and captures the privacy guarantee of
Gaussian noise in a much cleaner way [2]. The concept is
defined based on Rényi divergence:

Definition 1. (Rényi divergence). The Rényi divergence of
order α > 1 between two distributions P and Q is defined
as

Dα(P ||Q) ,
1

α− 1
logEx∼Q

[(P (x)

Q(x)

)α]
.

Hence, Rényi Differential Privacy is defined as follows:

Definition 2. ((α, ε)-RDP). A randomized mechanism M
guarantees (α, ε)-RDP with α ≥ 1 if for any adjacent inputs
I and I ′, and any output set O ⊆ O,

Dα(M(I)||M(I ′)) =

1

α− 1
logEx∼M(I′)

[( Pr[M(I) ∈ O]

Pr[M(I ′) ∈ O]

)α]
≤ ε.

Similar to the definition of differential privacy, ε-RDP
implies the ability of an adversary to inflict damage to any
set of users is independent of whether any individual opts
into, or out of the dataset. The RDP inherits several important
properties from the standard definition of differential privacy,
for example, whereas ε-differential privacy mechanism does
not move the relative probabilities assigned to any two adjacent
inputs by more than eε, ε-RDP mechanism does not move the
relative probabilities by more than eε in expectation.

By the probability preservation proposition [18], if a mech-
anism M is (α, ε)-RDP, then we have:

e−ε Pr[M(I ′) ∈ O]α/(α−1) ≤ Pr[M(I) ∈ O]

≤ (eε Pr[M(I ′) ∈ O])α/(α−1). (3)

Different mechanisms such as randomized response,
Laplace and Gaussian noise addition can be applied to realize
ε-RDP. Take the Gaussian mechanism for example:

Theorem 1. (Gaussian noise addition. Corollary 3 of [18].)
If f has sensitivity ∆, the Gaussian mechanism M such that

M[f(I)] = f(I) +N (0, σ2)

satisfies (α, α∆2/(2σ2))-RDP, and N (0, σ2) is a normally
distributed random variable with standard deviation σ2 and
mean 0.

If multiple RDP mechanisms are applied, it is equivalent to
applying one RDP scheme:

Theorem 2. (Composition.) If M1 guarantees (α, ε1)-RDP
andM2 guarantees (α, ε2)-RDP, then (M1,M2) guarantees
(α, ε1 + ε2)-RDP.

In the latter section, we will derive the differential privacy
guarantee of our mechanism based on the RDP.



IV. A PRIVATE CONSENSUS PROTOCOL

In this section, we first point out problems with Aggregation
of Teacher Ensembles, illustrate the technical intuition of
our solution, and finally describe our differentially-private
consensus protocol.

A. Aggregation of Teacher Ensembles

Assume we have a set of users U each of whom privately
possesses a subset of data belonging to K classes. Each user
independently trains a local model on their private dataset.
The aggregator, possessing a set of public data without labels,
randomly chooses a subset of its data x to query each user.
User u responds with cu(x) — a probabilistic vector or a
one-hot encoding vector indicating the chosen label — to the
aggregator. The aggregator then adds up all responses for each
instance. For all users, if we use the superscript to represent
the user and the subscript to denote the index of the label, the
total votes of label i for instance x is:

ci(x) = eᵀi ·
∑
u∈U

cu(x) =
∑
u∈U

cui (x), (4)

where ei represents a vector with the i-th entry being one and
the rest being zeros, and cui (x) represents the prediction result
of user u to the i-th class for x. For ease of presentation, we
define the label with the highest votes for x as

i∗ , arg max
i
{ci(x)},∀i ∈ {1, ...,K}. (5)

Given an instance x and a pre-defined threshold T , we need
to find out i∗ as well as the number of votes ci∗(x) to see if the
highest votes exceeds T . i∗ is returned only when a plurality
of users agree on the decision. The algorithm is summarized
in Alg. 1. By running Alg. 1 [1] for each instance in x,

Algorithm 1 Aggregation of Teacher Ensembles
Input: User u’s prediction for the instance x: cui (x),∀i ∈
{1, ...,K}. A chosen threshold T .

1: if ci∗(x) ≥ T then
2: Return i∗.
3: else
4: Return ⊥.
5: end if

the aggregator obtains a number of data-label pairs, based on
which it trains an aggregator model without direct access to
each user’s data.

The problem with secure sum and secure comparison
protocols: We made the first attempt to aggregate each user’s
votes using a secure sum protocol. The aggregator is able to
compute the sum without accessing each individual value, but
the resulting sum has to be revealed for the aggregator to
check if the plurality surpasses the threshold. In fact, only the
label index has to be revealed and thus the aggregation result
leaks more information than necessary. Similar to the reason
above, if we apply a secure comparison protocol for checking
the plurality, other label indices, apart from the one with the

highest vote, are revealed as a result of comparison, even if
none of the comparing values are released during the process.

Ideally, we expect a protocol which finds out whether the
value of ci∗(x) surpasses T and i∗, yet without exposing
cj(x),∀j ∈ {1, . . . ,K}, or any j 6= i∗ to ensure the minimal
possible information is released.

B. Threat Model and Technical Intuition

Our protocol is designed against semi-honest users/servers
and we assume the two servers S1, S2 would not collude with
each other. This is a realistic assumption as the two servers
may belong to different corporations and collusion would hurt
their reputation. By the semi-honest setting, it is assumed that
users and servers have common interests on the global model
and thus would not tamper the data maliciously. Yet, it is
possible for a subset of users, including one of the servers or
not, to collude and intercept the private information of other
honest users.

The foremost problem is to find out the ranking of different
labels without learning anything about their aggregated sum.
We convert the comparison of aggregated values into other
forms. The symbol of a data instance x is omitted in discussion
from now on for simplicity. To compare the aggregated value
with T , we ask each user to randomly split its value as cu =
au + bu, and submit au − T/(2|U|) to S1 and T/(2|U|)− bu
to S2. The comparison can instead be made between au and
bu:∑
u∈U

cu ≥ T ⇔
∑
u∈U

au + bu ≥ T/2 + T/2

⇔
∑
u∈U

au − T/(2|U|) ≥
∑
u∈U

T/(2|U|)− bu.

(6)

Similarly, to find out i∗, we have each user randomly split
their values as cui = aui + bui ,∀i ∈ {1, . . . ,K}, and send aui
to S1 and bui to S2 for each i. The two servers respectively
aggregate the values from users and compare

∑
u∈U a

u
i − auj

with
∑
u∈U b

u
j − bui instead, since

ci ≥ cj ⇔
∑
u∈U

aui + bui ≥
∑
u∈U

auj + buj

⇔
∑
u∈U

aui − auj ≥
∑
u∈U

buj − bui .
(7)

Note that secure comparison primitive can be adopted to
compare two values owned by two parties without either party
obtaining anything about the other.

The second issue is to prevent revealing the ranking of the
rest labels j 6= i∗. We adopt a blind-and-permute sub-protocol
to permute the sequences without revealing to any party the
permutation order. In detail, S1 and S2 sequentially permute
the same sequence without letting the other know about its
permutation order. The resulting sequence would be permuted
twice, but the order remains unknown to either server. Then,
the two servers can compare each pair of elements in the
sequence without knowing about the true indices.



C. A Blind-and-Permute Protocol

To prevent the indices from being revealed, we apply blind-
and-permute sub-protocol as follows: Each server S privately
generates a permutation πs(·) on {1, . . . ,K} and randomized
masks. The two servers sequentially performs permutation
and masking to the original sequence such that the resulting
sequence is permuted and distorted twice. Beyond that, se-
quences are encrypted by additively homomorphic encryption
with the private key owned by only one of the servers. Our
blind-and-permute protocol allows two servers to agree upon
an unknown sequence order π(·) = π1(π2(·)). Please refer to
Alg. 2 for a detailed description. To restore the sequence, the
two servers sequentially revert the permutation and remove
masks from the sequence. The restoration details are given in
Alg. 3.

Algorithm 2 Blind-and-Permute
Setup: S1 randomly chooses a permutation π1, random-
ized masks r1, and a pair of additively homomorphic keys
(pk1, sk1). S2 randomly chooses a permutation π2, ran-
domized masks r2, r3, and a pair of additively homomor-
phic keys (pk2, sk2). All public keys are released by the
PKI.
Input: S1 has an encrypted sequence Epk2 [a] and S2 holds

the sequence Epk1 [b].
Output: S1 holds the sequence π(a+r) and S2 holds π(b+r)

where π(·) = π1(π2(·)) and r = r1 + r2.
1: S1 adds encrypted random mask Epk2 [r1] to Epk2 [a], and

sends Epk2 [a + r1] to S2.
2: S2 decrypts it, adds random mask r2, permutes the se-

quence with π2. It sends π2(a + r1 + r2) to S1.
3: S1 permutes the received sequence with π1, and obtains
π1(π2(a + r1 + r2)). It sends encrypted random mask
Epk1 [r1] to S2.

4: S2 adds up the encrypted values Epk1 [b], Epk1 [r1] and
Epk1 [r2], permutes the results by π2 and adds Epk1 [r3] to
the permutation result. It sends Epk1 [π2(b+r1+r2)+r3]
and Epk2 [−r3] to S1.

5: S1 decrypts the received sequence with pk1 and then re-
encrypts it with pk2. It then adds Epk2 [−r3] to the result
to obtain Epk2 [π2(b + r1 + r2)]. Permuting the sequence
with π1, S1 sends permuted and encrypted sequence to
S2.

6: S2 decrypts the received sequence with pk2 and obtains
π1(π2(b + r1 + r2)).

By the secure comparison primitive, S1 and S2 can compare
the aggregated votes of every pair of labels to obtain the
one with the highest votes, or to check if the votes exceed
a threshold, unaware of the true label index. To recover the
true label, the two servers need to run the restoration protocol.
At the core, each server reverts its permutation and removes its
mask from the sequence respectively. Alg. 3 provides the detail
and note that π−1s (·) denotes the reversion of the permutation
πs(·).

Algorithm 3 Restoration
Setup: S1 randomly chooses a randomized mask r1, and a
pair of additively homomorphic keys (pk1, sk1). S2 randomly
chooses a randomized mask r2, and a pair of additively
homomorphic keys (pk2, sk2). All public keys are released
by the PKI.
Input: A given index π(i∗).
Output: i∗.

1: S2 encrypts the sequence π(ei∗) with pk2 and sends
Epk2 [π(ei∗)] to S1.

2: S1 reverts its permutation and adds an encrypted ran-
domized mask Epk2 [r1]: π−11 (Epk2 [π(ei∗)])Epk2 [r1] =
Epk2 [π2(ei∗) + r1]. It sends the result to S2.

3: S2 decrypts the result and sends π2(ei∗) + r1 to S1.
4: S1 subtracts r1 from the result and encrypts it with pk1.

It sends Epk1 [π2(ei∗)] to S2.
5: S2 reverts the permutation and adds a randomized mask

r2: π−12 (Epk1 [π2(ei∗)])Epk1 [r2]. It sends Epk1 [ei∗ + r2]
to S1.

6: S1 decrypts the result and returns it to S2.
7: S2 removes r2 from the result and obtain ei∗ .

D. Ensuring Differentially Privacy

With the intuition in Sec. IV-B and the protocols in
Sec. IV-C, we are able to construct an instance of the aggre-
gation of teacher ensembles without revealing any information
except for the final output to any party. However, even with the
final output, it is likely for an adversary to infer properties of
the training data. Differential privacy was proposed to resolve
the issue by randomizing the output. Specifically, the private
aggregation of teacher ensembles [2] is as follows.

Algorithm 4 Private Aggregation of Teacher Ensembles
Input: User u’s prediction for the instance x: cui (x),∀i ∈
{1, ...,K}. A chosen threshold T .

1: if ci∗(x) +N (0, σ2
1) ≥ T then

2: Return ĩ∗ , arg maxi{ci(x) +N (0, σ2
2)}.

3: else
4: Return ⊥.
5: end if

Alg. 4 comprises an instance of the Sparse Vector Technique
and an instance of the Report Noisy Maximum [19]. For
a given threshold T and a given instance x, we first find
the label with the highest votes ci∗(x) and add noise to it.
The aggregator compares the highest noisy votes with the
threshold: if it surpasses T , we consider the majority of users
pick the same label for x, otherwise no consensus is achieved.
If consensus has been achieved, the aggregator returns the
maximum of the noisy votes. Note that ĩ∗ is different from
i∗ since the former represents the label of the highest noisy
votes and the latter is the label of the highest votes.

However, it remains a problem to add additional noise
without revealing any intermediate result. If it depends on



the aggregator to perform the perturbation, the aggregator
would learn the exact amount of noise, risking revealing
the true intermediate result. Hence, our scheme utilizes the
additive property of Gaussian noise and lets each user locally
generate the randomized noise. Let zu1 denote an instance of
N (0, σ2

1/(2|U|)) and zu2 be an instance of N (0, σ2
2/(2|U|))

generated by user u locally. If the random noise from all
users are aggregated, we have respectively z1 ,

∑
u∈U z

u
1 ∼

N (0, σ2
1/2) and z2 ,

∑
u∈U z

u
2 ∼ N (0, σ2

2/2).
The challenge lies in that the protocol should only reveal ĩ∗

but not i∗ to avoid spending additional privacy budget on the
releasing of i∗. Our solution is to enforce the same permutation
order on the original votes and noisy votes in the threshold
checking. The detail of the process is illustrated in Alg. 5.
Overall, the algorithm consists of three parts which we will
give an overview as follows.

Algorithm 5 Private Consensus Protocol
Input: Each user’s prediction for instance x: cu(x), ∀u ∈ U .

Privacy parameters σ1 and σ2.
Output: Label with the highest noisy vote.

1: Setup: User u ∈ U randomly splits its prediction as
cu(x) = au(x) + bu(x). Each user also generates ran-
domized noise zu1 and zu2 .

2: Secure Sum: User u ∈ U sends Epk2 [au], Epk2 [au −
(T/2|U|)I + zu1 ] to S1 and Epk1 [bu], Epk1 [(T/2|U|)I −
bu − zu1 ] to S2.
S1 aggregates the value from all users in U :
Epk2 [a] =

∏
u∈U Epk2 [au] and Epk2 [a− (T/2)I + z1] =∏

u∈U Epk2 [au − (T/2|U|)I + zu1 ].
S2 aggregates the value from all users in U : Epk1 [b] =∏
u∈U Epk1 [bu] and Epk1 [(T/2)I − b − z1] =∏
u∈U Epk1 [(T/2|U|)I− bu − zu1 ].

3: Blind-and-Permute: S1 and S2 execute Alg. 2. S1 obtains
π(a+r) and π(a−(T/2)I+z1+r′). S2 obtains π(b+r)
and π((T/2)I− b− z1 + r′).

4: Secure Comparison: for each pair of i, j ∈ {1, . . . ,K},
by using DGK comparison protocol and Eqn. (7), S1 and
S2 compare π(a + r) with π(b + r) to find π(i∗).

5: Threshold Checking: by using DGK and Eqn. (6), S1 and
S2 compare (a− (T/2)I + z1 + r′)π(i∗) with ((T/2)I−
b − z1 + r′)π(i∗) to decide if cπ(i∗) + N (0, σ2

1) ≥ T . If
not, the protocol returns ⊥.

6: Secure Sum: User u ∈ U sends Epk2 [au + zu2 ] to S1

and Epk1 [bu + zu2 ] to S2. S1 aggregates the value from
all users in U : Epk2 [a + z2] =

∏
u∈U Epk2 [au + zu2 ]. S2

aggregates the value from all users in U : Epk1 [b + z2] =∏
u∈U Epk1 [bu + zu2 ].

7: Blind-and-Permute: S1 and S2 execute Alg. 2 to respec-
tively obtain π′(a + r) and π′(b + r).

8: Secure Comparison: for each pair of i, j ∈ {1, . . . ,K},
by using DGK and Eqn. (7), S1 and S2 compare π′(a+r)
with π′(b + r) to find π′(̃i∗).

9: Restoration: S1 and S2 execute Alg. 3 to return ĩ∗.

In the first part (line 1 to 4 in Alg. 5), each user randomly

splits each of its prediction result into two shares, sending one
share to S1 and the other to S2. The two servers respectively
aggregate the partial values from all users and runs Blind-
and-Permute on the aggregated values. By permutation, S1

and S2 respectively obtain π(a+ r) and π(b+ r). As the two
sequences share the same permutation order and a common
bias, S1 and S2 can find out π(i∗). Note that we do not restore
the permutation order in this part.

In the second part (line 5 in Alg. 5), we test if the random-
ized highest votes is larger than a threshold. The key is that
the differentially-private sequence shares the same permutation
order π which allows threshold checking without learning the
label with the highest votes. If threshold checking fails, no
consensus is achieved for x and thus the instance is discarded.

In the third part (line 7 to 9 in Alg. 5), servers conduct
Blind-and-Permute and Restoration protocols to find the label
with the highest noisy vote ĩ∗ and include (x, ĩ∗) as a data-
label pair for training.

V. SECURITY AND PRIVACY ANALYSIS

We give the security proof of our protocol and the differ-
ential privacy guarantee.

A. Security

Theorem 3. (Correctness) Alg. 5 returns ĩ∗ if ci∗(x) +
N (0, σ2

1) ≥ T . Otherwise, a stop string is returned.

The proof is straightforward from the algorithm and thus are
omitted. Then we show that our protocol is privacy-preserving
in the semi-honest setting with non-colluding servers. The
sketch proof is provided.

Theorem 4. (Privacy) If servers are semi-honest and non-
colluding, there is a simulator SIM of Alg. 5 such that
for any V ⊆ U

⋃
{Ss}, s ∈ {1, 2}, the output of SIM is

computationally indistinguishable from the output of REALUV :

REALUV (cV) ≈c SIMUV (cV),

where cV is defined as

cV = {cu|u ∈ V}.

Proof. (Sketch) We do not repeat the proofs of DGK compar-
ison protocol and secure sum protocol, but focus on the proof
of the Blind-and-Permute and Restoration protocol.

The main point is to prove that the joint view of the
parties in V does not depend on the inputs of the parties
not in V . The simulator can produce a simulation by running
the semi-honest users on their true inputs, and all other
users on dummy inputs. In the Blind-and-Permute protocol,
we discuss two cases. If S1 ∈ V , the joint view of V is
{au,bu|u ∈ V}

⋃
{r1, Epk2 [a], π2(a + r1 + r2), π2(b + r1 +

r2) +r3, Epk2 [−r3]}. Since π2, r2, r3 are randomly generated
and unknown to users in V , a and b can be replaced with
randomly generated permutation and numbers. The encryp-
tions of a can be replaced by the encryptions of 0 (padded
to the appropriate length). Due to IND-CPA security, the joint
view of users in V will be identical to that in REALUV .



Likewise, if S2 ∈ V , the joint view of V is {au,bu|u ∈
V}
⋃
{Epk1 [b],a+r1, r2, Epk1 [r1], r3, π1(b+r1+r2)}. Since

π1, r1 are randomly generated and unknown to users in V , a
and b can be replaced with randomly generated permutation
and numbers. The encryptions of b can be replaced by the
encryptions of 0. Due to IND-CPA security, the joint view
of users in V will be identical to that in REALUV . Hence,
no additional information about users in U\V is revealed in
executing Blind-and-Permute.

The proof of the restoration protocol is similar to that
of Blind-and-Permute. If S1 ∈ V , the joint view of V is
{au,bu|u ∈ V}

⋃
{Epk2 [π(ei∗)], π2(ei∗), ei∗ + r2}. Since

π2, r2 are unknown to V , one can replace ei∗ with any random
sequence and the joint view of V would be identical to that
in REALUV . If S1 ∈ V , the joint view of V is {au,bu|u ∈
V}
⋃
{π2(ei∗) + r1, Epk1 [ei∗ ]}. For similar reasons as above,

the joint view of V would be identical to that in REALUV .
Finally, the security proof of our private consensus protocol

is built on the security proofs of DGK, secure sum, Blind-and-
Permute and Restoration protocols.

B. Differential Privacy

In this section, we analyze the differential privacy guarantee
of the final output. As a result, we have that

Theorem 5. For any δ ∈ (0, 1), Alg. 5 guarantees(√
2 (9/σ2

1 + 2/σ2
2) log 1/δ +

(
9/2σ2

1 + 1/σ2
2

)
, δ
)

-
differential privacy.

Alg. 5 comprises two mechanisms: line 2 to 5 is an instance
of the Sparse Vector Technique and line 6 to 9 is an instance
of the Report Noisy Maximum.

Lemma 1. Sparse Vector Technique satisfies
(
α, 9α/2σ2

1

)
-

RDP.

Proof. The proof is based on the proof of Theorem 3.23 in
[19]. We define the noisy threshold as T̂ and the perturbation
noise of the k queried instances before the one exceeding the
threshold is found as {νm}km=1. It means the last instance
in the sequence is chosen, but instances 1 to k − 1 are not
chosen. We restart the mechanism whenever one above the
threshold is found. We fix the values of ν1, . . . , νk−1 and take
probabilities over the randomness of νk and T̂ . Owing to the
additive property of the Gaussian noise, we can rewrite the
threshold comparison of the instance m as:

ci∗,m +N (0, σ2
1) ≥ T ⇔

ci∗,m +N (0, σ2
1/p) ≥ T +N (0, σ2

1/q),

s.t. 1/p+ 1/q = 1.

We define the highest noisy votes of instance 1 to k − 1 as
g(I) = maxm<k(ci∗,m(I)+νm). The probability that the k-th
instance is above the threshold is

Pr
T̂ ,νk

[T̂ > g(I) and ci∗,k(I) + νk ≥ T̂ ] =∫ ∞
−∞

∫ ∞
−∞

Pr[νk = ν] Pr[T̂ = t]1[t ∈ (g(I), ci∗,k(I) + ν)]dνdt.

We make a change of variables by defining

ν̂ = ν + g(I)− g(I ′) + ci∗,k(I ′)− ci∗,k(I),

t̂ = t+ g(I)− g(I ′),

and note that for any I, I ′, ‖ν − ν̂‖2 = |ν − ν̂| ≤ 2, and
‖t̂− t‖2 = |t̂− t| ≤ 1. Hence by Eqn. (3), it can be obtained
that

Pr[νk = ν̂] ≤ [eεp Pr[νk = ν]]
α−1
α , εp = 2pα/σ2

1

Pr[T̂ = t̂] ≤
[
eεq Pr[T̂ = t]

]α−1
α

, εq = qα/2σ2
1 .

By the composition theorem of RDP, the
Sparse Vector Technique satisfies (α, εp + εq)-RDP. If
we minimize the value of εp + εq over the constraint
1/p+ 1/q = 1, we obtain εp + εq = 9α/2σ2

1 .

Lemma 2. Report Noisy Maximum satisfies
(
α, α/σ2

2

)
-RDP.

Proof. The result can be derived as one entry difference would
change the maximum counts by at most 1.

Proof. (Thm. 5) By Lemma 1, 2 and Thm. 2, we can prove
Alg. 5 satisfies

(
α, 9α/2σ2

1 + α/σ2
2

)
-RDP. By Theorem 5 of

[2], it can be easily proved that Alg. 5 guarantees (ε, δ)-
differential privacy with

ε ≥
√

2 (9/σ2
1 + 2/σ2

2) log 1/δ +
(
9/2σ2

1 + 1/σ2
2

)
,

and the equality holds when α = 1 +
√

2 log 1/δ
9/σ2

1+2/σ2
2

.

VI. EVALUATION

In this section, we discuss the implementation detail of
our private consensus protocol, its computational and storage
overhead, as well as the accuracy and privacy performance.

A. Implementation

A prototype of our protocol is built on the additive ho-
momorphic cryptosystem Paillier, secure comparison primitive
DGK, and the Pytorch library. The Paillier crypto primitive
has a key size of 64 bit. The Pytorch library is used as the
framework for distributed machine learning. Unfortunately, we
faced a series of challenges in adopting the primitives in our
implementation. The following shows how we overcome these
challenges.

Extended supports to float numbers. Since the original
Paillier primitive only supports integer encryption, we perform
a conversion from float numbers to integers while retaining a
certain precision. More precisely, assuming the object is a float
number R, we cut off the fractional part which is less than
2−16 ≈ 1.526 × 10−5 from R to retain its sign bit and the
most significant 31 bit. Then we transform R into a 32 bit
positive integer RI by

RI = R · 216 + 231, ∀R ∈ [−215, 215). (8)

Although a higher precision can be obtained, the additional
bits would cause extra burden since the protocol involves
bitwise operation.



Encrypted numbers converted to tensors. We use send
and recv interfaces in torch.distributed for the commu-
nication between the user and server, as well as between
the two servers. The pair of interfaces support synchronous
communication between processes by inter-process communi-
cation or between devices by TCP. Since tensor objects are
passed around by the two interfaces, we convert the numbers
into tensors. Plaintext can be easily transformed into tensors
but the encrypted number, due to the ciphertext expansion,
cannot fit within the capacity of a single tensor object. Hence
we develop segmentation and recomposition interfaces added
upon the send and recv: before being sent, the ciphertext is
divided into units with each unit being a 18-digit long decimal
number which could fit into a tensor, and the ciphertext is sent
by segments; upon receiving these segments, we re-compose
the original ciphertext from tensors.

Encrypt numbers efficiently. Since the aggregator needs
to collect a sufficiently large number of instances to train
its model, the encryption primitive has to be applied to each
instance, which makes the implementation highly inefficiently.
Thus we first propose a countermeasure to split instances into
batches and run encryptions in parallel. However, in the first
place, we curiously found that the process does not gain any
speedup as expected and acts as if all encryptions are done
sequentially. We spot the bottleneck that almost all encryptions
require random number generation which relies on a common
generator, but the generator is not sufficiently fast in generating
random numbers. Thus we made a tweak by generating a
table of random numbers beforehand and have each process
acquire a random number with the current time as the index
to access the table. The approach finally effectively parallelize
the encryption process and gains significant speedup.

B. Computational and Communication Costs

In this section, we show the computational and communi-
cation costs evaluated by experiments. Our protocol is tested
on a server with Intel Xeon CPU E5-2650 v3. Each result is
evaluated on 1000 instances from 10 classes, and is averaged
over 755 rounds. We record the averaged per-step running time
as a way to gauge the computational cost, the result of which is
given in Table I. From the results, we found step (4)(5)(8) are
dominant in the overall running time costs, owing to the secure
comparison operation of DGK involves bitwise encryption and
multiplication. If faster secure comparison primitives can be
adopted, it would speed up the entire execution of the protocol.

TABLE I
COMPUTATIONAL COSTS

Step Average Running Time (s)
Blind-and-permute (3) 4.972
Secure Comparison (4) 745.163
Threshold Checking (5) 475.962
Blind-and-permute (7) 1.847
Secure Comparison (8) 848.585

Restoration (9) 2.985
Overall 2079.514

We also measured the communication overhead by the size
of the message passed between different parties. The message
are stored in Numpy format. The results are evaluated on 1000
instances of 10 classes over 755 rounds as well. From Table II,
we can tell that there is a light-weighted communication over-
head on the user. The message transferred in the Blind-and-
Permute and Restoration protocol is approximately 3 times
larger than the plaintext, due to the ciphertext expansion of
the Paillier crypto scheme. Overall, the message transferred
between servers reaches the largest in the Secure Comparison
step, which is around 4.5 times larger than the Threshold
Checking step, since the former performs comparison for each
pair of classes. Note that for server-to-server, the number given
in the table is the size of the message exchanged between
the two servers. It is reasonable that the message size in
step(4)(5)(8) is relatively large because each number under
comparison is encrypted bit-by-bit.

TABLE II
COMMUNICATION COSTS

Step Message Size Per Party (KB)
Secure Sum (2) 234 (user-to-server)

Blind-and-Permute (3) 469 (server-to-server)
Secure Comparison (4) 33750 (server-to-server)
Threshold Checking (5) 7500 (server-to-server)

Secure Sum (6) 117 (user-to-server)
Blind-and-Permute (7) 234 (server-to-server)
Secure Comparison (8) 33750 (server-to-server)

Restoration (9) 234 (server-to-server)

C. Accuracy and Privacy

We tested our private consensus protocol under a variety
of data distribution and privacy settings on three datasets:
MNIST, SVHN, and CelebA. The handwritten digits dataset
MNIST contains a training set of 60000 examples and a
testing set of 10000 examples. The real-world digits dataset
SVHN contains over 60000 training examples and over 20000
testing examples. The face attributes datasets CelebA consists
of 200000 images, each with 40 binary attributes. The aggre-
gator’s model is built on the Inception V3 neural network.
To evaluate the performance, we adopt two metrics: label
accuracy, which shows the percentage of the aggregator’s
instances labeled correctly by the consensus protocol; and
aggregator accuracy, which is the aggregator’s accuracy by
training on the aggregation results. The metrics are measured
under a variety of privacy levels as well as different data
distributions. For each dataset, we set aside 9000 training
samples for the aggregator, and the rest is distributed across
the users. A threshold of 60% is chosen by default, meaning
that consensus is achieved only when over 60% of the total
number of users agree on the labels.

We first measure user accuracy, i.e., the average accuracy
that a user achieves on its local data, under a variety of data
distributions. Fig. 2(a) shows the results when the training data
is evenly distributed across all users. It is obvious that, as the
number of users increases, the size of local dataset decreases



(a)

(b)

(c)

(d)

Fig. 2. (a) User accuracy when data is evenly distributed: average user
accuracy gets lower with the increase of user numbers. (b)(c)(d) show that
when data is unevenly distributed, the more unbalanced the dataset, the higher
fluctuation of the user accuracy.

and thus the average user accuracy gets lower. Fig. 2(b), 2(c),
and 2(d) show the average user accuracy when data is unevenly
distributed across users. Three data distributions are chosen,
namely division 2-8, 3-7 and 4-6. Division 2-8 represents that
20% of the data is held by 80% of the users, and the rest
should be interpreted in a similar way. For fair evaluation, we
do not show the average user accuracy, but the accuracies of
the majority of users (80% of the users who holds 20% of
the data), and minority of users (20% of the users who holds
80% of the data). Almost for all datasets, when the data is
distributed more unevenly, there is a larger gap between the
two, indicating that the accuracies are highly fluctuated across
users. In the following, without particular statements, the data
is evenly distributed across users by default.

To show the effectiveness of our private consensus protocol,
we compare it with a naive baseline where the aggregator
simply aggregates all noisy votes and pick the highest one as

the label. For fair comparison, we apply the same differential
privacy scheme and the same privacy level. Fig. 3(a) and
Fig. 3(c) show the label accuracy for MNIST and SVHN. The
results show that our private consensus protocol almost always
improves accuracy performance compared with the baseline
for evenly distributed data. Given the labeled instances, the
semi-supervised trained aggregator also achieves higher accu-
racies across all privacy settings, as shown in Fig. 3(b) and
Fig. 3(d). An exception is that when the number of users
is small, for example, 25, our consensus protocol performs
slightly worse. As we analyze, it is because when the user
number is small, Threshold Checking discards votes that could
have positively contributed to aggregation results, resulting in
a limited number of instances that the aggregator trains on,
and thus a degraded accuracy performance overall.

From the general trend of the figures, we can see that for
all settings, the label and aggregator accuracy is higher as
the privacy level gets lower. But the aggregator accuracy is
not necessarily higher as the number of users grows. For the
baselines, the aggregator accuracy always decreases with the
number of users, but not for our consensus based method.
This is because that although a larger group of users lead to a
lower average user accuracy (Fig. 2(a)), our method effectively
filters out invalid instances to improve the performance of the
aggregator model.

TABLE III
PROPORTION OF RETAINED SAMPLES/ LABEL ACCURACY (SVHN)

No. of Users 2-8 3-7 4-6
10 0.561 /0.746 0.578/0.745 0.586/0.761
25 0.691 / 0.921 0.707/0.924 0.707/0.925
50 0.802 / 0.933 0.817/0.935 0.833/0.934
75 0.823/0.935 0.855 / 0.934 0.871/0.933
100 0.816/0.937 0.858/0.931 0.877/0.931

We also measured the accuracy when different types of
labels are collected. One-hot stands for the binary vote where
all entries are 0 except for the label selected. Softmax repre-
sents the probabilistic labels that the softmax layer outputs.
Contrary to our assumption that the probabilistic labels would
provide more information, the aggregator model yields a lower
accuracy on softmax labels, as shown in Fig. 4(a), 4(b), 4(c)
and 3(d). That essentially indicates the aggregation of softmax
outputs do not necessarily contain more useful information.
Hence one-hot labels are sufficient in the majority voting
setting.

We also compared the accuracy result with varying voting
thresholds from 30% to 90% of the total number of users,
by setting a fixed privacy level (ε = 8.19, δ = 10−6). As the
results in Fig. 5(a) and Fig. 5(b) show, the aggregator accuracy
is not the highest when the threshold is the lowest (30%) or
highest (90%), but in the middle (around 60% to 70%), and
the highest accuracy point also differs by the total number of
users. The result naturally supports the majority voting scheme
and provides reference for properly choosing the threshold.

Fig. 5(c) and 5(d) show the aggregator accuracies when the



(a) Comparison of label accuracy
(MNIST).

(b) Comparison of aggregator accuracy
(MNIST).

(c) Comparison of label accuracy
(SVHN).

(d) Comparison of aggregator accuracy
(SVHN).

Fig. 3. Label accuracy and aggregator accuracy of MNIST and SVHN when data is evenly distributed across users.

(a) Aggregator accuracy with one-hot
labels (MNIST).

(b) Aggregator accuracy with softmax
labels (MNIST).

(c) Aggregator accuracy with one-hot
labels (SVHN).

(d) Aggregator accuracy with softmax
labels (SVHN).

Fig. 4. Aggregator accuracy of MNIST and SVHN when the labels are one-hot and softmax: softmax is no better than one-hot labels.

(a) Aggregator accuracy with different
thresholds (MNIST).

(b) Aggregator accuracy with different
thresholds (SVHN).

(c) Aggregator accuracy when data is
unevenly distributed (MNIST).

(d) Aggregator accuracy when data is
unevenly distributed (SVHN).

Fig. 5. (a)(b) Aggregator accuracy of MNIST and SVHN under different aggregator thresholds. (c)(d) Aggregator accuracy of MNIST and SVHN under
uneven data distribution.

data are unevenly distributed. Overall for MNIST and SVHN,
when data is more towards even distribution, the aggregator
obtains higher accuracy. When examined more closely, we
found the label accuracy almost remains the same across
the three distributions, but the number of retained samples
after aggregation decreases as the distribution is more towards
uneven, by the results in Table III. Thus the lower accuracy of
the uneven case should be attributed to a reduction of retained
samples, not the label accuracies. The experimental results on
CelebA, shown by Fig. 6(c) and 6(d), also support this point.
It concludes that our consensus protocol effectively selects
labels even when the dataset is highly unbalanced.

We also conduct experiments on CelebA, and the results
are shown in Fig. 6(a), 6(b), 6(c) and 6(d). Interestingly,
we observed when the number of users is 50, 75, 100 and

the dataset is divided into 20%/80%, the aggregator rapidly
overfits and thus leads to a lower testing accuracy (Fig. 2(d)).
As the aggregator’s samples are inspected, it is found that
their label vectors are highly similar with 97% likeness.
The simple pattern of training samples may explain why the
aggregator overfits. When further examined, the samples in
CelebA are quite sparse, i.e., most attributes are negative
except for few positive ones (positive means the existence of
the attributes). Thus when the data is unevenly distributed, the
positive attributes can only be learned by a few users, and
such results may be discarded since they deviates from the
consensus. This may explain why the aggregator accuracies
almost always decrease with the increase of the number of
users on the uneven data distribution of CelebA.



(a) Label accuracy when data is evenly
distributed (CelebA).

(b) Aggregator accuracy when data is
evenly distributed (CelebA).

(c) Label accuracy when data is un-
evenly distributed (CelebA).

(d) Aggregator accuracy when data is
unevenly distributed (CelebA).

Fig. 6. Experimental results on CelebA: Aggregator accuracy decreases with the number of users when data is unevenly distributed.

VII. CONCLUSION

Based on Aggregation of Teacher Ensembles, we pro-
pose a privacy-preserving method to achieve consensus in
the decentralized learning setting, with improved aggregator
model performance and minimal information leakage. The
protocol aggregates local votes in blind to label the training
instances, and only when the aggregation result surpasses
a threshold, meaning that consensus is achieved, can the
instance be labeled. Otherwise, the instance is discarded. Our
protocol ensures the only information revealed is the label
with the highest noisy votes, with differential privacy guaran-
teed. Experimental results show that our consensus protocol
achieves an improved accuracy across different datasets while
preserving user privacy.
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