
Efficient Performance-Centric Bandwidth
Allocation with Fairness Tradeoff

Li Chen , Yuan Feng, Baochun Li , Fellow, IEEE, and Bo Li, Fellow, IEEE

Abstract—Fair bandwidth allocation in datacenter networks has received a substantial amount of research attention, as multiple

tenants are hosted by virtual machines in a public cloud. In the context of private datacenters, link bandwidth is shared among

applications running data parallel frameworks, such as MapReduce, instead. In this paper, we introduce the rigorous definition of

performance-centric fairness, with the guiding principle that the performance that data parallel applications will enjoy should be

proportional to their weights. We first investigate the problem of maximizing application performance while maintaining strict

performance-centric fairness. We then present an inherent tradeoff between fairness and efficiency, which is interpreted from the

perspectives of bandwidth utilization and social welfare, respectively. From the first perspective, we propose an algorithm to improve

bandwidth utilization by introducing an extended version of fairness. From the second perspective, we formulate an optimization

problem of bandwidth allocation that maximizes the social welfare across all the applications, allowing a tunable degree of relaxation on

performance-centric fairness. A distributed algorithm is then presented to solve the problem, based on dual based decomposition. With

extensive simulations, we demonstrate the effectiveness of our algorithms in improving efficiency and application performance (by up

to 1:4X), with flexible degree of relaxation on the performance-centric fairness.

Index Terms—Datacenter networks, bandwidth allocation, fairness

Ç

1 INTRODUCTION

DATACENTERS have become the de facto standard com-
puting platform for Web service providers—such as

Google and Facebook—to host a wide variety of computa-
tionally intensive applications, ranging from PageRank [1]
to machine learning [2]. In order to scale up to accomodate
the volume of data that these applications need to process,
these applications need to embrace data parallel frameworks,
such as MapReduce [3], Dryad [4] and Spark [5].

In general, data parallel applications typically proceed
in several computation stages that require communication bet-
ween them. With MapReduce, for example, input data is
first partitioned into a set of splits [3], so that they can be
processed in parallel with map computation tasks. The map
tasks produce intermediate results, which are then shuffled
over the datacenter network to be processed by reduce com-
putation tasks.

As multiple data parallel applications share the same pri-
vate datacenter operated by a Web service provider, we
wish to maximize the performance of these applications,
measured by their completion times, subject to resource

capacity constraints in the datacenter. With respect to
resources, the completion time of a data parallel application
depends on both computation resources (CPU, memory, etc.
used in the computation stages) and network resources
(link bandwidth used in the communication stages).

It has been shown in Hadoop traces from Facebook that
the communication stages usually account for more than
30 percent of the entire completion times for jobswith reduce
phases [6]. In the context of a privately operated datacenter
shared by such network-intensive applications, which req-
uire much more link bandwidth for data transmission than
CPU power, how should the critical link bandwidth be shared
among these applications? It is commonly accepted in the lit-
erature that bandwidth should be shared in a fair manner
(e.g., [7]), yet there has been no general consensus on how
the notion of fairness should be defined. The traditional wis-
dom on fair bandwidth sharing has largely focused on data-
centers in a public cloud, where virtual machines (VMs) are
used to host applications for the tenants. For example, band-
width on a link can be allocated fairly across different flows,
VMpairs, or tenants (according to their payments).

In this paper, we argue that the notions of fairness pro-
posed in the literature are not applicable to the context of
data parallel applications sharing a private datacenter.
Rather than being fair across competing flows or tenants
according to their payments, the thesis of this paper hinges
upon the notion of performance-centric fairness, in that fair-
ness should be maintained with respect to the performance
across multiple data parallel applications.

But how, after all, shall we rigorously define the notion of
performance-centric fairness? As available bandwidth resour-
ces are allocated for data parallel applications to transfer

� L. Chen, Y. Feng, and B. Li are with the Department of Electrical and
Computer Engineering, University of Toronto, ONM5S3G4, Canada.
E-mail: {lchen, bli}@ece.utoronto.ca, yfeng@eecg.toronto.edu.

� B. Li is with the Department of Computer Science and Engineering, The
Hong Kong University of Science and Technology, Hong Kong, China.
E-mail: bli@cse.ust.hk.

Manuscript received 17 Apr. 2017; revised 5 Jan. 2018; accepted 6 Feb. 2018.
Date of publication 20 Feb. 2018; date of current version 13 July 2018.
(Corresponding author: Li Chen.)
Recommended for acceptance by R. Prodan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2018.2808202

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 8, AUGUST 2018 1693

1045-9219� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2300-6996
https://orcid.org/0000-0002-2300-6996
https://orcid.org/0000-0002-2300-6996
https://orcid.org/0000-0002-2300-6996
https://orcid.org/0000-0002-2300-6996
https://orcid.org/0000-0003-2404-0974
https://orcid.org/0000-0003-2404-0974
https://orcid.org/0000-0003-2404-0974
https://orcid.org/0000-0003-2404-0974
https://orcid.org/0000-0003-2404-0974
mailto:
mailto:
mailto:

data in their communication stages, their performance is
best represented by the amount of time needed to complete
the data transfer, called the transfer time. To achieve their
best possible performance with the shortest possible trans-
fer times, the guiding principle of weighted performance-
centric fairness is that the reciprocal of the transfer times
should be proportional to their weights across competing
applications. To put it simply, applications with equal
weights sharing the same private datacenter should enjoy
the same performance.

The problem of achieving performance-centric fairness
becomes more interesting when we also wish to maximize
efficiency, with respect to both the bandwidth utilization
and the social welfare. In this paper, we begin with the prob-
lem formulation thatmaximizes the application performance
with the constraint that strict performance-centric fairness is
to be maintained. Yet, with an example, we will show that
there exists an inherent conflict between maximizing band-
width utilization and maintaining strict fairness, simply
because some access links are more heavily loaded than
others in a datacenter. To reconcile the conflicting objectives,
we introduce an extended version of performance-centric
fairness, so that the efficiency, interpreted from the perspec-
tive of bandwidth utilization, can bemaximizedwithout vio-
lating such fairness. From another perspective, the maximal
efficiency is achieved if the social welfare, i.e., the total utility
across all the applications, is maximized. In this sense, we
introduce tunable degrees of relaxation on performance-
centric fairness to arbitrate the conflicting objectives, so that
the social welfare can be further improved.

The upshot in this paper revolves around the new optimi-
zation problem to maximize social welfare while maintain-
ing weighted performance-centric fairness with a certain
degree of relaxation. It turns out that this problem is chal-
lenging to both formulate and solve. To show the nuances in
formulating this problem, consider the link bandwidth to be
allocated to a communication stage within an application.
The transfer time is determined by the rate of the slowest flow
between the communicating tasks. To maximize efficiency,
we allocate link bandwidth to flows in the same application
so that all of them finish at the same time as the slowest flow.
Intuitively, we wish to maximize the social welfare in
the datacenter with all the applications considered, so that
resources are best utilized to improve utilities, with the
tradeoff of relaxing fairness to a certain degree.

With a sharp focus on performance-centric fairness in
private datacenter networks, in Section 2, we begin our
exposition with an illustrating example to establish a con-
vincing case and to provide the formal definition for
weighted performance-centric fairness. We then formulate
our first optimization problem in Section 3, which derives
the maximal possible weighted performance-centric fair
share for all the concurrent applications. In Section 4, we
illustrate the tradeoff between fairness and bandwidth utili-
zation, and propose an algorithm to resolve such conflicts.
Further, in Section 5, we formulate our new problem that
better arbitrates the tradeoff between fairness and social
welfare. With a detailed analysis on the nature of our opti-
mization problem, we apply dual based decomposition to
solve the centralized problem in Section 6, prove that there
is no duality gap, and solve the dual problem with a

distributed algorithm, based on local measurements and
computation at each physical machine. Our performance
evaluation in Section 7 has demonstrated that our algo-
rithms following performance-centric fairness largely out-
perform per-flow fair bandwidth allocation, with respect to
both application performance and efficiency.

2 A CASE FOR PERFORMANCE-CENTRIC FAIRNESS

Data parallel applications partition their input data into
multiple splits, which are processed in parallel by computa-
tion tasks. As the total amount of computation workload
remains the same, a scale-up of n would result in a speed-
up of n for the computation stage. To be specific, with n
times the computation tasks, the completion time of the
computation stage reduces to its 1=n. However, such a
scale-up does not apply to the network transfer time, since
the total amount of network traffic may increase with addi-
tional parallel tasks, depending on the communication pattern
between computation tasks.

A typical MapReduce application uses the shuffle com-
munication pattern between its map and the reduce tasks,
while machine learning applications use a broadcast commu-
nication pattern [2]. We show an example for both commu-
nication patterns in Fig. 1. In the base cases without any
parallelization in the computation stages, the only computa-
tion task in A (or B) produces 500 MB of intermediate data,
which is directly transmitted to the task A0 (or B0). In the
cases where both applications employ two parallel compu-
tation tasks in each computation stage, the input data is
then partitioned into two equal splits, and the amount of
intermediate data generated by each task is half of the base
case. Since A is a MapReduce task with the shuffle communi-
cation pattern, the data produced by each map task, A1 and
A2, is partitioned into two equal sets, each with a size of
125 MB, to be sent to both A3 and A4. In contrast, since B
uses the broadcast communication pattern, each task in the
first stage, B1 and B2, broadcasts all of its produced data to
both tasks in the second stage, B3 and B4.

With the knowledge of the effects of communication
patterns on the amount of network traffic, we are now
ready to discuss the notion of performance-centric fairness
in the context of bandwidth allocation, when A and B share
the link bandwidth in a private datacenter as shown in
Fig. 2. Specifically, A1; A2 co-locate with B1; B2 on physical
machine P1, sharing the egress link bandwidth of P1with a
capacity of 500 MB/s. Similarly, A3; A4 and B3; B4 share
the ingress link bandwidth (500 MB/s) of P2.

Fig. 1. The amount of data to be transmitted when parallelizing a Map-
Reduce application with the shuffle communication pattern, and a
machine learning application with the broadcast communication pattern.

1694 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 8, AUGUST 2018

For each application, the transfer time is defined as the
completion time of the slowest flow among all flows in its
communication stage. To be specific, the transfer time is
decided by both the amount of network traffic between each
task pair and the bandwidth allocated to each flow. Accord-
ing to their importance, A and B are assigned weights of wA

and wB, respectively. To satisfy both applications, i.e., to
ensure fairness between A and B with respect to their net-
work performance (or transfer time), the egress bandwidth
on P1 and the ingress bandwidth on P2 should be allocated
so that the transfer times represented by tA and tB satisfy
1
tA

: 1
tB

¼ wA : wB. In this way, the allocation achieves weigh-

ted performance-centric fairness forA andB.

To better illustrate this notion, we show two more exam-
ples of bandwidth allocation shown in Fig. 2. Since the
egress link at P1 and the ingress link at P2 are both shared
by A and B in a symmetric way, we use the term link band-
width for both egress and ingress link bandwidth for sim-
plicity. When both A and B have the same weight, the
transfer times of A and B should be equal according to
weighted performance-centric fairness. Each flow of A is
allocated 125

3 MB/s, thus the transfer time is 125= 125
3 ¼ 3s.

With 250
3 MB/s link bandwidth allocated to each flow, B can

achieve a transfer time of 250= 250
3 ¼ 3s. Since A and B with

the same weight enjoy the same performance with respect
to their transfer times, this allocation achieves weighted
performance-centric fairness between the two applications.

In the case where A and B have different weights, if we
allocate 62.5 MB/s to each flow of both applications as
shown in Fig. 2, the transfer time of A is 125

62:5 ¼ 2s, and the

transfer time of B is 250
62:5 ¼ 4s. Since 1

2 :
1
4 ¼ wA : wB ¼ 2,

weighted performance-centric fairness is again achieved
with this allocation.

We argue that weighted performance-centric fairness best
meets the requirements of application performance, in the
privately operated datacenters. The major reason is that it
directly targets the eventual application performance, rather
than the amount of resources allocated to each application as
previous notions of fairness. Particularly, if two equally
important applications, one with the shuffle pattern and the
other with the broadcast pattern, scale up by doubling their
parallel computation tasks, they should expect the same
degree of performance improvement, regardless of their

communication patterns. Such an intuitive performance
requirement is achieved with our performance-centric fair-
ness, as demonstrated in Fig. 2. In contrast, with traditional
fairness, for example, the per-flow fairness, the bandwidth
allocated to each flow remains the same, as the application
scale-up does not impact the number of sharing flows. How-
ever, due to different communication patterns, the amounts
data transferred by flows from the two applications become
different. Hence, per-flow fairness fails to guarantee the cor-
responding degree of performance improvement for these
applications.

Defining Weighted Performance-Centric Fairness. With an
intuitive idea of weighted performance-centric fairness in
our illustrative examples, we now present a strict definition
in a general setting.

In a privately operated datacenter, multiple data parallel
applications share the bandwidth resource by co-locating
some of their tasks on some of the physical machines. Each
application k 2 K ¼ f1; 2; . . . ; Kg is assigned the weight wk

according to its importance. If for any application k, its per-
formance, defined as the reciprocal of its transfer time tk
achieved under a certain allocation, satisfies the following
condition:

ð1=tk1Þ : ð1=tk2Þ ¼ wk1 : wk2; 8k1; k2 2 K; (1)

then weighted performance-centric fairness has been
achieved.

Weighted performance-centric fairness is defined with
respect to the performance achieved by all applications,
rather than the amount of bandwidth resource obtained by
each flow or each task. In this sense, this fairness is defined at
the level of applications, which is quite different from fair-
ness definitions at the flow level (TCP), VM source level (e.g.,
[8]), VM-pair level (e.g., [7]) or the tenant level (e.g., [9]) pro-
posed in the literature in the context of datacenters in a pub-
lic cloud. To achieve such a fairness, the allocation should be
aware of the applications’ communication patterns, which
will affect the amount of network traffic in each flow, and
further impact the transfer times of applications.

3 ALLOCATING BANDWIDTH TO ACHIEVE

PERFORMANCE-CENTRIC FAIRNESS

Given the intuitive examples and the strict definition of
weighted performance-centric fairness in the previous sec-
tion, we now study the bandwidth allocation problem with
the fairness requirement in a general scenario.

We consider a private datacenter where there are K data
parallel applications running concurrently, with their tasks
distributed across N physical machines. These applications
typically partition the computation among multiple tasks,
and communicate the intermediate data between the tasks
belonging to different computation stages. The communica-
tion pattern can be either shuffle as in MapReduce [3], or
broadcast as in machine learning applications [2].

On each physical machine (or server interchangeably)
n 2 N ¼ f1; 2; . . . ; Ng, tasks from different applications will
share its link bandwidth, including both the egress link
with capacity BE

n and the ingress link with capacity BI
n.

Since the bisection bandwidth in datacenter networks has
been significantly improved by multi-path routing (i.e.,

Fig. 2. Examples of bandwidth allocation achieving weighted perfor-
mance-centric fairness in two cases: 1) both applications have the same
weight; 2) the two applications have different weights.

CHEN ETAL.: EFFICIENT PERFORMANCE-CENTRIC BANDWIDTH ALLOCATION WITH FAIRNESS TRADEOFF 1695

[10]) and multi-tree topologies (i.e., [11]), we assume a full
bisection bandwidth network, where bandwidth is only bot-
tlenecked at the access links of physical machines (which is
also assumed in recent works [12], [13], etc.). Hence, the
completion time of each flow is determined by the band-
width allocated at the access links. Note that even if the
assumption does not hold, our model still works with a
minor change, by setting proper bandwidth capacities of
physical machines.

Each application k 2 K ¼ f1; 2; . . . ; Kg requires mk tasks,
represented by T k ¼ f1; 2; . . . ;mkg. The ith task of applica-
tion k is represented by T i

k 2 T k. For simplicity, we assume
that both of the computation stages consist of the same
number (i.e.,mk=2) of tasks. Given the type of the communi-
cation pattern and the number of tasks in each computation
stage, we can obtain the network load matrix Dk, where the
ði; jÞth component Di;j

k represents the amount of data to be
sent by the flow between task T i

k and T j
k. For example, if

the total amount of intermediate data generated by applica-
tion k is dk, an application with the shuffle pattern will have

dk
ðmk=2Þ2

data to be sent between each task pair, while an appli-

cation with the broadcast pattern will have dk
mk=2

data to be
sent by each flow.

Let ri;jk denote the bandwidth allocated to the ði; jÞ com-
municating task pair of application k, then the completion

time of the flow between the ði; jÞ task pair is
Di;j
k

r
i;j
k

. The trans-

fer time of an application is defined as the completion time
of the slowest flow in the communication stage, which can

be represented as tk ¼ max
i;j;Di;j

k
6¼0

Di;j
k

r
i;j
k

for application k.

As mentioned in Section 2, each application k is associ-
ated with a weight wk. The performance of application k is
expressed as 1

tk
, which indicates that the shorter the transfer

time, the better the performance. The fairness definition in
Eq. (1) has the following equivalent form:

1

tk
¼ wkP

k wk
S; 8k 2 K; (2)

where S is a positive variable called the total performance-
centric share, which is upper bounded given the fixed
amount of bandwidth capacity in the datacenter. Our objec-
tive is to fairly allocate bandwidth to achieve this upper
bound, so that the performance achieved by each applica-

tion is maximized. Substituting tk ¼ max
i;j;Di;j

k
6¼0

Di;j
k

r
i;j
k

yields

min
i;j;Di;j

k
6¼0

ri;jk
Di;j

k

¼ wkP
k wk

S:

Now we consider the link bandwidth capacity con-
straints on each server. Let the binary variable Xi

k;n denote
whether task i of application k is placed on server n, i.e.,

Xi
k;n ¼ 1; when T i

k is placed on server n
0; otherwise

�

The total egress rate of each task T i
k placed on server n isP

j;X
j
k;n

¼0
ri;jk �Xi

k;n. Note that if the task T j
k receiving the inter-

mediate data from T i
k is also placed on server n, there will be

no data sent through the network. Thus, we add the con-
straint ofXj

k;n ¼ 0 in the summation. Summing over all tasks
of an application placed on server n, and further summing
over all the applications, we obtain the total egress rate of
server n, which should not exceed the egress link capacity:

P
k

P
i

P
j;X

j
k;n

¼0
ri;jk �Xi

k;n � BE
n

The same analysis applies to the ingress link of each server.
We are now ready to formulate the problem of maximiz-

ing performance while maintaining weighted performance-
centric fairness:

max
r

S (3)

s.t. min
i;j;Di;j

k
6¼0

ri;jk
Di;j

k

¼ wkP
k wk

S; 8k 2 K (4)

X
k

X
i

X
j;X

j
k;n

¼0

ri;jk �Xi
k;n � BE

n ; 8n 2 N (5)

X
k

X
j

X
i;Xi

k;n
¼0

ri;jk �Xj
k;n � BI

n; 8n 2 N ; (6)

where constraint (4) representsweighted performance-centric
fairness, while constraints (5) and (6) correspond to the egress
and ingress link capacity constraints at eachmachine.

Let ak denote the performance of application k, i.e., the
reciprocal of its transfer time:

ak ¼
1

tk
¼ min

i;j;Di;j
k
6¼0

ri;jk
Di;j

k

: (7)

We can obtain the optimal value S� of the optimization
problem (3), (4), (5), and (6) by solving the following optimi-
zation problem, which has the same value of S�:

max
aa

S (8)

s.t. ak ¼
wkP
k wk

S; 8k 2 K (9)

ak ¼
ri;jk
Di;j

k

; 8i; j 2 T k;Di;j
k 6¼ 0 (10)

X
k

ak

X
i

X
j;X

j
k;n

¼0

Di;j
k Xi

k;n � BE
n ; 8n 2 N (11)

X
k

ak

X
j

X
i;Xi

k;n
¼0

Di;j
k Xj

k;n � BI
n; 8n 2 N : (12)

The intuition is that since the performance of each appli-
cation is determined by the completion time of its slowest
flow, it is efficient to make all the flows of an application
finish at the same time, by allocating flows the amounts of
bandwidth that have the same proportionality to their net-
work load. In this way, no bandwidth is wasted in making
some of the flows finish faster. Therefore, we can add con-
straint (10) without impacting the optimal S� of problem
(3), (4), (5), and (6).

Replacing the variables of ak with S according to con-
straint (9), we transform problem (8), (9), (10), (11), and (12)
as follows:

1696 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 8, AUGUST 2018

max S

s.t. S �
P

k w
0
kb

E
k;n � BE

n ; 8n 2 N
S �

P
k w

0
kb

I
k;n � BI

n; 8n 2 N ;

where w
0
k ¼

wkP
k
wk

represents the normalized weight of app-

lication k, and

bEk;n ¼
P

i

P
j;X

j
k;n

¼0
Di;j

k Xi
k;n (13)

bIk;n ¼
P

j

P
i;Xi

k;n
¼0 D

i;j
k Xj

k;n; (14)

representing the total amount of traffic generated by k to be
transmitted through the egress link at server n, and the total
amount of data received by k through the ingress link at
server n, respectively.

The optimal solution is thus expressed as:

S� ¼ min

(
minn;

P
k
bE
k;n

6¼0

BE
nP

k w
0
kb

E
k;n

minn;
P

k
bI
k;n

6¼0

BI
nP

k w
0
kb

I
k;n

) (15)

With the maximum total performance-centric share S�,
the optimal performance of each application is obtained as

a�
k ¼

wkP
k
wk

S�.

Finally, according to constraint (10), we derive the opti-
mal rate allocation as:

ri;jk
� ¼ wkP

k wk
S� � Di;j

k

Note that in our original problem (3), (7), (6), according to
Eq. (7), constraint (4) can be transformed as:

ak ¼
wkP
k wk

S; 8k 2 K

ak �
ri;jk
Di;j

k

; 8i; j 2 T k;Di;j
k 6¼ 0;

(16)

where Eq. (16) indicates the flexibility to increase some of the
ri;jk as long as the capacity constraint is still maintained. How-
ever, this would not result in any improvement of the perfor-
mance ak. Since the application performance is our main
concern, we simply allocate theminimum amounts to achieve
the specified performance, according to constraint (10).

4 RECONCILING FAIRNESS AND BANDWIDTH

UTILIZATION

It is well known that tradeoff exists between fairness and
efficiency. In this and the following sections, we will investi-
gate how the bandwidth allocation following the strict defi-
nition of weighted performance-centric fairness results in
a lack of efficiency, with interpretations from two perspec-
tives. In correspondence, we will present two approaches to
improve the efficiency.

The first interpretation of efficiency is from the perspec-
tive of bandwidth utilization. When the weighted perfor-
mance-centric fairness is achieved, the residual bandwidth
can be categorized into two classes:

� useful bandwidth—the link bandwidth that once allo-
cated to an application, the performance of the appli-
cation can be improved. It is a concept that is relative
to applications, i.e., the useful bandwidth to an
application is not necessarily the useful bandwidth
to another. For an application k, the useful band-
width represents a set of available (non-zero) band-
width on all the access links that k’s flows traverse.

� useless bandwidth—the link bandwidth that can not
improve the performance of any application, i.e., the
link bandwidth that is not the useful bandwidth to any
application.

The maximal efficiency is achieved when all the residual
bandwidth is useless bandwidth.

It is intuitive that when the strict performance-centric fair-
ness is enforced, maximal efficiency may not be achieved,
because some applications are not allowed to utilize useful
bandwidth for the purpose of maintaining performance pro-
portionality. To eliminate such an inherent conflict, we define
an extended version of weighted performance-centric fair-
ness, which allows the residual bandwidth to be iteratively
allocated to the applications that can improve their perfor-
mance with the allocation, according to the performance pro-
portionality regulated by the original weighted performance-
centric fairness, until all the residual bandwidth is the useless
bandwidth. In this way, all the useful bandwidth (relative to
some applications) will be utilized, and the efficiency regard-
ing bandwidth utilization ismaximized.

To better understand the idea, we present an illustrative
example of the iterative allocation in Fig. 3. Suppose that
according to the weighted performance-centric fairness as
previously defined, the maximal total performance-centric
share S� is calculated as 5, so that application A, C and D
with the same weight of 1 obtains the performance of 1, and
application B with a weight of 2 achieves the performance
of 2. However, there is still useful bandwidth to B and C that
should be utilized to improve efficiency. Hence, in the first
round, we simply fix the allocation of A and D to whom
there is no longer useful bandwidth, as shown in Fig. 3a.

Then we remove A and D from our consideration, and
allocate the available bandwidth among B and C in the sec-
ond round, according to the weighted performance-centric
fairness. Still, we compute S� for the problem where B and
C are sharing the available bandwidth, based on which we
can derive their performance as 3 and 1.5, proportional to
their weights. As shown in Fig. 3b, we fix the allocation of B
in this round, while leaving the allocation of C for the next
round, since there is still useful bandwidth to C. Finally, C
will be allocated all the available useful bandwidth to it, to
achieve a performance of 2, as shown in Fig. 3c. When the
allocation completes, no useful bandwidth is left idle and the
efficiency is maximized.

This allocation process can also be interpreted with pro-
gressive filling [14] that is used to achieve max-min fairness
in traditional link bandwidth allocation. (Note that progres-
sive filling is mentioned for the ease of illustrating the
general idea. Though sharing the similar philosophy, our
allocation algorithm to be elaborated later is carefully desig-
ned for the more complex context of the performance-centric
fairness.) Starting with all the performance equal to 0, we
increase the amounts of bandwidth to all the applications so

CHEN ETAL.: EFFICIENT PERFORMANCE-CENTRIC BANDWIDTH ALLOCATION WITH FAIRNESS TRADEOFF 1697

that their performance increases at the rate proportional to
their weights. When an application no longer has any useful
bandwidth, its allocation is fixed. Thenwe continue increasing
bandwidth for the remaining applications in a similar way
until no useful bandwidth is available to any application.

Algorithm 1. Bandwidth Allocation to Achieve Relaxed
Performance-Centric Fairness and Maximal Utilization

Input:
Bandwidth capacity: BE

n ; B
I
n; 8n 2 N ;

Network load matrix Dk
i;j and weight wk; 8k 2 K;

Task placement across physical machines:Xi
k;n;

Output:
Bandwidth allocation for all applications: rki;j;

1: InitializeN E ¼ N ;N I ¼ N ;
2: while K 6¼ ? do
3: Calculate w

0
k ¼ wk=

P
k2K wk;

4: Calculate S� according to Eq. (15);
5: Obtain the application set A, where each application has

at least one saturated flow;
6: Allocate bandwidth to all applications in A as:

ri;jk ¼ w
0
kS

�Di;j
k ;

7: Update residual link bandwidth BE
n and BI

n;
8: Obtain saturated link setsME andMI ;
9: Update the link sets as:

N E ¼ N E �ME ;N I ¼ N I �MI ;

10: Update the application set as: K ¼ K�A;

From this perspective, we can see that in Fig. 3, the
four applications increases their performance with the ratio
of their increasing rates as 1 : 2 : 1 : 1, same to their weight
proportionality. When the performance of A increases to 1,
A and D no longer have useful bandwidth, so that their per-
formance is fixed as 1 in Fig. 3a. Then we continue increas-
ing the allocation to B and C, until B exhausts all the useful
bandwidth. Since their performance increasing rates are pro-
portional to their weights, C achieves the performance of
1.5 when B is fixed at the performance of 3, as shown in
Fig. 3b. Finally, we increase the allocation of the last applica-
tion C until all the useful bandwidth is used and C achieves
the performance of 2, as illustrated in Fig. 3c.

Our iterative allocation approach is summarized in
Algorithm 1. We first compute the normalized weight of each
application (Line 3) and the maximal total performance-
centric fair share (Line 4) according Eq. (15) as: S� ¼
minfmin

n2NE;
P

k2K bE
k;n

6¼0

BE
nP

k2K w
0
k
bE
k;n

min
n2N I ;

P
k2K bI

k;n
6¼0

BI
nP

k2K w
0
k
bI
k;n

g,

which is the analytic solution to the optimization problem (8),
(9), (10), (11), and (12) over the application set K, the egress
link set N E and the ingress link set N I . Then we find all
the applications that have at least one of their flows travers-
ing a saturated link (Line 5), represented by the set A ¼
fk 2 K j

P
k w

0
kb

E
k;n ¼ BE

n jj
P

k w
0
kb

I
k;n ¼ BI

ng, which also imp-

lies that there is no useful bandwidth to them. (Note that for
such an application, there may be some bandwidth available
for its flows that traverse non-saturated links. However, there
is no useful bandwidth to this application, since it can not
improve its performance, as long as one of its flows does not
obtain any available bandwidth in a saturated link.) These
applications in the set A are allocated with the amounts of
bandwidth in Line 6 to achieve their respective fair share of
performance. The residual bandwidth in each link is then
updated in Line 7 by subtracting the amount that has been
allocated to applications inA, represented as follows:

BE
n ¼ BE

n � S� P
k2A w

0
kb

E
k;n; 8n 2 N E

BI
n ¼ BI

n � S� P
k2A w

0
kb

I
k;n; 8n 2 N I

;

Finally, we obtain the saturated egress and ingress link

sets as ME ¼ fn 2 N E j BE
n ¼ 0g, MI ¼ fn 2 N I j BI

n ¼ 0g,
remove them from the link sets N E and N I (Lines 8-9),
and remove all the applications in A from the application
set K (Line 10).

As long as there are still applications that have not yet
been allocated, i.e., K 6¼ ? , we continue with a new round
of allocation following the weighted performance-centric
fairness, by solving the problem (8), (9), (10), (11), and (12)
over a reduced set of sharing applications and links. When
the algorithm terminates, all the useful bandwidth have been
utilized so that the maximal efficiency is achieved. Mean-
while, in each round, the weighted performance-centric fair-
ness is achieved among the applications in A, thus the
extended version of weighted performance-centric fairness
is satisfied by Algorithm 1.

Now we analyze the complexity of our Algorithm 1. In
each iteration, Line 4 calculates S� by looping through the
application set K and the server set N . Hence, the complex-
ity of this step is OðNKÞ, where N is the number of servers
(where at least a flow is originated or destined) and K is the
number of concurrent applications. Line 6 loops through
all the flows of applications in A with a complexity of OðF Þ,
where F is the total number of concurrent flows across all
the applications. The complexity of Line 7 is OðNKÞ and
other steps are OðNÞ or OðKÞ. Therefore, each iteration has

Fig. 3. An illustration of allocating bandwidth among applications A, B, C and D iteratively to achieve maximal efficiency, following the extended ver-
sion of weighted performance-centric fairness. The weights of these four applications are 1, 2, 1, 1, respectively.

1698 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 8, AUGUST 2018

the complexity of O(NK+F). With at most K iterations, the
time complexity of Algorithm 1 is OððNK þ F ÞKÞ. As we
observe, the complexity is linearly or at most quadratically
increasing with an input, which is feasible and practical for
bandwidth allocation in modern datacenters.

5 TRADING FAIRNESS FOR SOCIAL WELFARE

Another interpretation of efficiency is from the perspective
of the social welfare. Each application k has a utility func-
tion, determined by its performance ak. For simplicity, we
choose the log function of performance as the utility func-
tion for each application:

UkðakÞ ¼ logak; 8k 2 K;

The social welfare is the total utility achieved by all the
applications, i.e.,

P
k2K UkðakÞ. The maximal efficiency is

achieved when the social welfare across all the applications is
maximized.

For this interpretation, there is still conflicts between the
requirements of weighted performance-centric fairness and
maximal social welfare. The underlying reason is twofold,
which will be illustrated by two simple examples as follows,
where application A and B are sharing the same set of links:

� To achieve 1 unit of performance,A requires 1 unit of
bandwidth, while B requires 2 units. A and B have
the sameweights. According to the allocation that sat-
isfies the weighted performance-centric fairness, A
and B will achieve the same performance of 2 units,
and the social welfare is log 4. If we reduce 1 unit of
bandwidth from B, and reallocate it to A, then the
performance achieved byA andB is 3 and 1.5, respec-
tively. With this allocation, the social welfare is com-
puted as log 4:5, greater than that achieved by
weighted performance-centric allocation.

� To achieve 1 unit of performance, A and B both
require 1 unit of bandwidth. The weights of A and B
are 1 and 2, respectively. According to the allocation
that satisfies the weighted performance-centric fair-
ness, Awill achieve the performance of 2 units, while
B achieves 4 units. The social welfare is log 8. If we
reduce 1 unit of bandwidth from B, and reallocate it
to A, then both A and Bwill achieve the performance
of 3. With this allocation, the social welfare is com-
puted as log 9, greater than that achieved by weig-
hted performance-centric allocation.

To strive for a balance between the conflicting require-
ments of fairness and efficiency, we set the principle of
ak � w

0
kS for bandwidth allocation, where S 2 ð0; S�� is con-

sidered as the degree of fairness relaxation that can be tuned
to trade fairness for efficiency. This constraint ensures that,
at a minimum, each application can be guaranteed a weig-
hted fair share w

0
kS with respect to its performance. A larger

S indicates a larger weighted fair share that each application
will be guaranteed, while a smaller S represents more relax-
ation on fairness.

As shown in Fig. 3d, the shaded areas represent the
guaranteed performance of the four applications, which requ-
ires a guaranteed amount of bandwidth. The residual band-
width, called the flexible bandwidth, will be allocated to

maximize the social welfare without the concern of fairness,
which results in the add-on performance represented by the
white areas. In this example, S is 4, so that the guaranteed

performance of A is 4 � 15 ¼ 0:8, and that of B is 4 � 25 ¼ 1:6. If

we decrease S, there will be more relaxation on fairness, as
the guaranteed performance will be reduced. However, more
flexible bandwidth will be available to be allocated for the
purpose of improving the social welfare.

To maximize the overall social welfare of all applications
with a certain degree of relaxation on performance-centric
fairness, we formulate the following optimization problem:

max
a

P
k UkðakÞ (17)

s.t. ak � w
0
kS; 8k 2 K (18)

P
k ak � bEk;n � BE

n ; 8n 2 N (19)

P
k ak � bIk;n � BI

n; 8n 2 N (20)

where bEk;n and bIk;n are expressed in Eqs. (13) and (14).
Constraint (18) follows the aforementioned principle, while
(19) and (20) are the capacity constraints of the egress and
ingress link at each server.

Changing max
P

k Ukð�Þ to min�
P

k Ukð�Þ, we can trans-
form the previous optimization problem (17)-(20) to the
following:

min
a

�
P

k UkðakÞ (21)

s.t. Eq: ð18Þ; ð19Þ; ð20Þ (22)

Since UkðakÞ ¼ logak is strictly concave [15], the objective
function of problem (21) and (22) is strictly convex. More-
over, all of the constraints are affine. Hence, problem (21)
and (22) is a convex optimization problem [15].

Let �k; 8k 2 K denote the Lagrange multipliers associated

with constraint (18), and mE
n ;m

I
n; 8n 2 N associated with

capacity constraints (19) and (20) respectively. The Lagrang-
ian of problem (21)-(22) is as follows:

Lða; �;mE;mIÞ

¼ �
P

k logak þ
P

k �kðw
0
kS � akÞ

þ
P

n m
E
n ð
P

k akb
E
k;n �BE

n Þ þ
P

n m
I
nð
P

k akb
I
k;n �BI

nÞ

It is obvious that there exists a ¼ ða1; . . . ;aKÞ in the
relative interior of the intersection of domains of all
constraint functions, i.e., a ¼ ða1; . . . ;aKÞ satisfies the

constraints: ak > w
0
kS; 8k 2 K,

P
k akb

E
k;n < BE

n ; 8n 2 N andP
k akb

I
k;n < BI

n; 8n 2 N . Hence, Slater’s condition [15] is

satisfied. And since the optimization problem (21) and
(22) is differentiable and convex, the Karush-Kuhn-Tucker
(KKT) conditions [15] are both sufficient and necessary for
the optimality. Thus, we can derive the optimal solution by
applying the KKT conditions:

rakLða; �;m
E;mIÞ ¼ 0; 8k 2 K()

�1=ak � �k þ
P

n m
E
n b

E
k;n þ

P
n m

I
nb

I
k;n ¼ 0; 8k 2 K

CHEN ETAL.: EFFICIENT PERFORMANCE-CENTRIC BANDWIDTH ALLOCATION WITH FAIRNESS TRADEOFF 1699

and

�kðw
0
kS � akÞ ¼ 0; 8k 2 K

mE
n ð
P

k akb
E
k;n �BE

n Þ ¼ 0; 8n 2 N
mI
nð
P

k akb
I
k;n �BI

nÞ ¼ 0; 8n 2 N
�k � 0; 8k 2 K
mE
n � 0; mI

n � 0; 8n 2 N

8>>>>>><
>>>>>>:

Analyzing the solution (a�
k; 8k 2 K) of the equations

above, we derive the following insights:
1) If a�

k ¼ w
0
kS for some k, we have

� 1
w
0
k
S
� �k þ

P
n m

E
n b

E
k;n þ

P
n m

I
nb

I
k;n ¼ 0: (23)

Since �k � 0 and 1
w
0
k
S
> 0, to satisfy Eq. (23) we haveP

n m
E
n b

E
k;n þ

P
n m

I
nb

I
k;n > 0. Hence, there exists a server

n 2 fnjXi
k;n 6¼ 0; 9i 2 T kg that satisfies mE

n 6¼ 0 or mI
n 6¼ 0,

from which we have

P
k a

�
kb

E
k;n �BE

n ¼ 0 or
P

k a
�
kb

I
k;n �BI

n ¼ 0:

This indicates that among all the servers hosting application

k’s tasks, there is at least one of them that has no idle link to

improve k’s performance. Thus, the performance of k only

achieves its minimum guaranteed share.

2) If a�
k > w

0
kS, then we have �k ¼ 0, and

� 1
a�
k
þ
P

n m
E
n b

E
k;n þ

P
n m

I
nb

I
k;n ¼ 0:

Similar with the analysis when a�
k ¼ w

0
kS, there exists such

n 2 fnjXi
k;n 6¼ 0; 9i 2 T kg that satisfies

P
k a

�
kb

E
k;n �BE

n ¼
0 or

P
k a

�
kb

i
k;n �BI

n ¼ 0, which indicates that the band-

width is bottlenecked at some servers where tasks of appli-
cation k are placed.

In this case, we can represent a�
k as follows:

a�
k ¼

1P
n m

E
n b

E
k;n þ

P
n m

I
nb

I
k;n

: (24)

The optimal solution can be obtained by solving the
equations of KKT conditions in a centralized manner. The
centralized solver needs to maintain the network load
matrices Dk with the dimension of mk for each application
k, as well as the task placement state matrices Xi

k;n (i 2 T k)
for the entire datacenter. With K þ 2N constraints in the
optimization problem, the computational complexity and
storage overhead will increase significantly as the number
of applications and physical machines scales up.

To overcome the limit of the centralized approach, we
propose a distributed algorithm to allocate bandwidth at
each server with less computation and less state informa-
tion, which will be presented in the next section.

6 DISTRIBUTED BANDWIDTH ALLOCATION FOR

MAXIMIZING SOCIAL WELFARE

In this section, we first prove that there is no duality gap
between the dual and the primal problem, and then apply
the dual based decomposition to design a distributed

algorithm for bandwidth allocation that can be imple-
mented at each physical machine in parallel.

6.1 Dual Based Decomposition

Let p� represent the optimal value of the primal optimiza-
tion problem (21) and (22). Considering the general situa-
tion that ak > w

0
kS, we use X 	 RK to denote the solution

space defined by constraint (18). The Lagrangian of the
primal problem under the general case is defined as
Lð�Þ : X
RN
RN ! R.

Lða;mE;mIÞ ¼ �
P

k logak þ
P

n m
E
n ð
P

k akb
E
k;n �BE

n Þ
þ
P

n m
I
nð
P

k akb
I
k;n �BI

nÞ;
(25)

where mE ¼ ðmE
1 ; . . . ;m

E
NÞ and mI ¼ ðmI

1; . . . ;m
I
NÞ are the

dual variables associated with constraints (19, 20). The
Lagrange dual function gð�Þ : RN
RN ! R is defined as
the minimum value of the Lagrangian Lða;mE;mIÞ over a:

gðmE;mIÞ ¼ min
a

Lða;mE;mIÞ ¼ Lða�;mE;mIÞ (26)

Thus, the dual problem of the optimization problem (21)
and (22) is:

d� ¼ max
mE2RN

þ ;mI2RN
þ

gðmE;mIÞ: (27)

It has been shown in the previous section that Slater’s
condition holds, which means that there exists a strictly fea-
sible solution that satisfies strict inequality constraints.
Based on Slater’s theorem, the strong duality holds [15].
Therefore, there is no duality gap between p� and d�, i.e.,
there exists mE�;mI� such that d� ¼ gðmE�;mI�Þ ¼ Lða�;mE�;
mI�Þ ¼ p�.

To sum up, in order to obtain the optimal solution of the
primal problem, we can solve the dual problem (27) that
has zero duality gap. Substituting gðmE;mIÞ using Eqs. (26)
and (25), we have the following equivalent dual problem:

max
mE
n�0;mI

n�0
mina

P
n m

E
n ð
P

k akb
E
k;n �BE

n Þ

þ
P

n m
I
nð
P

k akb
I
k;n �BI

nÞ �
P

k logak:

As clearly observed, this problem is a maximization
problem over variables mE

n and mI
n, subject to the constraints

that each variable is a positive real number. In the objective
function, only the previous two terms are dependent upon
the variables. Without coupling constraints, it can be further
divided into N subproblems as follows:

max
mE
n ;mI

n

min
a

mE
n ð
P

k akb
E
k;n �BE

n Þ þ mI
nð
P

k akb
I
k;n �BI

nÞ

s.t. mE
n � 0; mI

n � 0:

Each of the subproblem has two variables mE
n and mI

n, which
can be solved at the corresponding server n.

6.2 Distributed Algorithm Using Gradient Projection

We now design a distributed algorithm based on the gradi-
ent projection method to solve the dual problem, thus the
optimal solution a� for the primal problem can be further
derived. The algorithm is proved to converge and is easy to

1700 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 8, AUGUST 2018

be implemented at each physical machine, with a small
overhead.

According to the gradient projection method, we update
variable mn (representing both mE

n and mI
n for simplicity)

iteratively at each server n 2 f1; 2; . . . ; Ng and each t � 0
with the following recursion scheme:

mðtþ1Þ
n ¼

h
mðtÞ
n þ z

@g

@mn

iþ
;

¼
h
mðtÞ
n þ z

�P
k akbk;n �Bn

�iþ
;

(28)

where z > 0 denotes the step-size, ½x�þ ¼ maxf0; xg, mn

stands for ðmE
n ;m

I
nÞ, and the same applies to bk;n and Bn.

Theorem 1. Given mð0Þ 2 R2N
þ and z 2 ð0; 2= ~K�, where ~K ¼ffiffiffiffiffiffiffi

2N
p P

n

P
k

�
bEk;n þ bIk;n

�
Cka

2
k and Ck ¼ maxnfbEk;n; bIk;ng,

the recursive sequence fmðtÞg generated by Eq. (28) converges

to the dual optimum m�, i.e., limt!1 mðtÞ ¼ m�.

Proof. We first prove that the gradient of the dual function
gðmÞ is ~K-Lipschitz continuous.

Let us define a function ukð�Þ as

ukðxÞ ¼ 1=x; x � 1=ak;

where ak ¼ minfminn2N ;bE
k;n

6¼0
BE
n

bE
k;n

;minn2N ;bI
k;n

6¼0
BI
n

bI
k;n

g, repre-
senting the upper bound for the performance of app-
lication k (achieved when all the link bandwidth is
allocated to k). The Lipschitz constant of ukðxÞ is easily
obtained as a2

k.

We also define dEn ðmÞ as the partial derivative of
gðmE;mIÞwith respect to mE

n :

dEn ðmÞ ¼
@gðmE;mI Þ

@mE
n

¼
P

k a
�
kb

E
k;n �BE

n (29)

Based on Eq. (24), we can represent a�
k as a ukð�Þ function:

a�
kðmÞ ¼ 1=ð

P
n m

E
n b

E
k;n þ

P
n m

I
nb

I
k;nÞ

¼ ukð
P

n m
E
n b

E
k;n þ

P
n m

I
nb

I
k;nÞ;

Thus, dEn ðmÞ can be represented as:

dEn ðmÞ ¼
P

k b
E
k;nukð

P
n m

E
n b

E
k;n þ

P
n m

I
nb

I
k;nÞ �BE

n ;

Then we can derive the following:

jdEn ðmÞ � dEn ðm
0 Þj

�
P

k b
E
k;n

��ukðPn m
E
n b

E
k;n þ

P
n m

I
nb

I
k;nÞ

� ukð
P

n m
0E
n bEk;n þ

P
n m

0I
n b

I
k;nÞ

��
�

P
k b

E
k;na

2
k

P
n ðbEk;njmE

n � m
0E
n j þ bIk;njmI

n � m
0I
n jÞ

�
P

k b
E
k;na

2
kCk

P
n ðjmE

n � m
0E
n j þ jmI

n � m
0I
n jÞ

¼
�P

k b
E
k;nCka

2
k

�
km� m

0 k1;

(30)

where k � k1 is the L1 norm in vector space, and

Ck ¼ maxnfbEk;n; bIk;ng. Similarly, we have

jdInðmÞ � dInðm
0 Þj � ð

P
k b

I
k;nCka

2
kÞkm� m

0 k1: (31)

Summing up Eqs. (30) and (31) over all n 2 N yields:

kdðmÞ � dðm0 Þk1
¼

P
n

�
jdEn ðmÞ � dEn ðm

0 Þj þ jdInðmÞ � dInðm
0 Þj
�

�
�P

n

P
k

�
bEk;n þ bIk;n

�
Cka

2
k

�
km� m

0 k1

For any m 2 R2N
þ , we have kmk � kmk1 �

ffiffiffiffiffiffiffi
2N

p
kmk (k � k2

or k � k is the L2 norm or Euclidean norm) in metric space.

Thus, we have the following result:

kdðmÞ � dðm0 Þk � kdðmÞ � dðm0 Þk1
�

�P
n

P
k

�
bEk;n þ bIk;n

�
Cka

2
k

�
km� m

0 k1

�
� ffiffiffiffiffiffiffi

2N
p P

n

P
k

�
bEk;n þ bIk;n

�
Cka

2
k

�
km� m

0 k

Therefore, the Lipschitz constant of rgðmÞ is ~K ¼ffiffiffiffiffiffiffi
2N

p P
n

P
k

�
bEk;n þ bIk;n

�
Cka

2
k. According to the proof

in [16], if rgðmÞ is ~K-Lipschitz continuous, then given a

step-size z 2 ð0; 2= ~K�, mðtÞ will converge in m� as t ! 1.tu

Algorithm 2. Distributed Bandwidth Allocation to
Achieve Maximal Social Welfare, with a Tunable degree
of Relaxation on Performance-Centric Fairness

Input:
Bandwidth capacity: BE

n ;B
I
n; 8n 2 N ;

Network load matrix Dk
i;j and weight wk; 8k 2 K;

Tunable relaxation on fairness: S 2 ð0; S��;
Task placement across physical machines: Xi

k;n;
Iteration times: T ; Step-size: z 2 ð0; 2= ~K�;

Output:
Bandwidth allocation for all applications: rki;j;

1: Initialize ak ¼ w
0
kS; 8k 2 K;

2: Calculate bEk;n and bIk;n based on Eqs. (13) and (14);

3: while iterations < T do
4: for all physical machine n do
5: mE

n ¼ maxð0;mE
n þ zð

P
k akb

E
k;n �BE

n ÞÞ;
6: mI

n ¼ maxð0;mI
n þ zð

P
k akb

I
k;n �BI

nÞÞ;
7: for all ak do
8: ak ¼ 1P

n
mE
n b

E
k;n

þ
P

n
mI
nb

I
k;n

;

9: if ak < w
0
kS then

10: ak ¼ w
0
kS;

11: iterations ++;

12: for all ri;jk do

13: ri;jk ¼ ak � Di;j
k ;

Since there is no duality gap between the dual problem
and the primal problem, aðmðtÞÞ associated with m converges
to the primal optimum, i.e.,

limt!1 aðmðtÞÞ ¼ a�;

With the theoretical guidelines so far, we are able to
design Algorithm 2 for distributed bandwidth allocation,
which can be implemented at each physical machine in par-
allel. The only required state information to be maintained
on eachmachine is the weights and network loadmatrices of

CHEN ETAL.: EFFICIENT PERFORMANCE-CENTRIC BANDWIDTH ALLOCATION WITH FAIRNESS TRADEOFF 1701

the applications that have their tasks placed on this machine,
which is easily obtained. For example, in MapReduce, the
job tracker can monitor the progress of all the tasks, thus
have an overview of the volumes of traffic to be transferred
among tasks.

In each iteration, the dual variables mE
n and mI

n will be
updated at eachmachine n following Eq. (28), given the step-
size z bounded by the global constant 2= ~K and the perfor-
mance of each application k that has its tasks placed on this

machine, i.e., bEk;n 6¼ 0 or bIk;n 6¼ 0. Given the updated dual var-

iables, application performance ak can be updated in the
applicationmanager, according to Eq. (24). Note that bEk;n and

bIk;n are 0 if none of the tasks of application k is placed on

machine n. Hence, computing ak only requires mE
n and mI

n

from those machines where at least one task of application k

is placed, which incurs a small communication overhead.
If the gradient in Eq. (29) is negative, which means that

there is residual egress bandwidth on machine n, then mE
n

will decrease and ak will increase, indicating that the idle
bandwidth will be utilized to increase application perfor-
mance. If the computed performance is beyond its lower
bound, it will be set as the bound to restrict the allocation in
the feasible sets. Finally, when the dual variables converge
to the optimum, the rates of the flows on server n can be eas-
ily computed and allocated.

7 PERFORMANCE EVALUATION

In this section, we first evaluate the overall application perfor-
mance and the total utilities achieved by our bandwidth
allocation algorithms with the guidance of weighted perfor-
mance-centric fairness (either the extended version of fairness
focusing on the bandwidth utilization or the tunable relaxa-
tion on fairness targeting the social welfare), compared with
traditional per-flow fairness. Then we investigate how our
second algorithm performs in tuning the tradeoff between
maximizing the total utility and maintaining performance-
centric fairness. We further evaluate the performance of the
distributed algorithm with respect to the convergence.
Finally, we discuss the practical concern of our algorithms.

7.1 Comparing Different Versions of Fairness

We first simulate a small private datacenter with 20 homo-
geneous physical machines, with 10 GB/s egress and
ingress links. Without loss of generality, there are 6 data
parallel applications running concurrently, each with 6
tasks randomly placed across the datacenter. The weights of
these applications, referred to as A, B, C, D, E and F for
convenience, are set as 1, 2, 3, 4, 5, 6, respectively. For each
application, half of their tasks are transferring the interme-
diate data to another half, with the traffic volumes ran-
domly chosen in the range of ½200; 300� MB. Each machine is
able to shape the bandwidth of its flows.

Given a problem setting resulted from a randomization,
we realize our two algorithms respectively. For Algorithm 2,
the tunable relaxation on fairness S is set as the maximal
value, which represents no relaxation. For comparison, we
also apply the traditional flow-level max-min fair bandwidth
allocation (referred to as Per-flow fair) used in TCP to the
same setting. The performance of each application, measured

as the reciprocal of its network transfer time as in Eq. (7),
achieved by the three algorithms is illustrated in Fig. 4.

It is obvious that Algorithm 1 and Algorithm 2 outper-
form Per-flow fair to a large extent, both with up to 1:4X
performance improvement. The reason is that weighted
performance-centric fairness is aware of the characteristic
of data parallel applications, so that any amount of band-
width allocated among applications contributes to the per-
formance gain. In contrast, with Per-flow fair allocation that
is application agnostic, although some flows of an applica-
tion may get a large amount of bandwidth to finish
quickly, the application performance is determined by the
slowest flow.

The application performance achieved by Algorithm 1
and Algorithm 2 is slightly different, because of the differ-
ent allocation of the residual bandwidth after guaranteeing
maximal weighted performance-centric fair share for all the
applications. Algorithm 1 iteratively finds the applications
that can still improve their performance with more band-
width, and allocates available bandwidth to them so that
the improvement of their performance is weight propor-
tional. Algorithm 2, in contrast, allocates the residual band-
width so as to maximize the total utility of all the
applications. Note that in this particular case, the perfor-
mance of D, E and F is exactly their respective fair share,
with the same proportionality to their weights, while A, B
and C are allocated the residual bandwidth by the two algo-
rithms to improve efficiency, so that they achieve better per-
formance beyond their original share. It is also worth noting
that D achieves almost the same performance with the three
algorithms. The reason is that with different allocation from
a different algorithm, the original bottlenecked flow may be
accelerated, but another flow may become the bottleneck as
its sharing flows are allocated with more bandwidth. If the
new bottlenecked flow has the same completion time with
the original one, the application performance will remain
the same, which explains the performance ofD.

With respect to the total utility, Algorithm 2 achieves
9.9305, larger than those achieved by Algorithm 1 and Per-
flow fair, which are 9.4796 and 7.1747, respectively. Since the
fairness relaxation parameter S is set as the maximal value,
the utility maximization in Algorithm 2 is restricted by the
fairness constraint to the largest extent. If we reduce S to
have more relaxation on fairness, the total utility will be
further increased.

Fig. 4. Performance of applications A, B, C, D, E and F achieved by
Algorithm 1, Algorithm 2 and Per-flow fair, in a small datacenter with 20
servers. The weights are 1, 2, 3, 4, 5 and 6, respectively.

1702 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 8, AUGUST 2018

Next, we extend our evaluation to a larger scale, with the
number of machines increased to 100, and the number of
applications increased to 100. For simplicity, all the applica-
tions have the same weight, and the fairness relaxation
parameter S is set as its maximal value. Fig. 5 presents the
empirical CDFs of the application performance of the 100
applications achieved with three different algorithms. As is
shown, all the application performance achieved with Per-
flow fair is no larger than 5.5, while 17 percent of applica-
tions with Algorithm 1 and 30 percent of applications with
Algorithm 2 achieve no smaller than 5.5, respectively.
Clearly, the application performance achieved by our algo-
rithms is much better than that achieved by Per-flow fair.
Moreover, with respect to the total utilities, which are
209.4812, 219.7600 and 165.6202, respectively, our algo-
rithms also outperform Per-flow fair.

7.2 Investigating Tunable Relaxation on Fairness

We continue to investigate the properties and evaluate the
performance of Algorithm 2, with a detailed analysis in two
typical scenarios shown in Fig. 6.

In Scenario 1, three applications A,B and C, with weights
of 2, 1 and 1, encounter the same bottleneck at physical
machine P , where their tasks have 100 MB, 100 MB and
200MB intermediate data to be transferred, respectively. The
link (both ingress and egress) bandwidth capacity of P is
1 GB/s. Based on Eq. (15), the maximum total performance-
centric share (S�) of all the applications is computed as 8.

As shown in Fig. 7, as we relax the performance-centric
fairness, i.e., as we reduce S, the total utility of all the appli-
cations increases, indicating that the bandwidth becomes
more efficiently utilized. Fig. 8 delves into several points of

the tradeoff curve to show the performance achieved by
these applications.

When S is at its maximum as 8, the performance of A, B
and C is 4, 2, 2 respectively, proportional to their weights,
while the total utility is the lowest in the tradeoff curve.
When we reduce S, the amount of bandwidth required to
guarantee the total performance-centric share is reduced.
The residual bandwidth can thus be freely allocated to the
application whose utility will increase the most given this
amount of bandwidth. In this scenario, B is the most com-
petitive in grabbing the free bandwidth. It has fewer data to
be sent compared with C and its current performance is
lower than A, so that its performance improvement will
make the total utility increase the most.

This analysis is supported by Fig. 8. While all the applica-
tions are guaranteed the minimum performance-centric
share, which is decreasing as we reduce S, B can achieve
higher performance than its minimum share by grabbing the
free bandwidth. For example, when S ¼ 7, the minimum

performance-centric share is 2
2þ1þ1 � 7 ¼ 3:5 for A, and

1
2þ1þ1 � 7 ¼ 1:75 for B and C. As shown in Fig. 8, A and C

achieve the performance of 3.5 and 1.75 respectively, whileB
achieves 3, which is more than its minimum share. When S
decreases to 6.5, the total utility will achieve its maximum. It
will not increase any further with S decreasing to 6 or below.
Correspondingly, the application performance does not
change when S decreases below 6.5 according to our results
(we only show S ¼ 6:5 and S ¼ 6 as examples in the figure).

Now we consider Scenario 2 as shown in Fig. 6, where
four applications A, B, C and D with the same weight have
their tasks placed across 4 servers, each with the bandwidth

Fig. 5. CDFs of the performance of 100 applications achieved by Algo-
rithm 1, Algorithm 2 and Per-flow fair, in a large datacenter with 100
servers. The weights are the same.

Fig. 6. Two scenarios for evaluating the proposed bandwidth allocation.

Fig. 7. The tradeoff between the total performance-centric fair share and
the total utility in scenario 1.

Fig. 8. Performance of application A, B and C when S is tuned at differ-
ent values in scenario 1.

CHEN ETAL.: EFFICIENT PERFORMANCE-CENTRIC BANDWIDTH ALLOCATION WITH FAIRNESS TRADEOFF 1703

capacity of 3 GB/s. The bottleneck link encountered by A, B
and C is at P3, while the bottleneck of D is P1. If we strictly
follow performance-centric fairness, S� is computed as 120

13 ,
and D will not be allowed to use the idle bandwidth on
server P1 and P2. With the relaxation on fairness by reduc-
ing S, the idle bandwidth will be utilized, and there will
be residual bandwidth after guaranteeing the minimum
share to all the applications. The residual bandwidth can
thus be allocated among applications to improve the total
utility the most. Such a tradeoff between the total utility and
the degree of fairness relaxation is verified in Fig. 9.

Fig. 10 illustrates the application performance achieved
at different degrees of relaxation on performance-centric
fairness. As we tune S, B always achieves no more than its
minimum guaranteed performance-centric share, while
other applications achieve higher performance than their
minimum shares. This can be explained by B’s heavy net-
work load, which results in a smaller amount of utility
increase compared with other applications, given the same
amount of bandwidth allocation. Hence, the free bandwidth
at P1 will be allocated to D, and the free bandwidth at P3
will be allocated to A, to improve the overall utility.

7.3 Convergence

Finally, we evaluate the convergence of Algorithm 2 in
Scenario 1. As shown in Fig. 11, the dash lines and solid
lines represent the performance of applications at different
values of S, respectively. We choose the step-size according
to Theorem 1 to guarantee the convergence. The perfor-
mance of all the applications converges within about 70 iter-
ations. To further evaluate our algorithm at a much larger
scale, we simulate a datacenter with 100 physical machines
hosting 100 data parallel applications, each of which has 4
tasks placed on different machines. Tasks of applications

have different amounts (randomly chosen between 100 MB
to 200 MB for simplicity) of data to be transferred in their
communication stages. Fig. 12 shows the performance
change of two randomly selected applications with an
increasing number of iterations. We can see that the applica-
tion performance is able to converge within 800 iterations.

7.4 Discussion

Algorithm 1 can be solved in polynomial time, as analyzed
in Section 4, which is feasible in practice and fast especially
in modern datacenters with powerful computation engine.
Implementing this algorithm requires coordinating network
transfers based on application demand, which can be real-
ized with Software-Defined Network (SDN) [17]. The appli-
cation demand can either be conveyed from application
managers [18], [19], or anticipated by the SDN controller
[20]. To be particular, the network load matrices of all the
sharing flows should be obtained as input to Algorithm 1.
With Apache Spark [5] as an example, the size and location
of the output data from each map task can be obtained from
the MapOutputTracker module. Once the placement of
reduce tasks has been scheduled, the network load matri-
ces can be easily obtained and conveyed to the SDN control-
ler. As application weights and bandwidth capacities are
also available, Algorithm 1 will run in the controller to cal-
culate the bandwidth allocation, which is further enforced
by setting maximal rates for switch queues and forwarding
packets correspondingly [21].

Similarly, SDN can be applied to enforce the calculated
bandwidth allocation by Algorithm 2. Specifically, the calcu-
lated rates at each server should be conveyed to the SDN con-
troller, which then set up rate-limiting queues and forward
packets accordingly. Moreover, a protocol is required for the
communication between application managers and servers,
to update the parameters when running the algorithm.

8 RELATED WORK

Fair Bandwidth Allocation. Bandwidth allocation among mul-
tiple tenants in public cloud datacenters has received a

Fig. 9. The tradeoff between the total performance-centric fair share and
the total utility in scenario 2.

Fig. 10. Performance of application A, B C and D when S is tuned at dif-
ferent values in scenario 2.

Fig. 11. Convergence of performance of A, B and C when S is 8 and 6,
respectively, in Scenario 1.

Fig. 12. Convergence of performance of two applications in a large scale
private datacenter.

1704 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 8, AUGUST 2018

substantial amount of recent research attention [7], [8], [9],
[13], [21], [22], [23], [24], [25]. The general focus of these
works has been on ensuring fair allocation among different
tenants according to their payments. For example, Net-
Share [9] achieves tenant level fairness while Seawall [8]
achieves fairness between VM sources. FairCloud [7] allo-
cates bandwidth on congested links based on the weights of
the communicating VM-pairs, thus achieving VM-pair level
fairness. However, in our setting of a private datacenter run-
ning data parallel frameworks, the previous notion of fair-
ness is not applicable.

In the context of a private datacenter, Kumar et al.
proposed that bandwidth should be allocatedwith the aware-
ness of the communication patterns of data parallel applica-
tions [26]. Their focus is mainly on effective parallelization
for each application, i.e., the completion time should be N
times faster if the application parallelizes by N . However,
when tasks of one application share bandwidth with tasks of
different applications at different bottlenecks, it is not known
what performance each application should expect, without a
clear definition of fairness with respect to application perfor-
mance. In contrast, our proposition of performance-centric
fairness [27] fills this gap, and offers a definitive guide to the
problem of bandwidth allocation amongmultiple data paral-
lel applications in a private datacenter.

Such a definition of fairness has been further explored in
our following works which jointly considered the flexibility
of task placement [28] and path selection [29], respectively. It
has been demonstrated that performance-centric fairness has
effectively served as a guidance in more complex scenarios
in practice, when additional dimensions of problems are
involved. Complementary to such a broader extension of the
performance-centric fairness, in this paper, we choose a
deeper extension to investigate the inherent tradeoff between
performance-centric fairness and efficiency from two differ-
ent perspectives. In particular, a new bandwidth allocation
algorithm has been designed and evaluated to explore the
fairness-efficiency tradeoff thoroughly. With our study, insi-
ghts can be provided for service providers to deploy their
bandwidth allocation strategy at the sweet spot.

Game-theoretic Approach. Guo, et al. modeled their band-
width allocation problems as Nash Bargaining games,
where each VM as a player cooperates in the game to
achieve both the max-min fairness and the optimal social
utility represented by the Nash product [13], [21]. In con-
trast, our formulation is a general resource allocation prob-
lem, where the social utility is not restricted to be the Nash
product and the guarantee of fairness is modeled in the con-
straints. Although our problem formulation has a similar
form with these works, which naturally can be solved simi-
larly by deducting analytic solution in a centralized manner
or applying the standard technique of gradient descent in a
distributed fashion, the meaning of our problem is different.

9 CONCLUDING REMARKS

Our focus in this paper is to study the sharing of link band-
width among applications running data parallel frame-
works in a private datacenter. With the guideline that
performance achieved by applications should be propor-
tional to their weights, we propose a rigorous definition of

performance-centric fairness and investigate the tradeoff
between efficiency and fairness. From two perspectives of
interpreting the efficiency, we design two algorithms to
arbitrate the efficiency-fairness tradeoff. The first algorithm
gradually improves the bandwidth utilization by introd-
ucing a relaxed version of fairness. With respect to the sec-
ond interpretation of efficiency, a distributed algorithm is
designed by solving a utility-maximization problem, con-
strained by a tunable degree of relaxation on performance-
centric fairness. Such an algorithm can be implemented on
each physical machine in a lightweight fashion. Our exten-
sive simulations have shown that both algorithms have
effectively improved efficiency with some relaxation on
fairness, which result in up to 1:4X better application per-
formance compared with the traditional fairness. The dis-
tributed algorithm is demonstrated to provide the flexibility
to balance the tradeoff between the total utility and the
degree of fairness relaxation.

ACKNOWLEDGMENTS

The research is supported in part by the NSERC Collabora-
tive Research and Development Grant, and by grants from
RGC GRF under the contracts 16211715 and 16206417, a
grant from RGC CRF under the contract C7036-15G.

REFERENCES

[1] A. Langville and C. Meyer, Google’s PageRank and Beyond: The Sci-
ence of Search Engine Rankings. Princeton, NJ, USA: Princeton
Univ. Press, 2006.

[2] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, “Large-scale par-
allel collaborative filtering for the Netflix prize,” in Algorithmic
Aspects in Information and Management. Berlin, Germany: Springer,
2008, pp. 337–348.

[3] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113,
2008.

[4] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building
blocks,” ACM SIGOPS Operating Syst. Rev., vol. 41, no. 3, pp. 59–
72, 2007.

[5] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. Franklin, S. Shenker, and I. Stoica, “Resilient distributed data-
sets: A fault-tolerant abstraction for in-memory cluster
computing,” in Proc. USENIX Symp. Networked Syst. Des. Imple-
mentation, 2012, pp. 2–2.

[6] M. Chowdhury, M. Zaharia, J. Ma, M. Jordan, and I. Stoica,
“Managing data transfers in computer clusters with orchestra,” in
Proc. ACM SIGCOMM, 2011.

[7] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy,
S. Ratnasamy, and I. Stoica, “FairCloud: Sharing the Network in
Cloud Computing,” in Proc. ACM SIGCOMM Conf., 2012,
pp. 98–109.

[8] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha, “Sharing
the data center network,” in Proc. USENIX Conf. Networked Syst.
Des. Implementation, 2011, pp. 309–322.

[9] T. Lam, S. Radhakrishnan, A. Vahdat, and G. Varghese,
“NetShare: Virtualizing data center networks across services,”
University of California, San Diego, CA, USA, Tech. Rep. CS2010–
0957, May 2010.

[10] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness
with multipath TCP,” in Proc. ACM SIGCOMM Conf., 2011,
pp. 266–277.

[11] A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. Maltz, P. Patel, and S. Sengupta, “VL2: A scalable and flexible
data center network,” in Proc. ACM SIGCOMM Conf. Data Com-
mun., 2009, pp. 51–62.

CHEN ETAL.: EFFICIENT PERFORMANCE-CENTRIC BANDWIDTH ALLOCATION WITH FAIRNESS TRADEOFF 1705

[12] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” ACM SIGCOMM Comput. Com-
mun. Rev., vol. 41, no. 4, 2011, pp. 242–253.

[13] J. Guo, F. Liu, D. Zeng, J. Lui, and H. Jin, “A cooperative game
based allocation for sharing data center networks,” in Proc. IEEE
INFOCOM, 2013, pp. 2139–2147.

[14] M. Welzl, Network Congestion Control: Managing Internet Traffic.
Hoboken, NJ, USA: Wiley, 2005.

[15] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[16] H. Ya€ıche, R. Mazumdar, and C. Rosenberg, “A game theoretic
framework for bandwidth allocation and pricing in broadband
networks,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 667–678,
Oct. 2000.

[17] N. McKeown, “Software-defined networking,” INFOCOM keynote
Talk, 2009, http://infocom2009.ieee-infocom.org/keynotes.html

[18] G. Wang, T. Ng, and A. Shaikh, “Programming your network at
run-time for big data applications,” in Proc. ACM Workshop Hot
Topics Softw. Defined Netw., 2012, pp. 103–108.

[19] A.D. Ferguson,A.Guha, C. Liang, R. Fonseca, and S. Krishnamurthi,
“Participatory networking: AnAPI for application control of SDNs,”
in Proc. ACMSIGCOMMConf. SIGCOMM, 2013, pp. 327–338.

[20] A. Das, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and C. Yu,
“Transparent and flexible network management for big data proc-
essing in the cloud,” in Proc. USENIX HotCloud Workshop, 2013,
pp. 1–6.

[21] J. Guo, F. Liu, H. Tang, Y. Lian, H. Jin, and J. C. Lui, “Falloc: Fair
network bandwidth allocation in IaaS datacenters via A bargain-
ing game approach,” in Proc. IEEE Int. Conf. Netw. Protocols, 2013,
pp. 1–10.

[22] J. Guo, F. Liu, J. Lui, and H. Jin, “Fair network bandwidth alloca-
tion in IaaS datacenters via A cooperative game approach,” IEEE/
ACM Trans. Netw., vol. 24, no. 2, pp. 873–886, Apr. 2016.

[23] V. Jeyakumar, M. Alizadeh, D. Mazieres, B. Prabhakar, C. Kim,
and A. Greenberg, “EyeQ: Practical network performance isola-
tion at the Edge,” in Proc. USENIX Networked Syst. Des. Implemen-
tation, 2013, pp. 297–312.

[24] H. Ballani, K. Jang, T. Karagiannis, C. Kim, D. Gunawardena, and
G. OShea, “Chatty tenants and the cloud network Sharing prob-
lem,” in Proc. USENIX Conf. Networked Syst. Des. Implementation,
2013, pp. 171–184.

[25] L. Popa, P. Yalagandula, S. Banerjee, and J. Mogul, “ElasticSwitch:
Practical work-conserving bandwidth guarantees for cloud
computing,” in Proc. ACM SIGCOMM Conf. SIGCOMM, 2013,
pp. 351–362.

[26] G. Kumar, M. Chowdhury, S. Ratnasamy, and I. Stoica, “A case
for performance-centric network allocation,” in Proc. USENIX
Conf. Hot Topics Cloud Comput., 2012, pp. 9–9.

[27] L. Chen, Y. Feng, B. Li, and B. Li, “Towards performance-centric
fairness in datacenter networks,” in Proc. IEEE Conf. Comput.
Commun., 2014, pp. 1599–1607.

[28] L. Chen, B. Li, and B. Li, “Barrier-aware max-min fair bandwidth
sharing and path selection in datacenter networks,” in Proc. IEEE
Int. Conf. Cloud Eng., 2016, pp. 151–160.

[29] L. Chen, B. Li, and B. Li, “Surviving failures with performance-
centric bandwidth allocation in private datacenters,” in Proc. IEEE
Int. Conf. Cloud Eng., 2016, pp. 52–61.

Li Chen received the BEngr degree from the
Department of Computer Science and Technology,
Huazhong University of Science and Technology,
China, in 2012 and the MASc degree from the
Department of Electrical and Computer Engineer-
ing, University of Toronto, in 2014. She is currently
working toward the PhD degree in the Department
of Electrical and Computer Engineering, University
of Toronto. Her research interests include big data
analytics systems, cloud computing, datacenter
networking, and resource allocation.

Yuan Feng received the BEngr degree from the
School of Telecommunications, Xidian University,
Xi’an, China, in 2008, and the MASc and PhD
degrees from the Department of Electrical and
Computer Engineering, University of Toronto,
Canada, in 2010 and 2013, respectively. Her
research interests include optimization and design
of large-scale distributed systems and cloud
services.

Baochun Li received the PhD degree from the
Department of Computer Science, University of
Illinois at Urbana-Champaign, Urbana, in 2000.
Since then, he has been in the Department of Elec-
trical and Computer Engineering, University of Tor-
onto, where he is currently a professor. He holds
the bell canada endowed chair in Computer Engi-
neering since August 2005. His research interests
include large-scale distributed systems, cloud com-
puting, peer-to-peer networks, applications of net-
work coding, and wireless networks. He is a
member of the ACMand a fellow of the IEEE.

BoLi is a professor in theDepartment of Computer
Science and Engineering, Hong Kong University of
Science and Technology. He holds the Cheung
Kong chair professor inShanghai Jiao TongUniver-
sity. Prior to that, he waswith IBM Networking Sys-
tem Division, Research Triangle Park, North
Carolina. He was an adjunct researcher withMicro-
soft Research Asia-MSRA andwas a visiting scien-
tist in Microsoft Advanced Technology Center
(ATC). He has been a technical advisor for China
Cache Corp. (NASDAQ CCIH) since 2007. He is

an adjunct professor with the HuazhongUniversity of Science and Technol-
ogy, Wuhan, China. His recent research interests include: large-scale con-
tent distribution in the Internet, Peer-to-Peer media streaming, the Internet
topology, cloud computing, green computing and communications. He is a
fellow of the IEEE for “contribution to content distributions via the Internet”.
He received the Young Investigator Award from the National Natural Sci-
ence Foundation of China (NSFC) in 2004. He served as a Distinguished
lecturer of the IEEE Communications Society (2006-2007). He was a co-
recipient for three Best Paper Awards from IEEE, and the Best System
TrackPaper in ACMMultimedia (2009).

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1706 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 8, AUGUST 2018

http://infocom2009.ieee-infocom.org/keynotes.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

