
Circa: Offloading Collaboratively in the Same
Vicinity with iBeacons

Xueling Lin*, Jingjie Jiang*, Bo Li*, and Baochun Li+

*Department of Computer Science and Engineering, Hong Kong University of Science and Technology
+Department of Electrical and Computer Engineering, University of Toronto

Abstract—Code offloading to remote infrastructures has been
a common practice for mobile users who seek extra power
or computing resources to perform computation-intensive tasks.
Existing works, however, have so far mainly focused on code
offloading from a single mobile device to remote cloud servers,
which restricts the potential of code offloading only to devices
with available Internet access. In this paper, we propose Circa,
a new framework that demonstrates the feasibility of code
offloading among multiple mobile devices in close proximity to
one another, leveraging the presence of iBeacons. Our objective
is to eliminate the costs incurred by running virtual machine
instances in the cloud, and the need to connect remotely to the
cloud as well. With the assistance of iBeacons, devices in the
same vicinity can discover and support one another through
collaborative code offloading with short-range communication,
obviating the need for centralized servers. We have implemented
Circa on the iOS platform and validated its feasibility using
iOS devices. According to our experimental results, with more
than two collaborators, Circa is capable of reducing the total
execution time of an offloaded task substantially, while preserving
satisfactory performance of the mobile application.

I. INTRODUCTION

With the dominating prevalence of smartphones, native
applications on mobile and wearable devices have blossomed
to serve as more convenient substitutes to web applications.
Nevertheless, since mobile devices are still resource con-
strained, those computation-intensive or power-hungry appli-
cations are still considered as heavy burdens on these devices.
For instance, a smartwatch with an energy-efficient CPU may
exceed its computational limits if it were to transcribe long
voice messages locally.

To alleviate this problem, the existing literature has resorted
to the technique of code offloading, in that a portion of a com-
putational task can be offloaded to servers in the cloud, with an
abundance of computational resources [1]–[3]. By offloading
to the cloud, it is feasible to run much more computation-
intensive applications on mobile and wearable devices, such as
face recognition, augmented reality and natural language pro-
cessing. The increased level of parallelism may also improve
the performance of these applications. Unfortunately, offload-
ing to cloud computing platforms is not always guaranteed
to be time efficient and energy conserved. When the network
bandwidth is fairly limited, it may be too slow to transmit
data between mobile devices and remote servers; when the
network status is highly unstable, maintaining a connection
to the cloud may even consume more energy than performing

the computation locally. To make matters worse, some devices,
such as smartwatches, may not even have access to the cloud,
due to their inherent hardware limitations.

In this paper, we propose to detour from the conventional
wisdom of offloading to the cloud, and instead focus on the
concept of collaborative offloading among multiple mobile
devices that are in close proximity to one another. With
the presence of iBeacons [4] that makes a wide range of
new location-aware applications possible, devices entering into
close proximity to one another can discover each other through
the unique identifications distributed by a common iBeacon.
A device without sufficient computing capability or battery
life can then turn to its “neighbors” for help. We design and
implement Circa, a new collaborative offloading framework
that identifies and selects a group of mobile devices in the
same vicinity, and involves them into the same offloading task.
With such collaborative offloading in the same vicinity, the
costs involved in running instances in the cloud and setting
up connections to the cloud will be eliminated, or at least
reduced significantly. We have implemented Circa on the
iOS development platform, and evaluated its effectiveness and
performance in a number of practical scenarios. According to
our experimental results, with more than two collaborators, the
total time spent on the execution of the task offloaded can be
reduced substantially.

The remainder of this paper is organized as follows. Sec. II
discusses our contributions in the context of related work. In
Sec. III, we introduce iBeacons and describe our application
scenarios. In Sec. IV, we present the design of collaborative of-
floading. We evaluate the Circa framework through prototype-
based experiments in Sec. V. We conclude this paper with
discussions of possible extensions in Sec. VI.

II. RELATED WORK

Most of existing works, such as MAUI [1], CloneCloud [2],
ThinkAir [3] and COMET [5], mainly focus on code offloading
between mobile devices and cloud servers. With the objective
of reducing local energy consumption, such frameworks try to
determine which parts of an application could be offloaded
to a remote server at runtime. The offloading granularities
vary from function calls to running threads. Involving remote
servers, however, requires an Internet connection through
cellular or Wifi networks. Since the network status between
cloud servers and a mobile device is highly unstable, the

IEEE ICC 2015 - Mobile and Wireless Networking Symposium

978-1-4673-6432-4/15/$31.00 ©2015 IEEE 3751

device may lose its Internet connection to remote servers
before the computation finishes. Moreover, some devices, such
as smartwatches, may not even have Internet access due to
their hardware constraints.

To investigate how mobile devices can function as resource
providers and mutually help each other, Doolan et al. in
[6] design a mobile version of the standard message passing
interface over Bluetooth. They employ a fully interconnected
mesh structure so that all nodes can directly communicate
with each other. Due to the limited communication range of
Bluetooth, only devices in a small physical area can form such
a fully-interconnected local network. Nevertheless, it is non-
trivial to dynamically identify such fully connected clusters
under mobile environments. In contrast, Circa utilizes the
deployment of iBeacons to discover all the devices within
close proximity to each other, and enables local cooperation
among these devices.

Derived from Hadoop [7], Hyrax [8] also explores the
possibility of using mobile phones as resource providers.
However, it is required to entail a central server to collect de-
vice information and coordinate computation jobs. Therefore,
Hyrax shares the same deficiencies as the remote offloading
frameworks: the unpredictable delay between a remote server
and a device may lead to severe performance degradation, in-
curring intolerable computation latencies. Furthermore, Hyrax
only works for a set of smartphones that connect to each
other via plain TCP/IP sockets, and thus cannot be applied
to a realistic setting where smartphones do not have global,
unrestricted IP addresses. Leveraging iBeacons, devices in
our framework can efficiently identify each other through the
unique IDs distributed by their neighboring beacons.

III. BACKGROUND AND MOTIVATION

In this section, we first introduce iBeacon, a new wireless
location-based transmitter that we adopt in Circa to detect mo-
bile devices in its proximity. Then we illustrate two practical
scenarios that motivate the design of the Circa framework.

A. iBeacon: A Proximity Detector
Introduced in iOS 7, iBeacon is an exciting technology

proposed by Apple Inc. to enable new location-aware infor-
mation and services for mobile devices. Leveraging Bluetooth
low-energy (BLE) for a short-range communication, a device
with iBeacon technology can establish a region around itself.
Each iBeacon (called a beacon) broadcasts a 20-byte unique
ID, which is divided into three sections: proximity UUID (16
bytes), major number (2 bytes) and minor number (2 bytes).
A beacon continuously broadcasts its unique ID via BLE to
devices in its close proximity. The broadcast coverage of a
beacon could be as small as 2 inches and as large as 230 feet
away. Any mobile device entering such coverage of a beacon
can receive its unique ID without a priori and explicit pairing
procedures.

A related event will be triggered by the application of a
mobile device when it enters or exists the covered region
of the beacon, which can be applied to inform the device

Unique ID

iBeaconMobile Device Mobile Device

Unique ID

Fig. 1. The way an iBeacon works with mobile devices.

about its geographical location changes [4]. The coverages of
different beacons overlap with each other. Mobile devices in
the overlapped area can pick up the unique IDs broadcasted by
multiple beacons, and estimate their distances to those beacons
by measuring the received signal strength (RSSI) [9]. The
closer a device is to a beacon, the stronger the corresponding
signal it can receive. Thus, the mobile device can obtain
its relative location based on the knowledge of its estimated
distances to each beacon.

The application scenario of iBeacons is quite simple and
straightforward. As shown in Fig. 1, all the devices residing
within a beacon’s coverage receive the unique ID of the
corresponding beacon. By checking the beacon IDs picked up
by the others, a device can easily discover those that stay in
the same beacon region with it and form a collaborative group
with them. As the key to identify such groups, iBeacons play
crucial roles in the Circa framework.

B. Motivating Examples

To better demonstrate a few highlights of collaborative
code offloading in Circa, we present two motivating examples
where devices can overcome their hardware limitations and
the poor network connection performance caused by their
mobility, embracing the benefit of code offloading.

Suppose a scholar is attending a meeting held in a con-
ference hall without available WiFi network. Unfortunately,
he forgets to bring his smartphone and merely wears a
smartwatch, which has no cellular network. With the Circa
framework supported by iBeacons, the scholar can still en-
joy speech recognition and face recognition applications, by
sending the speech and image data to nearby smartphones with
available resource and battery via Bluetooth, and obtaining the
results afterwards. For another example, a group of users are
staying in front of a piece of artwork in a museum. Each user
uses his mobile device to take a snap of the artwork from his
own unique angle. Thanks to the help of iBeacons, they can
easily distinguish each other as nearby collaborators, and thus
are capable of building the 3D model of the artwork together
by allocating the 3D modeling task among each other.

The first example above implies the potential benefit brought
by collaborative offloading when hardware limitations or net-
work disconnections are presented in some mobile devices.
In contrast, the second example demonstrates the value of

IEEE ICC 2015 - Mobile and Wireless Networking Symposium

3752

collaborative offloading in location-based activities where the
collaborating devices share the same objective to complete a
computationally intensive task in a parallel fashion.

One essential incentive of collaborative offloading is that
all of the participating devices should provide some types
of original resource before they enjoy the result. In the
first example, the user with a smartwatch shares the audio
recordings of a presentation among the nearby users before
he can obtain the translation result. Since all the collaborators
are geographically close to each other, the probability that they
share the same interests is rather high. After collaboration,
they can share the text version of the presentation together.
As for the second example, everyone donates a snap of the
artwork from his own angle before obtaining the complete 3D
model. Therefore, in both scenarios, the free rider problem is
inherently prevented.

IV. DESIGN

In this section, we present the design of the Circa frame-
work. Circa consists of a code offloading workflow that
involves four basic phases. In the first phase, all mobile devices
that stay in the region of a beacon establish connections with
one another. In the second phase, these devices are ranked
according to their battery levels, memories and mobility pat-
terns. Circa then determines the quantity of collaborators in
the third phase. Finally, the corresponding offloading proceeds
via Bluetooth in the fourth phase.

A. Phase 1: Establish Connections based on iBeacon
In this phase, we aim at setting up connection between

each pair of devices that are within the region of a beacon.
There are several beacons that broadcast their unique IDs in a
certain area. Each mobile device that enters in the Bluetooth
transmission regions of the beacons will automatically pick up
the ID of each beacon. Once a device starts our application, it
can detect all beacons in its proximity and estimate its distance
to those beacons. Devices probe the signal of beacons every
second.

Afterwards, a peer discovery mode inherited from the
GameKit framework [10] is applied to establish connections
between devices. Specifically, a GKSession object provides the
devices with the ability to discover and connect to nearby mo-
bile devices using Bluetooth. Devices connected to an ad-hoc
wireless network are known as peers. A peer is synonymous
with a session object running inside our application. Each peer
creates a unique peer identification string (session ID), which
is used to identify itself to other peers in the network [11]. In
the Circa framework, sessions discover other peers based on
a session mode, which is set when the session is initialized
according to the role of the devices as explained below.

A mobile device should choose one of the following three
roles:

• Server: A mobile device acts as a server of a session
when it needs to offload a portion or all of its current
task to other devices, if at least one of the following 4
conditions is satisfied:

Advertises
Session ID = ‘7’

Looks for
Session ID = ‘7’

Beacon ID = ‘7’

A B

Server Client

Fig. 2. Peer Connection Example

a) its remaining battery capacity falls below a certain
threshold;

b) according to its history profiling, both of the energy
consumption and time duration of the requested task
exceed specific thresholds;

c) due to hardware constraints, offloading the current
task to other devices is of necessity, e.g. the speech
recognition task run by the smartwatch mentioned
in Sec. III.

d) it is required to participate in a task that demands
collaboration with others, e.g., the collaborative 3D
modeling task mentioned in Sec. III;

• Client: A device serves as a client if it is willing to
accept an offloading request, when both of the following
2 requirements are met:

a) its remaining battery capacity is over a certain
threshold;

b) according to its history profiling, both of the energy
consumption and time duration of the requested task
are below specific thresholds, or it is a task that
demands collaboration with others.

• Bystander: A device acts as a bystander, if it is neither
in demand of offloading tasks to others, nor willing to
accept offloading requests from others. A bystander does
nothing in the whole process.

A server advertises its service type with a session identifica-
tion string (sessionID) which is the same as the unique ID of
the beacon that it picks up. If a server collects more than one
beacon ID, it will advertise a set of session IDs that contains
every beacon ID it obtained. A client records all the beacon
IDs it has picked up as session IDs. It keeps listening for the
session IDs broadcasted by other servers and only connects to
those servers that have one or more matching session ID. Thus,
devices are able to establish connections with one another if
and only if they stay in the region of the same beacon.

We illustrate the first phase through an example shown in
Fig. 2. Suppose there are two mobile devices, A and B. They
stay in the region of a certain beacon, whose unique ID is ‘7’
for short. When A and B start our application, they can detect
all beacons in proximity as well as their up-to-date distances.
Meanwhile, A and B record the session ID which is exactly
the same as the unique ID of the beacon (‘7’). When A needs

IEEE ICC 2015 - Mobile and Wireless Networking Symposium

3753

to offload tasks, it directly advertises ‘7’ as its session ID. If B
is willing to collaborate with others, it will start searching for
other devices that are broadcasting ‘7’ as the session ID. Then
A and B are able to connect to each other successfully as a
peer with the session ID ‘7’, and proceed to the next phase.

B. Phase 2: Rank the Potential Collaborators
Although only devices that are geographically close to

each other can set up connections, it is still possible to
encounter disconnection problems if some collaborators walk
away during the offloading process without prompt or just
simply shut down their devices. To avoid disconnection in
the middle of an offloading process, we need to conduct a
reliability analysis to select the most reliable devices as actual
collaborators.

There are a few principles that a mobile device should
satisfy to be a qualified collaborator. We assume that currently
there are m mobile devices connected to a server. After
connections are established, each client sends a tiny piece
of message to the server, which includes its battery level (in
percentage), available memory (in MB) and the time span (in
seconds) that it has been stayed in the current region. Based on
the reliability analysis, the server then generates a ranked list
of the m devices. The following two key observations guide
our selection process.

Observation 1: devices with higher battery and available
memory should be ranked higher. Since the probability that
they run out of battery or memory during the offloading
process is much lower, it is less likely for us to encounter
disconnection if they are chosen to be the collaborators. Let
bi be the battery level (in percentage) of the i-th mobile device
among the 1, 2, ...,m devices. Let ai be the available memory
(in MB) of the i-th mobile device. Thus the energy level Ei

of the i-th mobile device can be formulated as follows:

Ei = bi ⇤ ai (1)

Observation 2: devices that stay in the same region for too
short or too long should be ranked lower. Mobile devices that
enter in the region for just a few seconds are more likely to be
passers-by, who will leave the region in a short time. On the
contrary, those who have stayed in one region for a long time
also tend to leave soon, since they may finish their tour in the
current region soon, and would like to move to another region.
Hence the probability for disconnection would be higher if we
select them as collaborators.

We use a normal distribution to represent the availability
of a mobile devices, depending on the time that it has already
stayed in the current region. Let µ be the most common time
span (in seconds) that those qualified collaborators have been
staying in the current region. Let � be the standard deviation of
the time span (in seconds). Let t be the time span (in seconds)
that the i-th mobile device has stayed in the current region.
Thus the availability 'i(t) of the i-th mobile device can be
formulated as follows:

'i(t) =
1p
2⇡�

e�
(t�µ)2

2�2 (2)

Finally, let Ri be the reliability level of the i-th mobile
device, which can be formulated as follows:

Ri = Ei + ↵'i(t) = biai + ↵
1p
2⇡�

e�
(t�µ)2

2�2 (3)

In this function, ↵ is introduced to combine the energy
level and availability of a single device. Therefore, arranging
reliability of each device from high to low, a ranked list of
these m devices can be generated. Let Q(m1,m2,m3, ...) be
the ranked list obtained. A server will choose those devices
with higher rankings as its collaborators.

In the availability formulation of the Circa framework, µ is
set to be 20s, � is set to be 10s and ↵ is set to be 500.

C. Phase 3: Determine the Quantity of the Collaborators
In this phase, we need to determine the quantity of the

mobile devices we need to involve. In order to achieve the best
performance with least energy consumption and transmission
latency, it is important for us to decide that how many devices
should be picked out as collaborators from the ranked list,
which is obtained in the second phase.

The main challenge of this problem is to balance the
trade-off among energy cost, transmit latency and application
performance. More collaborators lead to better application
performance for the following reasons. First of all, after
offloading part of its computation task to other devices, a
single device incurs less energy cost. Moreover, since the
collaborators share a common object to achieve a positive
outcome, the performance can be enhanced if the execution
sequence of the application can be reordered for increasing
the level of parallelism. The total time required to finish the
whole task could also be cut down. However, involving more
nearby devices as potential collaborators will inevitably cause
longer delay, since it takes extra time for all the devices to
connect to each other.

In the current implementation of Circa, a server chooses all
the devices whose reliability level are higher than a certain
threshold as its collaborators. The threshold is set to be 15.00.

D. Phase 4: Offload the Task
After a group of collaborators have been chosen, the offload-

ing of tasks starts immediately. The whole offloading process
is conducted via Bluetooth.

There are two working schemes in Circa. In the first scheme,
a single server device broadcasts its offloading request to other
mobile devices that are within the same region, e.g. when
processing the speech recognition task run by the smartwatch
mentioned in Sec. III. The offloaded task is then divided into
multiple smaller subtasks, each of which is transmitted to one
client device. The workload of each subtask is similar to each
other to simplify the task allocation. In this case, there are one
server and multiple clients. A mobile device acts as either a
server or a client. In the second scheme, all the mobile devices
share the same goal to complete one computation-intensive
task. Each of the devices provides its own original resource
and takes its own responsibility to accomplish the given part of

IEEE ICC 2015 - Mobile and Wireless Networking Symposium

3754

the computation, e.g., when processing the collaborative 3D
modeling task mentioned in Sec. III. In this case, there are
multiple servers and multiple clients. A mobile device serves
as both a server and a client at the same time.

Last but not least, in Circa, under the situation that one of
the users leaves the region and disconnects with others, the
intermittent results are returned to another device for further
processing.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of Circa to
validate its feasibility and efficacy. We first describe the
hardware configurations, test applications and performance
metrics used in our experiments. We then present and analyze
the experimental results under different scenarios in detail.

A. Experiment Setup
Our prototype consists of three smart devices: an iPhone 5,

an iPhone 4s and an iPad 3. The detailed information of the
configurations for the tested devices are listed in Table I.

TABLE I
CONFIGURATIONS OF MOBILE DEVICES TESTED

Devices iPhone 5 iPhone 4s iPad 3
Version iOS 7.1.2 iOS 7.1.2 iOS 7.1.2
Capacity 27.9GB 28.3GB 27.8GB
Avaliable 9.6GB 21.8GB 4.2GB
Battery 15% ⇠ 20% 45% ⇠ 55% 90% ⇠ 100%

We deploy 3 beacons bought from Estimote Inc. in our
experiment environment, acting as the iBeacon transmitters
in Circa. Each beacon has a square chip inside, which is s 32-
bit ARM Cortex M0 CPU with 256KB flash with a 2.4GHz
Bluetooth low-energy radio [9]. During the experiments, all of
the beacons are attached to the plain wall in order to avoid
possible signal distortion.

To test the practical performance of Circa, we develop a
speech recognition application, which records a wav file of
the speaker, then transmits the file to Google Speech API to
obtain the corresponding text result. The application divides
the wav file into several smaller files according to the quantity
of selected collaborators.

We examine Circa under different scenarios in our experi-
ment. In the first scenario “single device”, the original device
carries out the speech recognition task by itself. In the second
scenario “2 collaborators” (1 server and 1 client), the original
device switches to the airplane mode and only turns on the
Bluetooth for connection, which means that its WiFi and
cellular network are both cut off. This original device then
acts as a server. There is another device that is willing to act
as a client to accept the task from the server. In other words,
there are 2 collaborators, one serves as a server and the other
serves as a client. In the third scenario “3 collaborators” (1
server and 2 clients), the original device still serves as a server,
while there are two other devices acting as clients to accept the
task offloaded from the server. The wav file from the server
will be divided into two pieces of files with identical amount

0

20000

40000

60000

80000

100000

120000

20 50 100 200 500

Ti
m

e
(m

s)
�

Task size (KB)

Single device

2 collaborators

3 collaborators

Fig. 3. The total execution time with different task sizes. Distance = 1m.
Speed = 0m/s. No obstacle.

0
2000
4000
6000
8000

10000
12000
14000

1 2 3 4
Ti

m
e

(m
s)

�

The Number of Obstacles�

2 collaborators
3 collaborators

Fig. 4. The total execution time in different environment. Task size = 50KB.
Distance = 1m. Speed = 0m/s.

of data, which will be offloaded to the 2 clients for speech
recognition. In this situation, there are 3 collaborators in total.

In all the experiments, the iPhone 5 acts as the only server,
while iPhone 4s and iPad 3 act as potential clients.

We measure the time duration of a whole task as an indicator
of its performance, since the speech recognition task is time-
sensitive. All of our measurements are performed under stable
network conditions, with all the mobile devices running in
standalone environments, in which all other applications and
background tasks are shut off, with the screen on.

B. Performance Analysis

The first experiment is conducted to compare the total
execution time of the whole task with single device, 2 col-
laborators (1 server and 1 client), and 3 collaborators (1
server and 2 clients). As shown in Fig. 3, it takes longer time
to complete larger tasks. Compared to the original scheme
with only one device, if there are 2 collaborators, there will
be additional connection time, which is 5000ms on average.
However, if more than two devices are involved in the task,
the total execution time for the same task will be shorter than
the local execution. The benefit of offloading becomes more
significant when the task is larger. The main reason for this
phenomenon is the degree of parallelism. With 3 collaborators,
we can divide the task into two smaller pieces so that they can
be processed at the same time, while the transmission delay
is also around 5000ms, remaining the same with that of 2
collaborators.

In the second experiment, whose results are shown in Fig. 4,

IEEE ICC 2015 - Mobile and Wireless Networking Symposium

3755

8400

8600

8800

9000

9200

9400

9600

0.2 0.5 1 2 5 10

Ti
m

e
(m

s)
�

Distance (m)

2 collaborators

3 collaborators

Fig. 5. The total execution time with varying distances between the devices.
Task size = 50KB. Speed = 0m/s. No obstacle.

8400

8600

8800

9000

9200

9400

9600

0 0.2 0.5 1 2

Ti
m

e
(m

s)
�

Speed (m/s)

2 collaborators
3 collaborators

Fig. 6. The total execution time with varying speeds of the devices. Task size
= 50KB. Distance = 1m. No obstacle.

we measure the execution time of the task under different
environments with obstacles. The reason for conducting such
experiments is that Bluetooth signal could be easily affected
by physical surroundings due to distraction or absorption. We
use 1, 2, 3 and 4 cardboards as obstacles to block the signal
from the beacon in different directions. The devices stand in a
line, pointing in the same direction to the beacon. According
to the result, only when we use 4 cardboards to block all
4 directions around the beacon, will the total execution time
increase significantly due to minor connection latency.

The third experiment examines the impact of the distances
between devices during task execution. The distances shown in
Fig. 5 refer to the vertical distances between every two devices.
Based on the experimental results, we can conclude that the
distances between the devices do not affect the offloading
performance if the devices all stay in the broadcasting region
of the same beacon. However, there will be additional connec-
tion latencies if the devices are too close to each other (less
than 1m). The fourth experiment compares the total execution
time with varying moving speeds of the devices during the
offloading process. According to experimental data shown in
Fig. 6, the speeds of the devices do not affect the process
time largely, as long as the devices stay in the Bluetooth
transmission region of each other.

VI. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we have designed and implemented Circa,
a collaborative code offloading framework, leveraging the
presence of iBeacon. Unlike the involvement of cloud servers

in existing schemes, Circa is completely localized and requires
no Internet connection. Devices within a local area can dis-
cover and help each other with the assistance of iBeacons as
long as their Bluetooth functions work properly. As a proof
of concept, we have implemented a prototype to evaluate
the feasibility and performance of Circa. Experimental results
with realistic settings have shown that code offloading incurs
negligible (if any) delay with 2 collaborators. Fortunately, with
more than 2 collaborators, the performance will be improved
since total execution time is reduced, when compared to local
execution of the same code.

As for further discussion, in order to improve the perfor-
mance of the Circa framework, it is possible to involve a
cloud server which connects to each device via WiFi or cellular
network. The cloud server will be able to monitor the devices
more efficiently and record the beacons in their vicinity. With
a cloud server, the initiator devices (servers) no longer need
to spend extra battery or memory on the reliability analysis
of their potential collaborators (clients). However, the benefit
might offset the latency and energy consumption caused by
long-range network connection to cloud.

Another possible extension to Circa lies in the division
of an offloaded task. Currently, the task is divided evenly
according to the quantity of collaborators. Nevertheless, it
would be more reasonable if the size of each divided part
depends on the battery level and availability state of its targeted
device. We leave a more sophisticated division algorithm
for future work. Moreover, We will consider involving a
realistic mobility model in our mobility management in order
to improve the reliability of the framework. We will also
complete our experimental evaluation of the prototype system
by involving more devices.

REFERENCES

[1] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proc. ACM MobiSys, 2010, pp. 49–62.

[2] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in Proc. ACM
EuroSys, 2011, pp. 301–314.

[3] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in Proc. IEEE INFOCOM, 2012, pp. 945–953.

[4] “iBeacons for developers,” https://developer.apple.com/ibeacon/.
[5] M. S. Gordon, D. A. Jamshidi, S. A. Mahlke, Z. M. Mao, and

X. Chen, “Comet: Code offload by migrating execution transparently.”
in Proc. USENIX OSDI, 2012, pp. 93–106.

[6] D. C. Doolan, S. Tabirca, and L. T. Yang, “MMPI: a message passing
interface for the mobile environment,” in Proc. ACM Conference on
Advances in Mobile Computing and Multimedia, 2008, pp. 317–321.

[7] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” in Proc. IEEE Symposium on Mass Storage
Systems and Technologies (MSST), 2010, pp. 1–10.

[8] E. E. Marinelli, “Hyrax: cloud computing on mobile devices using
mapreduce,” DTIC Document, Tech. Rep., 2009.

[9] “Estimote Beacon API,” http://estimote.com/api/.
[10] A. Horovitz, K. Kim, J. LaMarche, and D. Mark, “Peer-to-peer over

bluetooth using game kit,” in More iOS6 Development. Springer, 2013,
pp. 251–293.

[11] “Game Kit Programming Guide,” http://nathanmock.com/files/com.
apple.adc.documentation.AppleiOS6.0.iOSLibrary.docset/Contents/
Resources/Documents/#documentation/NetworkingInternet/Conceptual/
GameKit Guide/GameKitConcepts/GameKitConcepts.html.

IEEE ICC 2015 - Mobile and Wireless Networking Symposium

3756

