
2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2795580, IEEE
Transactions on Network Science and Engineering

1

Scheduling Jobs across Geo-Distributed
Datacenters with Max-Min Fairness

Li Chen, Shuhao Liu, Baochun Li, Fellow, IEEE, and Bo Li, Fellow, IEEE

Abstract—It has become routine for large volumes of data to be generated, stored, and processed across geographically distributed
datacenters. To run a single data analytic job on such geo-distributed data, recent research proposed to distribute its tasks across
datacenters, considering both data locality and network bandwidth across datacenters. Yet, it remains an open problem in the more
general case, where multiple analytic jobs need to fairly share the resources at these geo-distributed datacenters. In this paper, we
focus on the problem of assigning tasks belonging to multiple jobs across datacenters, with the specific objective of achieving max-min
fairness across jobs sharing these datacenters, in terms of their job completion times. We formulate this problem as a lexicographical
minimization problem, which is challenging to solve in practice due to its inherent multi-objective and discrete nature. To address these
challenges, we iteratively solve its single-objective subproblems, which can be transformed to equivalent linear programming (LP)
problems to be efficiently solved, thanks to their favorable properties. As a highlight of this paper, we have designed and implemented
our proposed solution as a fair job scheduler based on Apache Spark, a modern data processing framework. With extensive evaluations
of our real-world implementation on Amazon EC2 and large-scale simulations, we have shown convincing evidence that max-min
fairness has been achieved and the worst job completion time has been significantly improved using our new job scheduler.

Index Terms—Geo-distributed Datacenter Networks, Wide-Area Big Data Analytics, Scheduling, Fairness

F

1 INTRODUCTION

It is increasingly common for large volumes of data to be
generated and processed in a geographically distributed
fashion, across multiple datacenters around the world.
Popular data analytic frameworks, such as MapReduce
[1] and Spark [2], are extensively employed to process
such large volumes of data efficiently. A data analytic
job typically proceeds in consecutive computation stages,
each of which consisting of a number of computation
tasks that are executed in parallel. To start a new compu-
tation stage, intermediate data from the preceding stage
needs to be fetched, which may initiate multiple network
flows.

When input data is located across multiple datacen-
ters, a naive approach is to gather all the data to be
processed locally within a single datacenter. Naturally,
transferring huge amounts of data across datacenters
may be slow and inefficient, since bandwidth on inter-
datacenter network links is limited [3]. Existing research
(e.g., [4], [5]) has shown that better performance can be
achieved if tasks in an analytic job can be distributed
across datacenters, and located closer to the data to
be processed. In this case, designing the best possible
task assignment strategy to assign tasks to datacenters is

• Li Chen, Shuhao Liu and Baochun Li are with the Department of
Electrical and Computer Engineering, University of Toronto, Canada. E-
mail: {lchen,shuhao,bli}@ece.utoronto.ca. Bo Li is with the Department of
Computer Science and Engineering, The Hong Kong University of Science
and Technology, Hong Kong, China. E-mail: {bli}@cse.ust.hk

• The research is supported in part by the NSERC Collaborative Research
and Development Grant, and by grants from RGC GRF under the
contracts 16211715 and 16206417, a grant from RGC CRF under the
contract C7036-15G.

important, since different strategies lead to different flow
patterns across datacenters, and ultimately, different job
completion times.

When designing optimal task assignment strategies,
however, existing works in the literature [4], [5] only
considered a single data analytic job. The problem of
assigning tasks belonging to multiple jobs across dat-
acenters remains open. Given the limited amount of
resources at each datacenter, multiple jobs are inherently
competing for resources with each other. It is, therefore,
important to maintain fairness when allocating such a
shared pool of resources, which cannot be achieved if
tasks from one job are assigned without considering the
other jobs.

In this paper, we propose a new task assignment
strategy that is designed to achieve max-min fairness
across multiple jobs with respect to their performance,
as they compete for the limited pool of shared resources
across multiple geo-distributed datacenters. To be more
specific, we wish to minimize the job completion times
across all concurrent jobs, while maintaining max-min
fairness. Such a problem can be formally formulated as
a lexicographical minimization problem, which has unique
challenges that make it difficult to solve this problem
with multiple objectives. The task assignment problem
is essentially an integer optimization problem, which in
general is NP-hard [6].

To address these challenges, we first consider the
subproblem of minimizing the worst (longest) job com-
pletion time among all the concurrent jobs, which turns
out to have a totally unimodular coefficient matrix for
linear constraints, based on an in-depth investigation
of the problem structure. Such a nice property guar-

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2795580, IEEE
Transactions on Network Science and Engineering

2

antees that the extreme points in a feasible solution
polyhedron are integers. Moreover, with several steps of
non-trivial transformations, we show that the optimal
solution to the original problem can be obtained by
solving an equivalent problem with a separable convex
objective. With these structures identified, we can then
apply the λ-technique and linear relaxation to obtain a
linear programming (LP) problem, which is guaranteed
to have the same solution to the original problem. As
a result, any LP solver can be used for minimizing the
completion time of each job, and to efficiently compute
the overall assignment decisions that achieve the optimal
completion times with max-min fairness.

To demonstrate the practicality of our proposed so-
lution, we have designed and implemented a new job
scheduler to assign tasks from multiple jobs to geo-
distributed datacenters, in the context of Apache Spark.
Our experimental results on multiple Amazon EC2 dat-
acenters have shown that our new scheduler is effective
in optimizing job completion times and achieving max-
min fairness.

Highlights of our original contributions are as follows.
First, as motivated by our example in Sec. 2, we focus
on jointly assigning tasks from multiple data parallel
jobs across multiple datacenters, which considers the
interplay between these jobs when sharing a limited pool
of datacenter resources. Second, our problem, formulated
as a lexicographical minimization problem in Sec. 3,
has both the discrete and multi-objective nature that
make it challenging to solve. Fortunately, with a careful
investigation of its structure, we are able to identify the
favorable properties of totally unimodular constraints
and a separable convex objective, thus transforming it
into an equivalent LP problem to be efficiently and
elegantly solved (Sec. 4 and Sec. 5). Finally, to show its
effectiveness and practicality, we have completed both
large-scale simulations and a real-world implementation
of our proposed solution within the Spark job scheduling
framework, and conducted extensive evaluations across
multiple datacenters in Amazon EC2 (Sec. 6).

2 BACKGROUND AND MOTIVATION

In this section, we first present an overview of the
execution of a data analytic job whose input data is
stored across geographically distributed datacenters. We
then consider the sharing of resources in these data-
centers across multiple concurrent jobs, and provide a
motivating example to illustrate the need for fair job
scheduling.

2.1 Data Analytic Jobs in the Wide Area
It is typical for a data analytic job to contain tens or hun-
dreds of tasks, supported by a data parallel framework,
such as MapReduce and Spark. These tasks are parallel
to or dependent upon each other, and network flows are
generated between dependent tasks, since tasks in the
subsequent stage need to fetch intermediate data from

tasks in the current stage. For example, in a MapReduce
job, a set of map tasks are first launched to read input
data partitions and generate intermediate results; then
reduce tasks would fetch such intermediate data from
map tasks for further processing, which involves trans-
ferring data over the network.

In the case of running tasks in a data analytic job
across multiple datacenters, data may be transferred over
inter-datacenter links, which may become bottlenecks
due to their limited bandwidth availability. Our design
objective in this paper is to compute the best way to
assign tasks belonging to multiple jobs to geo-distributed
datacenters, so that all jobs can achieve their best possi-
ble performance with respect to their completion times,
without harming the performance of others. This implies
that max-min fairness needs to be achieved across jobs
sharing the datacenters, in terms of their job completion
times.

For a better intuition of our problem, we use Fig. 1
to show an example with two data analytic jobs sharing
three geo-distributed datacenters. For job A, both of its
tasks, tA1 and tA2, require 100 MB of data from input
dataset A1 stored in DC1, and 200 MB of data from A2
located at DC3. For job B, the amounts of data to be
read by task tB1 from dataset B1 in DC2 and B2 in
DC3 are both 200 MB; while task tB2 needs to read 200
MB of data from B1 and 300 MB from B2. These tasks
are to be assigned to available computing slots in the
three datacenters, each with two slots, two slots, and one
slot, respectively. The amounts of available bandwidth of
inter-datacenter links are illustrated in the figure, with
the unit of MB/s.

For each job, a different assignment of its tasks will
lead to flows of different sizes traversing different links,
thus resulting in different job completion times. More-
over, both jobs must share and compete for the same
pool of computing resources across these datacenters.
For example, since DC3 only has one available comput-
ing slot, if we assign a task from one job, tasks from
the other job cannot be assigned. In order to achieve
the best possible performance for both jobs, we need to
consider the placement of their tasks jointly, rather than
independently.

2.2 An Intuition on Task Assignment

We have illustrated two ways of assigning tasks to
datacenters in Fig. 2 and Fig. 3. Intuitively, DC3 is a
favorable location for tasks from both jobs, since they all
have part of their input data stored in this datacenter,
and the links of DC1-DC3 and DC2-DC3 both have high
bandwidth. For simplicity, we assume that all the tasks
are identical, with the same execution time, thus the job
completion time is determined by the network transfer
time. If the scheduler tries to optimize task assignment
of these jobs independently, the result is shown in Fig.2.
To optimize the assignment of job A, task tA2 would be
assigned to the only available computing slot in DC3, and

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2795580, IEEE
Transactions on Network Science and Engineering

3

A1

B1 A2 B2

DC1

DC2 DC3

80
80 150 100

120

160

tA1 tA2Job A

tB1 tB2Job B

available
computation

resource

Fig. 1: An example of scheduling multiple jobs
fairly across geo-distributed datacenters.

A1

B1 A2

DC2

tB1

tA1tB2 tA2

B2

200/100

200/160

300/160

 100/150

100/80

DC3

DC1

200/80

Fig. 2: A task assignment that favors the
performance of job A at the cost of job B.

A1

B1 A2

DC2

tA1

tA2tB1 tB2

B2

200/100

200/160

200/160

 200/120

100/80

DC3

DC1

Fig. 3: The optimal assignment for both job
A and job B.

tA1 would be placed in DC2, which result in a network
transfer time of max{100/80, 200/160, 100/150} = 1.25
seconds. Then, if the scheduler continues to optimize the
assignment of job B, DC1 and DC2 would be selected to
distribute task tB1 and tB2, respectively, resulting in
the transfer time of max{200/80, 200/100, 300/160} = 2.5
seconds for job B.

However, this placement is not optimal when consid-
ering the performance of these jobs jointly. Instead, we
show the optimal assignment for both jobs satisfying
max-min fairness in Fig. 3. With this assignment, task
tB2 of job B would occupy the computing slot in DC3,
which avoids the transfer of 300 MB data from dataset
B2. Task tB1 is assigned to DC2 rather than DC1, which
takes advantage of the high bandwidth of the DC3-DC2
link. As a result, the flow patterns are illustrated in the
figure. In this assignment, the network transfer times
of job A and B are max{200/100, 100/80, 200/160} = 2
seconds, and max{200/160, 200/120} = 5/3 seconds, re-
spectively. Compared with the independent assignment
in Fig. 2 where the worst performance is 2.5 seconds,
this assignment results in the worst network transfer
time of 2 seconds (job A), which is optimal if we wish to
minimize the worst job completion time, and is fair in
terms of the performance achieved by both jobs.

We are now ready to formally construct a mathe-
matical model to study the problem of optimizing task
assignment with max-min fairness across multiple jobs
to be achieved.

3 MODEL AND FORMULATION

We consider a set of data parallel jobs K = {1, 2, · · · ,K}
submitted to the scheduler for task assignment. The
input data of these jobs are distributed across a set
of geo-distributed datacenters, represented by D =
{1, 2, · · · , J}. Each job k ∈ K has a set of parallel
tasks Tk = {1, 2, · · · , nk} to be launched on available
computing slots in these datacenters. We use aj to denote
the capacity of available computing slots in datacenter
j ∈ D.

For each task i ∈ Tk of job k, the time it takes to com-
plete consists of both the network transfer time, denoted
by cki,j , to fetch the input data if the task is assigned
to datacenter j, and the execution time represented by

eki,j . The network transfer time is determined by both
the amount of data to be read, and the bandwidth on
the link the data traverses. Let Ski denote the set of
datacenters where the input data of task i from job k
are stored, called the source datacenters of this task for
convenience. The task needs to read the input data from
each of its source datacenters s ∈ Ski , the amount of
which is represented by dk,si . Let bs,j 1 represent the
bandwidth of the link from datacenter s to datacenter j
(s 6= j). Hence, the network transfer time of task i ∈ Tk,
if assigned to datacenter j, is expressed as follows:

cki,j =

 0, when Ski = {j};
max

s∈Sk
i ,s6=j

dk,si /bsj , otherwise. (1)

This indicates that when all the input data of task i are
stored in the same datacenter j, i.e., Ski = {j}, there
would not be any traffic generated across datacenters,
and thus the network transfer time is 0. Otherwise, task
i fetches data from each of its remote source datacenter
s ∈ Ski , s 6= j with the completion time of dk,si /bsj . As the
network transfer completes when input data from all the
source datacenters have been fetched, the transfer time
cki,j is represented as the maximum of dk,si /bsj over all
the remote source datacenters.

The assignment of a task is represented with a binary
variable xki,j , indicating whether the i-th task of job k
is assigned to datacenter j. A job k completes when its
slowest task finishes, thus the job completion time of
k, represented by τk, is determined by the maximum
completion time among all of its tasks, expressed as
follows:

τk = max
i∈Tk,j∈D

xki,j(c
k
i,j + eki,j) (2)

As the computing slots in all the datacenters are
shared by tasks from multiple jobs, we would like to
obtain an optimal task assignment without exceeding the
resource capacities. To be more specific, our scheduler
would decide the assignment of all the tasks, aiming to

1. On popular cloud platforms (e.g., Amazon EC2 and Google
Could), inter-datacenter wide-area networks are provided as a shared
service, where user-generated flows will compete with millions of other
flows. As a result, each inter-datacenter TCP flow will get a fair share
of the link capacity. Our measurement with iperf3 on EC2 verifies this
assumption.

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2795580, IEEE
Transactions on Network Science and Engineering

4

optimize the worst performance achieved among all the
jobs with respect to their job completion times, and then
optimize the next worst performance without impacting
the previous one, and so on. This is executed repeatedly
until the completion times have been optimized for all
the jobs. Such an objective can be rigorously formulated
as a lexicographical minimization problem, with the follow-
ing definitions as its basis.

Definition 1: Let 〈vvv〉k denote the k-th (1 ≤ k ≤ K)
largest element of vvv ∈ ZK , implying 〈vvv〉1 ≥ 〈vvv〉2 ≥ · · · ≥
〈vvv〉K . Intuitively, 〈v〉〈v〉〈v〉 = (〈vvv〉1, 〈vvv〉2, · · · , 〈vvv〉K) represents
the non-increasingly sorted version of vvv.

Definition 2: For any ααα ∈ ZK and βββ ∈ ZK , if
〈ααα〉1 < 〈βββ〉1 or ∃k ∈ {2, 3, · · · ,K} such that 〈ααα〉k < 〈βββ〉k
and 〈ααα〉i = 〈βββ〉i,∀i ∈ {1, · · · , k− 1}, then ααα is lexicograph-
ically smaller than βββ, represented as ααα ≺ βββ. Similarly,
if 〈ααα〉k = 〈βββ〉k,∀k ∈ {1, 2, · · · ,K} or ααα ≺ βββ, then ααα is
lexicographically no greater than βββ, represented as ααα � βββ.

Definition 3: lexmin
xxx

fff(xxx) represents the lexicographical
minimization of the vector fff ∈ RN , which consists of N
objective functions of xxx. To be particular, the optimal
solution xxx∗ ∈ RK achieves the optimal fff∗, in the sense
that fff∗ = fff(xxx∗) � fff(xxx),∀xxx ∈ RK .

With these definitions, we are now ready to formulate
our optimal task assignment problem among sharing
jobs as follows:

lexmin
xxx

fff = (τ1, τ2, · · · , τK) (3)

s.t. τk = max
i∈Tk,j∈D

xki,j(c
k
i,j + eki,j),∀k ∈ K (4)∑

k∈K

∑
i∈Tk

xki,j ≤ aj , ∀j ∈ D (5)∑
j∈D

xki,j = 1, ∀i ∈ Tk, ∀k ∈ K (6)

xki,j ∈ {0, 1}, ∀i ∈ Tk, ∀j ∈ D, ∀k ∈ K (7)

where constraint (4) represents the completion time of
each job k as aforementioned. Constraint (5) indicates
that the total number of tasks to be assigned to data-
center j does not exceed its capacity aj , which is the
total number of available computing slots. Constraint (6)
implies that each task should be assigned to a single
datacenter.

The objective is a vector fff ∈ RK with K elements,
each standing for the completion time of a particular
job k ∈ K. According to the previous definitions, the
optimal fff∗ is lexicographically no greater than any fff
obtained with a feasible assignment, which means that
when sorting them in a non-increasing order, if their k-
th largest element satisfies 〈fff∗〉k′ = 〈fff〉k′ ,∀k′ < k and
〈fff∗〉k 6= 〈fff〉k, then we have 〈fff∗〉k < 〈fff〉k. This implies
that the first largest element of fff∗, i.e., the slowest
completion time, is the minimum among all fff . Then
among all fff with the same worst completion time, the
second worst completion time in fff∗ is the minimum, and
so on. In this way, solving this problem would result in
an optimal assignment vector xxx∗, with which all the job
completion times are minimized.

4 OPTIMIZING THE WORST COMPLETION
TIME AMONG CONCURRENT JOBS

Problem (3) is a vector optimization with multiple ob-
jectives. In this section, we consider the single-objective
subproblem of optimizing the worst job performance as
follows:

min
xxx

max
k∈K

(τk) (8)

s.t. Constraints (4), (5), (6) and (7).

which is a primary step towards solving the original
problem, to be elaborated in the next section.

Substituting the completion time τk in the objective
with the expression in constraint (4), we have the fol-
lowing problem with the non-linear constraint (4) elim-
inated:

min
xxx

max
k∈K

(max
i∈Tk,j∈D

xki,j(c
k
i,j + eki,j)) (9)

s.t. Constraints (5), (6) and (7).

Though this problem is an integer programming prob-
lem, we will show that it can be transformed into an
equivalent linear programming (LP) problem after an in-
depth investigation of its structure. As a result of such
a transformation, it can be solved efficiently to obtain
the optimal schedule vector xxx. Our transformation takes
advantage of its features of separable convex objective and
totally unimodular linear constraints, and it involves three
major steps to be elaborated in the following subsections.

4.1 Separable Convex Objective

In the first step, we will show that the optimal solution
for Problem (9) can be obtained by solving a problem
with a separable convex objective function, which is
represented as a summation of convex functions with
respect to each single variable xki,j .

We first show that the optimal solution of Problem (9)
can be obtained by solving the following problem:

lexmin
xxx

ggg = (φ(x11,1), · · · , φ(xki,j), · · · , φ(xKnK ,J))

s.t. Constraints (5), (6) and (7).

where φ(xki,j) = xki,j(c
k
i,j + eki,j),∀i ∈ Tk, ∀j ∈ D, ∀k ∈ K,

and ggg is a vector with the dimension of M = |ggg| =
J
∑K
k=1 nk. For this problem, the objective includes min-

imizing the maximum element in ggg, which is the worst
completion time across all the jobs. Therefore, the op-
timal assignment variables xxx∗ that gives ggg∗ is also the
optimal solution for Problem (9).

Let ϕ(ggg) define a function of ggg:

ϕ(ggg) =

|ggg|∑
m=1

|ggg|gm =
M∑
m=1

Mgm

where gm is the m-th element of ggg.
Lemma 1: ϕ(·) preserves the order of lexicographically

no greater (�), i.e., ggg(xxx∗) � ggg(xxx) ⇐⇒ ϕ(ggg(xxx∗)) ≤ ϕ(ggg(xxx)).

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2795580, IEEE
Transactions on Network Science and Engineering

5

Proof: We first consider ααα,βββ ∈ ZK that satisfies
ααα ≺ βββ. If we use the integer k̃(1 ≤ k̃ ≤ K) to
represent the first non-zero element of 〈α〉〈α〉〈α〉−〈β〉〈β〉〈β〉, we have
〈ααα〉k = 〈βββ〉k,∀k̃ ≤ k ≤ K and 〈ααα〉k̃ < 〈βββ〉k̃. Assume
〈ααα〉k̃ = m, then 〈βββ〉k̃ ≥ m+ 1.

ϕ(ααα) =
K∑
k=1

K〈ααα〉k =
k̃−1∑
k=1

K〈ααα〉k +K〈ααα〉k̃ +
K∑

k=k̃+1

K〈ααα〉k

≤ ∑k̃−1
k=1K

〈ααα〉k +K〈ααα〉k̃ + (K − k̃)K〈ααα〉k̃
=

∑k̃−1
k=1K

〈ααα〉k + (K + 1− k̃) ·K〈ααα〉k̃
<

∑k̃−1
k=1K

〈ααα〉k +K ·Km,

where the first inequality holds as 〈ααα〉k̃ ≥ 〈ααα〉k,∀k̃+ 1 ≤
k ≤ K.

ϕ(βββ) =
K∑
k=1

K〈βββ〉k =
k̃−1∑
k=1

K〈βββ〉k +K〈βββ〉k̃ +
K∑

k=k̃+1

K〈βββ〉k

>
∑k̃−1
k=1K

〈βββ〉k +K〈βββ〉k̃ + (K − k̃) · 0
≥ ∑k̃−1

k=1K
〈βββ〉k +K ·Km.

Given that
∑k̃−1
k=1K

〈ααα〉k =
∑k̃−1
k=1K

〈βββ〉k , we have proved
that ϕ(ααα) < ϕ(βββ).

If ααα = βββ, which means that 〈ααα〉k = 〈βββ〉k,∀1 ≤ k ≤ K, it
is trivially true that ϕ(ααα) =

∑K
k=1K

〈ααα〉k =
∑K
k=1K

〈βββ〉k =
ϕ(βββ). Thus, we have proved ααα � βββ =⇒ ϕ(ααα) ≤ ϕ(βββ).

We further prove ϕ(ααα) ≤ ϕ(βββ) =⇒ ααα � βββ by proving
its contrapositive: ¬(ααα � βββ) =⇒ ϕ(ααα) > ϕ(βββ). ¬(ααα � βββ)
implies ααα 6= βββ and the first non-zero element of 〈α〉〈α〉〈α〉−〈β〉〈β〉〈β〉
is positive, which further indicates the first non-zero
element of 〈β〉〈β〉〈β〉 − 〈α〉〈α〉〈α〉 is negative, i.e., βββ ≺ ααα. Thus, the
contrapositive is equivalent to βββ ≺ ααα =⇒ ϕ(βββ) < ϕ(ααα),
which has already been proved previously using the
exchanged notations of ααα and βββ.

With ααα � βββ ⇐⇒ ϕ(ααα) ≤ ϕ(βββ) holding for any ααα
and βββ of the same dimension, we complete the proof by
letting ααα = ggg(xxx∗) and βββ = ggg(xxx).

Based on Lemma 1, we have

lexmin
xxx

ggg ⇐⇒ min
xxx

ϕ(ggg) =
∑
k∈K

∑
i∈Tk

∑
j∈D

Mφ(xk
i,j)

where the objective function ϕ(ggg) is a summation of the
term Mφ(xk

i,j), which is a convex function of the single
variable xki,j .

Therefore, solving Problem (9) is equivalent to solving
the following problem with a separable convex objective:

min
xxx

∑
k∈K

∑
i∈Tk

∑
j∈D

Mφ(xk
i,j) (10)

s.t. Constraints (5), (6) and (7).

4.2 Totally Unimodular Linear Constraints
In the second step, we investigate the coefficient matrix
of linear constraints (5) and (6). An m-by-n matrix is

totally unimodular [6], if it satisfies two conditions: 1) any
of its elements belongs to {−1, 0, 1}; 2) any row subset
R ⊂ {1, 2, · · · ,m} can be divided into two disjoint sets,
R1 and R2, such that |∑i∈R1

aij −
∑
i∈R2

aij | ≤ 1,∀j ∈
{1, 2, · · · , n}.

Lemma 2: The coefficients of constraints (5) and (6)
form a totally unimodular matrix.

Proof: Let Am×n denote the coefficient matrix of all
the linear constraints (5) and (6), where m = J+

∑K
k=1 nk,

representing the total number of the constraints, and n =

J
∑K
k=1 nk, denoting the dimension of the variable xxx.

It is obvious that any element of Am×n is either 0
or 1, satisfying the first condition. For any row subset
R ⊂ {1, 2, · · · ,m}, we can select all the elements that
belong to {1, 2, · · · , J} to form the set R1. As such, R is
divided into two disjoint sets, R1 and R2 = R − R1. It
is easy to check that for coefficient matrix of constraint
(5), the summation of all its rows, represented by rows
{1, 2, · · · , J}, is a 1 × n vector with all the elements
equal to 1. Similarly, for coefficient matrix of constraint
(6), the summation of all its rows, represented by rows
{J + 1, J + 2, · · · , J +

∑K
k=1 nk}, is also a 1 × n vector

whose elements are 1. Hence, we can easily derive
that

∑
i∈R1

aij ≤ 1,
∑
i∈R2

aij ≤ 1,∀j ∈ {1, 2, · · · , n}.
Eventually, we have |∑i∈R1

aij −
∑
i∈R2

aij | ≤ 1, ∀j ∈
{1, 2, · · · , n}, and the second condition is satisfied.

In summary, we have shown that both conditions
for total unimodularity are satisfied, thus the coefficient
matrix Am×n is totally unimodular.

4.3 Structure-Inspired Equivalent LP Transforma-
tion

In the final step, exploiting the problem structure of
totally unimodular constraints and separable convex
objective, we can use the λ-representation technique
[7] to transform Problem (10) to a linear programming
problem that has the same optimal solution.

For a single integer variable y ∈ Y = {0, 1, · · · , Y } ,
the convex function h : Y → R can be linearized with
the λ-representation as follows:

h(y) =
∑
s∈Y

h(s)λs, y =
∑
s∈Y

sλs∑
s∈Y

λs = 1, λs ∈ R+, ∀s ∈ Y.

In our problem, we apply the λ-representation tech-
nique to each convex function hki,j(x

k
i,j) = Mφ(xk

i,j) :
{0, 1} → R as follows:

hki,j(x
k
i,j) =

∑
s∈{0,1}

Ms(cki,j+e
k
i,j)λk,si,j = λk,0i,j +M cki,j+e

k
i,jλk,1i,j

which removes the variable xki,j by sampling at each
of its possible value s ∈ {0, 1}, weighted by the newly

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2795580, IEEE
Transactions on Network Science and Engineering

6

introduced variables λk,si,j ∈ R+,∀s ∈ {0, 1} that satisfy

xki,j =
∑

s∈{0,1}

sλk,si,j = λk,1i,j∑
s∈{0,1}

λk,si,j = λk,0i,j + λk,1i,j = 1

Further, with linear relaxation on the integer con-
straints (7), we obtain the following linear programming
problem:

min
xxx,λλλ

∑
k∈K

∑
i∈Tk

∑
j∈D

(λk,0i,j +M cki,j+e
k
i,jλk,1i,j) (11)

s.t. xki,j = λk,1i,j , ∀k ∈ K, i ∈ Tk, j ∈ D
λk,0i,j + λk,1i,j = 1, ∀k ∈ K, i ∈ Tk, j ∈ D
λk,0i,j , λ

k,1
i,j , x

k
i,j ∈ R+, ∀k ∈ K, i ∈ Tk, j ∈ D

Constraints (5) and (6).

Theorem 1: An optimal solution to Problem (11) is an
optimal solution to Problem (8).

Proof: The property of total unimodularity ensures
that an optimal solution to the relaxed LP problem (11)
has integer values of xki,j , which is an optimal solution to
Problem (10), and thus an optimal solution to Problem
(9) as demonstrated in Sec. 4-A. Moreover, Problem (8)
and (9) are equivalent forms, completing the proof.

Therefore, the optimal assignment that minimizes the
worst completion time among all the jobs can be ob-
tained by solving Problem (11) with efficient LP solvers,
such as MOSEK [8].

5 ITERATIVELY OPTIMIZING WORST COMPLE-
TION TIMES TO ACHIEVE MAX-MIN FAIRNESS

With the subproblem of minimizing the worst comple-
tion time efficiently solved as an LP problem (11), we
continue to solve our original multi-objective problem
(3) by minimizing the next worst completion time re-
peatedly.

After solving the subproblem, it is known that the
optimal worst completion time is achieved by job k∗,
whose slowest task i∗ is assigned to datacenter j∗. We
then fix the computed assignment of the slowest task
of job k∗, which means that the corresponding schedule
variable xk

∗

i∗,j∗ is removed from the variable set xxx for
the next round. Also, since task i∗ is to be assigned
to datacenter j∗, it is intuitive that all the assignment
variables associated with it should be fixed as zero and
removed from xxx: xk

∗

i∗,j = 0,∀j 6= j∗, j ∈ D.
As we have fixed a part of the assignment, the

resource capacities should be updated in our prob-
lem constraints in the next round. For example, if
xk
∗

i∗,j∗ = 1, which means that the i∗th task of job k∗

would be assigned to datacenter j∗, then for the prob-
lem in the next round, xk

∗

i∗,j∗ is no longer a variable.
The resource capacity constraints should be updated as∑
k∈K

∑
i∈Tk,(k,i) 6=(k∗,i∗) x

k
i,j∗ ≤ aj∗ − 1.

Algorithm 1: Performance-Optimal Task Assignment
among Jobs with Max-Min Fairness.
Input:

Input data sizes dk,si and link bandwidth bsj to
obtain network transfer time cki,j (by Eq. 1);
execution time eki,j ; datacenter resource capacity aj ;

Output:
Task assignment xki,j ,∀k ∈ K,∀i ∈ Tk,∀j ∈ D;

1: Initialize K′ = K;
2: while K′ 6= ∅ do
3: Solve the LP Problem (11) to obtain the solution

xxx;
4: Obtain xj

∗

k∗,i∗ = argmax
xk
i,j∈xxx

φ(xki,j);

5: Fix xk
∗

i∗,j ,∀j ∈ D; remove them from variable set
xxx;

6: Update the corresponding resource capacities in
Constraints (5);

7: Set φ(xk
∗

i,j) = xk
∗

i,j(c
k∗

i∗,j∗ + ek
∗

i∗,j∗), ∀i ∈ Tk∗ ,∀j ∈ D;
8: Remove k∗ from K′;
9: end while

DC2

tA1

DC3

DC1

4s

tA2

tB2

3s

tB1

2.5s2s

DC2

tA1

DC3

DC1

4s

tB2

tA2

2s

tB1

3.5s2s

(a) (b)

Fig. 4: Two possible assignments of tasks from two jobs.

Moreover, the completion time of job k∗ is obtained
as φ(xk

∗

i∗,j∗), the completion time of its slowest task i∗

assigned to datacenter j∗, yet the assignment of other
tasks has not been fixed, which would be the variables
(xk
∗

i,j ,∀(i, j) 6= (i∗, j∗)) of the problem in the next round.
We set the associated completion times of these variables
as xk

∗

i,j(c
k∗

i∗,j∗+e
k∗

i∗,j∗). The rationale is that no matter how
fast other tasks of k∗ complete, the completion time is
determined by the slowest task i∗. This ensures that the
completion time optimized in the next round is achieved
by another job, rather than a task of job k∗ (other than
its slowest). This is better illustrated with the example
in Fig. 4.

In this example, after the calculation in the first round,
task tA1 assigned in DC2 achieves the worst completion
time of 4s, among the two sharing jobs. In the second
round, if we do not change the associated completion
time for another task tA2, assignment (a) would be
calculated as the optimal solution, since it achieves the
completion times of (4, 3, 2.5, 2) for the four tasks, which
is lexicographically smaller than (4, 3.5, 2, 2) achieved by
assignment (b). However, assignment (a) minimizes the
next worst completion time for another task of the same
job A, which does not match our original objective to
optimize the worst completion time for job B. Instead, if

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2795580, IEEE
Transactions on Network Science and Engineering

7

Optimization
(Algorithm 1)

Assigned
TaskSet

Task Scheduler

Solution

Submit
TaskSet

Resource
Offer

Scheduling
Pool

DAG
Scheduler

Cluster
Manager

Expire or

Enough jobs

To be launched

xk
i,j

≤ aj
j
dk,si /b

Fig. 5: The implementation of our task assignment algorithm in Spark.

we set the associated completion times of all job A’s tasks
as 4, the objective function achieved by assignment (b)
would be (4, 4, 2, 2), better than (4, 4, 2.5, 2) given by as-
signment (a). In this way, the optimization can correctly
choose assignment (b) to achieve the optimal completion
time of job B. Note that although the completion time of
task tA2 in assignment (b) is longer than in assignment
(a), the completion time of job A remains the same, which
is 4s.

As a result, the subproblem in the next round is
solved over a decreased set of variables with updated
constraints and objectives, so that the next worst job
completion time would be optimized, without impact-
ing the worst job performance in this round. Such a
procedure is repeatedly executed until the last worst
completion time of jobs has been optimized, and the
max-min fairness has been achieved, as summarized in
Algorithm 1.

6 PERFORMANCE EVALUATION

Having proved the theoretical optimality and efficiency
of our scheduling solution, we proceed to implement it
in Apache Spark, and demonstrate its effectiveness in op-
timizing job completion times in real-world experiments.
Moreover, we present an extensive array of large-scale
simulation results to demonstrate the effectiveness of our
algorithm in achieving max-min fair job performance.

6.1 Real-World Implementation and Experiments

6.1.1 Design and Implementation
In Apache Spark [2], a job can be represented by a Di-
rected Acyclic Graph (DAG), where each node represents
a task and each directed edge indicates a precedence
constraint. In general, the problem of assigning all the
tasks in a DAG to a number of worker nodes, with
the objective of minimizing the job completion time, is
known as NP-Complete [9]. As a practical and efficient
design, Spark schedules tasks stage by stage, which is
handled by the DAG scheduler. When a job is submitted,
it is transformed into a DAG of tasks, categorized into
a set of stages. The DAG scheduler will then submit the
tasks within each stage, called a TaskSet, to the task
scheduler whenever the stage is ready to be scheduled,
implying that all its parent stages have completed.

Fortunately, the task scheduler in Spark has access
to most of the information that our algorithm needs as
its input. As a result, we have implemented our new
task assignment algorithm as an extension to Spark’s
TaskScheduler module. The design of our implemen-
tation is illustrated in Fig. 5. In our implementation,
as soon as a TaskSet in a job has been submitted
by the DAG scheduler to the task scheduler, they will
be immediately queued in the scheduling pool. With a
number of concurrent jobs waiting to be scheduled, our
algorithm will be triggered when a preset timer expires
or when the number of pending jobs in the pool exceeds
a certain threshold.

To optimize the assignment of tasks, our algorithm
requires knowledge about the size and location of the
output data from each map task, represented by dk,si in
our formulation. Such knowledge can be obtained from
the MapOutputTracker, which are further saved in
the TaskSet of reduce tasks. The available bandwidth
(bsj) between each pair of datacenters (s to j) can be
measured with the iperf2 utility. The task execution
time eki,j can be obtained from historical data, which is
the common practice for recurrent jobs. (We can also
utilize advanced prediction techniques such as [10] to
estimate the task execution time in our future work.)
In addition, information about the amount of available
resources, corresponding to aj in our formulation, can
be obtained from the cluster manager. Now that all the
input required by our algorithm is ready, an optimal
assignment will be computed for all the tasks in the
scheduling pool, through iteratively formulating and
solving updated versions of linear programming prob-
lems, solved by the LP solver in the Breeze optimiza-
tion library [11].

After the assignment has been computed, it will be
recorded in the corresponding TaskSet, overriding the
original task assignment preferences. When the tasks
are finally submitted for execution, these assignment
preferences will be satisfied in a greedy manner. Since
the scheduling decisions will satisfy resource constraints
by considering Resource Offers, each task in the TaskSet
can be launched in any available computing slot in the
assigned datacenter.

6.1.2 Experimental Setup

We are now ready to evaluate our real-world imple-
mentation with an extensive set of experiments de-
ployed across 6 datacenters in Amazon EC2, located
in a geographically distributed fashion across different
continents. The available bandwidth between each pair
of datacenters, measured with the iperf2 utility and
averaged over 5 measurements over the period of 20
minutes, is shown in Table 1. Compared to the intra-
datacenter network where the available bandwidth is
around 1 Gbps, bandwidth on inter-datacenter links are
much more limited: almost all inter-continental links
have less than 100 Mbps of available bandwidth. This

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2795580, IEEE
Transactions on Network Science and Engineering

8

TABLE 1: Available bandwidth across geo-distributed datacenters
(Mbps).

Virginia Oregon Ireland Sing Sydney SP
Virginia 1000 169 154 52 53 104
Oregon - 1000 71 69 77 68
Ireland - - 1000 49 40 65

Singapore - - - 1000 58 35
Sydney - - - - 1000 38

San Paulo - - - - - 1000
“Sing” is short for “Singapore”, and “SP” is short for “San Paulo”.

confirms the observation that transferring large volumes
of data across datacenters is likely to be time-consuming.

In our experiments, we have used a total of 12 on-
demand Virtual Machine (VM) instances as Spark work-
ers in our Spark cluster, located across 6 datacenters.
Two special VM instances in Virginia (us-east-1) have
been used as the Spark master node and the Hadoop
File System (HDFS) [12] Name Node, respectively. All
instances are of type m3.large, each with 2 vCPUs,
7.5 GB of memory, and a 32GB Solid-State Drive. In
each instance, we run Ubuntu Server 14.04 LTS 64-bit
(HVM), with Java 1.8 and Scala 2.11.8 installed. Hadoop
2.6.4 is installed to provide HDFS support for Spark. Our
own implementation of the task assignment algorithm
is based on Spark 1.6.1, a recent release as of July 2016.
Our Spark cluster runs in the standalone mode, with
all configurations left as default. No external resource
manager (e.g., YARN) or database system is activated.

In order to illustrate the efficiency of our task assign-
ment algorithm, we use the legacy Sort application
as the benchmark workload. We choose this workload
because it is simple but primitive. As one of the simplest
MapReduce applications, Sort has only one map and
one reduce stage. However, its sortByKey() operation
is a basic building block for many complex data analytics
applications, especially in Spark SQL. It triggers an all-
to-all shuffle, which introduces heavier cross-node traffic
than other reduce operations such as reduceByKey().

In our experiments, we have implemented a Sort
application with multiple jobs, and submitted it to Spark
for execution. The jobs are submitted to Spark in parallel
threads, triggering concurrent jobs to share the resources
in the cluster. Therefore, the task assignment decisions
for these concurrent jobs will be made and enforced by
our implementation in the TaskScheduler. To evaluate
the performance under different workloads, we run the
workload with 3, 4 and 5 concurrent jobs as separate
experiments.

For each Sort job in our benchmark application, the
default parallelism is set to 3. In other words, the job will
trigger 3 reduce tasks to sort the input dataset, which has
3 partitions distributed on 3 randomly chosen worker
nodes. The input dataset is prepared as a step in the map
task. Each partition of the generated dataset is 100 MB in
size, containing 10,000 key-value pairs. Then, as the start
of the reduce task, these key-values will be shuffled
over the network. Since each datacenter has only two
workers, a fraction of the shuffled traffic will be sent over

inter-datacenter network links, which are likely to be the
performance bottleneck. Our task assignment algorithm
is specifically designed to mitigate the negative effects
of such bottlenecks.

6.1.3 Experimental Results
We conducted three groups of experiments, with 3, 4,
and 5 concurrent jobs, respectively. In the first two
groups, each job has three tasks; while in the third
group, the total number of tasks of the five jobs is set
as the total number of available computing slots, which
is 12 in our Spark cluster. In each experiment, the job
completion times achieved with our optimal task assign-
ment algorithm is compared with that achieved with the
default scheduling in Spark, used as the baseline in our
comparison study.

The results of our experiments are presented in Fig. 6
and Fig. 7, showing the worst completion times and the
second worst completion times among concurrent jobs,
respectively. With respect to the worst completion time,
it is easy to see that our algorithm always performs
better than the baseline in Spark, with a performance
improvement of up to 66%, as shown in Fig. 6. With re-
spect to the second worst completion time, our algorithm
does not theoretically guarantee that it is smaller than
that achieved with any unfair placement. Even without
guarantees, our algorithm always shows better perfor-
mance than the baseline in Spark. These experiments
have shown convincing evidence that our algorithm
— optimizing for max-min fairness — is effective in
maximizing the worst completion time and achieving
best possible performance for all concurrent jobs.

To offer a more in-depth examination and show why
such a performance improvement can be achieved, we
consider the 7-th run in the second group of our ex-
periment, with the sharing relationship and bandwidth
shown in Fig. 8. The six circles represent the six datacen-
ters used in our experiment. A1 is located in the Virginia
datacenter, representing the data required by tasks from
job A. For each task in job A to be scheduled, a fraction of
data needs to be read from all the three datasets (A1, A2
and A3). As each datacenter has two available computing
slots, the assignment of 12 tasks from four jobs becomes a
one-to-one mapping. In such a limited resource scenario,
the assignment of a task is tightly coupled with each
other. It becomes more difficult for the default strategy
in Spark to find a good assignment, without optimiz-
ing across all the tasks. Moreover, the wide range of
available bandwidth between datacenters is not taken
into consideration by the default scheduling in Spark,
which also explains the performance improvement of
our strategy over the baseline.

Furthermore, to evaluate the practicality of our al-
gorithm, we have recorded the time it takes to calcu-
late optimal solutions. Fig. 9 illustrates the computation
times, each averaged over 10 runs, with the number of
variables varying from 12 to 120. The linear program
in our algorithm is efficient, as it takes about 1 second

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2795580, IEEE
Transactions on Network Science and Engineering

9

2 4 6 8 10
Sorted Runs for 3 Jobs

40

60

80

100
W

o
rs

t
JC

T
 (

s)
Fair

Baseline

2 4 6 8 10
Sorted Runs for 4 Jobs

40

60

80

100

W
o
rs

t
JC

T
 (

s)

Fair

Baseline

2 4 6 8 10
Sorted Runs for 5 Jobs

40

60

80

100

120

W
o
rs

t
JC

T
 (

s)

Fair

Baseline

Fig. 6: The worst job completion time in a set of concurrent jobs.

2 4 6 8 10
Sorted Runs for 3 Jobs

20

40

60

80

100

S
e
co

n
d
 W

o
rs

t
JC

T
 (

s) Fair

Baseline

2 4 6 8 10
Sorted Runs for 4 Jobs

40

60

80

100

S
e
co

n
d
 W

o
rs

t
JC

T
 (

s) Fair

Baseline

2 4 6 8 10
Sorted Runs for 5 Jobs

40

60

80

100

S
e
co

n
d
 W

o
rs

t
JC

T
 (

s) Fair

Baseline

Fig. 7: The second-worst job completion time in a set of concurrent jobs.

Vir Ore

SP Ire

Sy Sin

169

104 71

49

58

38

154

52

53 69

7768

40

65

35

A1
B1 A2

B2

A3

D2

B3

C3

C2

D3

C1

D1

Fig. 8: The location of input data for four jobs across six datacenters.

12 24 36 48 72 120
0

0.5

1

1.5

2

2.5

3

The number of variables

A
lg

o
ri
th

m
 r

u
n

n
in

g
 t

im
e

 (
s
)

Fig. 9: The computation times of our algorithm at different scales.

to obtain the solution for 48 variables. The computation
time is less than 3 seconds for 120 variables, which
is acceptable compared with the transfer times across
datacenters that could be tens or hundreds of seconds.
In our experiment, the algorithm is running in the VM
with 2 vCPUs. We envision that with more powerful
servers for the scheduler in a production environment,
the running time could be even smaller.

6.2 Large-Scale Simulations

We further present the results and analysis of our ex-
tensive simulations on our scheduling algorithm, to
evaluate its effectiveness and performance at a finer
granularity.

To allow simulations at a large scale, we implemented
our simulator in JAVA, using the efficient CPLEX op-
timizer [13] to solve our LP problems. We conducted
an extensive set of simulations, each with 50 and 100
concurrent jobs, respectively. The setting of the simu-
lated inter-datacenter network is in consistent with our
real-world experiment setting, where 6 geographically
distributed datacenters are interconnected by links with
bandwidth capacities shown in Table 1. For simplicity,
each job has 10 tasks and each task has three partitions
of input data, which are randomly distributed across all
the datacenters. The size of input data is uniformly dis-
tributed in the range of [50, 600] MB. The total resource
capacity, i.e., the total amount of available computing
slots, across all the datacenters is set as 1, 1.1, 1.5, 2.5, 5
and 10 times the total number of tasks (represented as
1X , 1.1X , 1.5X , 2.5X , 5X and 10X), respectively in each
group of simulation, to represent the different degrees of
resource competition.

We compare our proposed algorithm, referred to as
OPTIMAL, with two baselines — LOCAL and CENTRAL.
LOCAL refers to the default Spark scheduling algorithm
applied in the wide-area scenario, which tries to allocate
tasks to the datacenter where their input data are stored.
If such a data locality can not be satisfied for the lack
of sufficient resources, LOCAL will randomly select a
datacenter with available resources for task assignment.
CENTRAL refers to the algorithm which attempts to
assign all the tasks of a job to one or a few main

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2795580, IEEE
Transactions on Network Science and Engineering

10

6 8 10 12 14
Job Completion Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

p
ir

ic
a
l
C

D
F

OPTIMAL
LOCAL
CENTRAL

(a) Even and Loose (2X)

6 8 10 12 14
Job Completion Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

p
ir

ic
a
l
C

D
F

OPTIMAL
LOCAL
CENTRAL

(b) Even and Tight (1.1X)

5 6 7 8 9 10
Job Completion Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

p
ir

ic
a
l
C

D
F

OPTIMAL
LOCAL
CENTRAL

(c) Skew and Loose (2X) (d) Skew and Tight (1.1X)

Fig. 10: The CDFs of job completion times for 50 concurrent jobs, achieved with three algorithms, with different resource availability.

6 8 10 12 14
Job Completion Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

p
ir

ic
a
l
C

D
F

OPTIMAL
LOCAL
CENTRAL

(a) Even and Loose (2X)

6 8 10 12 14
Job Completion Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

p
ir

ic
a
l
C

D
F

OPTIMAL
LOCAL
CENTRAL

(b) Even and Tight (1.1X)

4 5 6 7 8 9 10
Job Completion Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

p
ir

ic
a
l
C

D
F

OPTIMAL
LOCAL
CENTRAL

(c) Skew and Loose (2X) (d) Skew and Tight (1.1X)

Fig. 11: The CDFs of job completion times for 100 concurrent jobs, achieved with three algorithms, with different resource availability.

datacenters as long as computing slots are available. It
represents the most naive way of running data analytics
in the wide area, which aggregates all the input data to
a central datacenter and thus run all the tasks within a
single cluster.

Our primary evaluation metrics are the completion
times of concurrent jobs and the improvement ratio
of the worst performance among concurrent jobs. To
be more specific, for a job whose completion time is
opt with our algorithm and baseline with a baseline
algorithm, the improvement ratio is calculated as (opt−
baseline)/baseline×100%, of which the maximum is 100%.

Impact of Resource Availability. We first present a
group of results with different settings of resource avail-
ability. Fig. 10 and Fig. 11 illustrate the empirical CDFs of
job completion times across all the 50 and 100 concurrent
jobs, respectively. Each subfigure presents the CDFs of
job completion times achieved with the three comparing
algorithms (OPTIMAL, LOCAL and CENTRAL), given
different settings of resource distribution and competi-
tion degree. It is easily observed in all the figures that our
algorithm always outperforms the baselines with respect
to improving the worst job completion time.

Competition Degree: Tight vs. Loose. Fig. 10a and Fig. 10b
illustrate the completion times of 50 concurrent jobs
when all the available computing slots are evenly dis-
tributed across all the datacenters. The degrees of re-
source competition are set as 2X (loose) and 1.1X (tight)
for Fig. 10a and Fig. 10b, representing that the total
numbers of available slots are 2 and 1.1 times the total
number of tasks, respectively. As we observe, when the
resource competition becomes more intense, i.e., there
is a tight budget of resource, the difference between
our algorithm and the baselines becomes more obvious.

This implies that our algorithm shows more benefits in
resolving competitions with our max-min fairness when
the budget of resource is tight. In a similar vein, when
the available computing slots are skew in distribution,
our OPTIMAL also achieves shorter job completion times
than the baselines, and the advantage has an increasing
trend with a tighter budget of resources, as demonstrated
by Fig. 10c and Fig. 10d. The similar analysis applies to
Fig. 11 when the number of concurrent jobs is increased
to 100.

Resource Distribution: Skew vs. Even. Given a fixed
degree of resource competition, our algorithm shows
more advantage in the case of a even resource distri-
bution, compared with a skew one. This can be easily
demonstrated by comparing Fig. 10a and Fig. 10c for
the loose case, and comparing Fig. 10b and Fig. 10d for
the tight case. Also, Fig. 11 shows a similar pattern. The
explanation for such a pattern is that when the resource
is evenly distributed, our algorithm has a larger space
for optimizing the task placement, and thus exhibit more
performance improvement.

Average Improvement Ratio. Apart from the detailed
case study for Fig. 10 and Fig. 11, we further present per-
formance improvement ratios achieved with 6 degrees
— 1X , 1.1X , 1.5X , 2.5X , 5X and 10X — of resource
competition, for 50 and 100 jobs, respectively, where
the available computing slots are randomly distributed
across the datacenters. Specifically, the performance im-
provement ratio is the percentage of reduction in the
worst completion time among all the concurrent jobs
achieved by our OPTIMAL, compared with the baseline
LOCAL. Fig. 12 and Fig. 13 show the empirical CDFs
of the improvement ratio over 20 runs, for 50 and
100 concurrent jobs, respectively. Moreover, the average

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2795580, IEEE
Transactions on Network Science and Engineering

11

20 25 30 35 40 45 50
Improvement Ratio (%)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

p
ir

ic
a
l
C

D
F

1
1.1

1.5
2.5

5
10

Fig. 12: CDFs of improvement ratios for 50
jobs over 20 runs. (OPTIMAL vs. LOCAL)

Fig. 13: CDFs of improvement ratios for 100
jobs over 20 runs. (OPTIMAL vs. LOCAL)

50 jobs 100 jobs
0

10

20

30

40

50

60

A
v
e
ra

g
e
 I
m

p
ro

v
e
m

e
n
t

R
a
ti

o 46
47

46 47
44

47

42 43

34 3433

27

1x
1.1x
1.5x
2.5x
5x
10x

Fig. 14: Average improvement ratios with different re-
source availability for 50 and 100 jobs.

(a) Even and Loose (2X)

6.0 6.5 7.0 7.5
Job Completion Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

p
ir

ic
a
l
C

D
F

FinalRound
FirstRound

(b) Even and Tight (1.1X)

5.0 5.5 6.0 6.5 7.0 7.5
Job Completion Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

p
ir

ic
a
l
C

D
F

FinalRound
FirstRound

(c) Skew and Loose (2X)

5.5 6.0 6.5 7.0 7.5
Job Completion Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

p
ir

ic
a
l
C

D
F

FinalRound
FirstRound

(d) Skew and Tight (1.1X)

Fig. 15: The CDFs of job completion times for 100 concurrent jobs, achieved in the first round and the final round of OPTIMAL.

performance improvement ratios are presented in Fig. 14
for intuitive comparison.

Clearly, our algorithm achieves a performance im-
provement of 27% to 47% over Local. With a larger degree
of resource competition (i.e., with more available com-
puting slots), the improvement ratio becomes smaller.
The reason is that our algorithm always seeks for the
optimal solution in minimizing the worst job completion
time, despite the degree of competition. However, the
performance of LOCAL is impacted by the resource
availability. With more resources, LOCAL can achieve
data locality for more tasks, which avoids stragglers and
improves job completion times. Therefore, the advantage
of our algorithm becomes less obvious for the 2.5X ,
5X and 10X cases. The higher standard deviation for
these cases can be explained by the randomness in plac-
ing tasks that can not achieve data locality in LOCAL.
Though the total amount of slots is larger, some tasks
may still fail to achieve data locality, as the resources
are skew in distribution.

Improvement Over Rounds with OPTIMAL. Now we
focus on the behavior of our algorithm by investigating
the calculated task scheduling decisions over rounds.
To be particular, we calculate the job completion times
if scheduled with the temporary decision calculated in
the first round and the final decision after the final
round, respectively. We find that the job completion
times achieved in these two rounds are the same for
most cases. For the remaining cases, the improvement
achieved in the final round over the first round is
marginal. We present the CDFs of completion times for
100 concurrent jobs achieved in the first round and the

The number of variables
120 600 1200 6000 12000

A
lg

o
ri
th

m
 r

u
n
n
in

g
 t
im

e
 (

s
)

0

0.5

1

1.5

2

2.5

Fig. 16: The computation times of our algorithm in large-scale simula-
tions, with different scales.

final round of our algorithm, respectively, in Fig. 15.
The settings of the four subfigures are the same with
Fig. 11. As clearly illustrated, the performance in the
final round shows no difference with the first found in
Fig. 15c, and is slightly better in Fig. 15a, 15b and 15d.
The improvement is due to the iterative optimization
of our algorithm in improving performance of some
jobs without impacting others, which has been clearly
illustrated in Sec. 5. These figures imply that the opti-
mization in the first round is the major contributor to the
performance improvement of our algorithm. The space
for further improvement over later rounds depends on
specific cases and is not large.

Scalability. Furthermore, as in our real-world exper-
iment, we have measured the running times with dif-
ferent problem scales in our simulations to evaluate
the scalability of our algorithm. The measured compu-
tation time with each problem scale is averaged over

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2795580, IEEE
Transactions on Network Science and Engineering

12

10 runs. Fig. 16 illustrates the computation times when
the number of variables ranges from 120 to 12000. As
the CPLEX solver used in simulations is more efficient,
solving the problem with 120 variables only takes less
than 0.5 seconds, which is much faster than the solver
in Breeze used in our experiment. When the number of
variables grows beyond ten thousands, the computation
time is still less than 2.5 seconds.

7 DISCUSSION

Adaptation to Network Heterogeneity. Distributed data
analytics depends heavily on the reliability and the
performance of the underlying networks, due mainly to
its abundant demand for data exchange among tasks.
However, the networks, being best-effort and shared
among many, can hardly deliver consistent or pre-
dictable Quality of Service, especially in the wide area
networks. As a result, data analytics jobs usually suf-
fer from performance degradation due to spatial and
temporal network heterogeneity: different links can offer
different capacities at the same time, while the available
capacity of a link can vary over time. It remains an open
problem to deal with these two types of heterogeneity
in data analytics systems adaptively and in real-time.
Solving this problem requires to identify the hetero-
geneity effectively and to adjust the job scheduling with
the awareness of application-level workload. Our work
offers a preliminary solution which accounts for the
spatial network heterogeneity. To be adaptive to the tem-
poral heterogeneity, we can monitor the bandwidth and
run our algorithm periodically or when the bandwidth
dynamics exceeds a certain threshold.

Economic-Based Resource Allocation. It would be
interesting to investigate the problem of task assignment
for data analytic jobs among geo-distributed datacenters
from the game theoretic perspective. For example, in
the framework of auctions, each job can be viewed as
a buyer bidding for multiple goods, in the form of
computing slots, from multiple datacenters. Different
from conventional resource allocation where the utility
of a user is determined by the summation of the total
amount of resources received, allocating resources for
data analytic jobs suffers from the challenge that the job
performance is determined by the slowest task, which
means that the utility is not determined by a simple
summation of resources. Such a non-additive nature may
significantly change the problem structure and introduce
complexities in identifying the optimal solution. It is an
interesting direction to be explored in our future work.

8 RELATED WORK

With increasingly large volumes of data generated glob-
ally and stored in geo-distributed datacenters, it has
received an increasing amount of research attention to
deploying data analytic jobs across multiple datacenters.
Based on their objectives, existing efforts can be roughly
divided into two categories: reducing the amount of

inter-datacenter network traffic to save operation costs,
and reducing the job completion time to improve appli-
cation performance.

Vulimiri et al. [3], [14] took the initiative to reduce the
amount of data to be moved across datacenters when
running geo-distributed data analytic jobs. To reduce the
bandwidth cost, they formulated an integer program-
ming problem to optimize the query execution plan and
the data replication strategy. They also took advantage
of the abundant storage resources to aggressively cache
results of queries, to be leveraged by subsequent queries
to reduce data transfers. Pixida [15] proposed to divide
the DAG of a job into several parts, each to be executed
in a datacenter, with the objective of minimizing the total
amount of traffic among these divided parts. Despite
reducing traffic across datacenters, these solutions do not
necessarily shorten job completion times, as bandwidth
availability varies across different links and over time.

As a representative work in the second category, Irid-
ium [4] proposed an online heuristic to place both data
and tasks across datacenters. Unfortunately, it assumes
that the wide-area network that interconnects datacen-
ters is free of congestion, which is far from realistic.
Flutter [5] removed this unrealistic assumption, formu-
lated a lexicographical minimization problem of task
assignment for a single stage of one job, and obtained
its optimal solution. However, all existing works focused
on assigning tasks in a single job, without considering
the inherent competition for resources among concurrent
jobs. Despite using a similar theoretical foundation as
[5], our problem considers multiple jobs, and is therefore
remarkably different and more challenging.

Accounting for the scenario of multiple jobs sharing
geo-distributed datacenters, Hung et al. [16] proposed
a greedy scheduling heuristic to make job scheduling
decisions across geo-distributed datacenters, with an
objective of reducing the average job completion time.
However, it assumes that the task assignment is pre-
determined, and the scheduling decision is the execu-
tion order of all the assigned tasks in each datacenter.
Therefore, despite sharing a similar context of consider-
ing multiple jobs sharing the same pool of computing
resources in geo-distributed datacenters, this work is
orthogonal to our work, which aims to determine the
best possible placement for tasks of all the sharing jobs
with the consideration of fairness. As an extension to
our previous conference paper [17], we have added
results and analysis of an extensive set of large-scale
simulations, to comprehensively explore the behavior of
our algorithm.

There are plenty of existing efforts [18]–[20] related
to task assignment and job scheduling in big data ana-
lytic frameworks. To reduce job completion times, they
proposed to improve data locality and fairness [18],
[19], and to mitigate the negative impact of tasks that
progress slowly, called stragglers ([20]). However, they
are all designed for frameworks deployed in a single
datacenter, and do not work effectively across multiple

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2795580, IEEE
Transactions on Network Science and Engineering

13

datacenters.

9 CONCLUDING REMARKS
In this paper, we have conducted a theoretical study
of the task assignment problem among competing data
analytic jobs, whose input data are distributed across
geo-distributed datacenters. With tasks from multiple
jobs competing for the computing slots in each dat-
acenter, we have designed and implemented a new
optimal scheduler to assign tasks across these datacen-
ters, in order to better satisfy job requirements with
max-min fairness achieved across their job completion
times. To achieve this objective, we first formulated a
lexicographical minimization problem to optimize all the
job completion times, which is challenging due to the
inherent complexity of both multi-objective and discrete
optimizations. To address these challenges, we started
from the single-objective subproblem and transformed
it into an equivalent linear programming (LP) problem
to be efficiently solved in practice, based on an in-depth
investigation of the problem structure. An algorithm is
further designed to repeatedly solve an updated ver-
sion of the LP subproblems, which would eventually
optimize all the job performance with max-min fairness
achieved. Last but not the least, we have implemented
our performance-optimal scheduler in the popular Spark
framework, and demonstrated convincing evidence on
the effectiveness of our new algorithm using both real-
world experiments and large-scale simulations.

REFERENCES
[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Process-

ing on Large Clusters,” Communications of the ACM, vol. 51, no. 1,
pp. 107–113, 2008.

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. Franklin, S. Shenker, and I. Stoica, “Resilient Distributed
Datasets: A Fault-Tolerant Abstraction for in-Memory Cluster
Computing,” in Proc. USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2012.

[3] A. Vulimiri, C. Curino, P. Godfrey, T. Jungblut, J. Padhye, and
G. Varghese, “Global Analytics in the Face of Bandwidth and Reg-
ulatory Constraints,” in Proc. USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2015.

[4] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella,
P. Bahl, and I. Stoica, “Low Latency Geo-Distributed Data Ana-
lytics,” in Proc. ACM SIGCOMM, 2015.

[5] Z. Hu, B. Li, and J. Luo, “Flutter: Scheduling Tasks Closer to Data
Across Geo-Distributed Datacenters,” in Proc. IEEE INFOCOM,
2016.

[6] B. Korte and J. Vygen, Combinatorial Optimization: Theory and
Algorithms, 3rd ed., ser. Algorithms and Combinatorics. Springer,
2006, vol. 21, ch. 5, p. 104.

[7] R. Meyer, “A Class of Nonlinear Integer Programs Solvable by A
Single Linear Program,” SIAM Journal on Control and Optimization,
vol. 15, no. 6, pp. 935–946, 1977.

[8] E. Andersen and K. Andersen, “The MOSEK Interior Point Opti-
mizer for Linear Programming: an Implementation of the Homo-
geneous Algorithm,” in High Performance Optimization. Springer,
2000, pp. 197–232.

[9] Y. Kwok and I. Ahmad, “Static Scheduling Algorithms for Allo-
cating Directed Task Graphs to Multiprocessors,” ACM Computing
Surveys (CSUR), vol. 31, no. 4, pp. 406–471, 1999.

[10] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, B. Smith, and
R. H. Katz, “Selecting the Best VM across Multiple Public Clouds:
A Data-Driven Performance Modeling Approach,” in Proc. ACM
Symposium on Cloud Computing (SOCC), 2017.

[11] Breeze: A Numerical Processing Library for Scala. [Online].
Available: http://www.scalanlp.org

[12] Hadoop. [Online]. Available: https://hadoop.apache.org/
[13] CPLEX Optimizer: High-Performance Mathematical Program-

ming Solver. [Online]. Available: https://www-01.ibm.com/
software/commerce/optimization/cplex-optimizer/

[14] A. Vulimiri, C. Curino, P. Godfrey, K. Karanasos, and G. Varghese,
“WANalytics: Analytics for A Geo-Distributed Data-Intensive
World,” in Proc. Conference on Innovative Data Systems Research
(CIDR), 2015.

[15] K. Kloudas, M. Mamede, N. Preguiça, and R. Rodrigues, “Pixida:
Optimizing Data Parallel Jobs in Wide-Area Data Analytics,”
VLDB Endowment, vol. 9, no. 2, pp. 72–83, 2015.

[16] C. Hung, L. Golubchik, and M. Yu, “Scheduling Jobs Across
Geo-Distributed Datacenters,” in Proc. ACM Symposium on Cloud
Computing (SoCC), 2015.

[17] L. Chen, S. Liu, B. Li, and B. Li, “Scheduling Jobs across Geo-
Distributed Datacenters with Max-Min Fairness,” in Proc. IEEE
INFOCOM, 2017.

[18] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay Scheduling: A Simple Technique for Achiev-
ing Locality and Fairness in Cluster Scheduling,” in Proc. ACM
European Conference on Computer Systems, 2010, pp. 265–278.

[19] B. Hindman, A. Konwinski, M. Zaharia, and et al., “Mesos: A
Platform for Fine-Grained Resource Sharing in The Data Center,”
in Proc. USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2011.

[20] X. Ren, G. Ananthanarayanan, A. Wierman, and M. Yu, “Hopper:
Decentralized Speculation-aware Cluster Scheduling at Scale,” in
Proc. ACM SIGCOMM, 2015.

Li Chen is currently pursuing her Ph.D. degree
at the Department of Electrical and Computer
Engineering, University of Toronto, where she
received her M.A.Sc. degree in 2014. She re-
ceived her B.Engr. degree from the Depart-
ment of Computer Science and Technology,
Huazhong University of Science and Technol-
ogy, China, in 2012. Her research interests in-
clude big data analytics systems, cloud comput-
ing, datacenter networking and resource alloca-
tion.

Shuhao Liu is currently a Ph.D. student in the
Department of Electrical and Computer Engi-
neering, University of Toronto. He received his
B.Eng. degree from Tsinghua University in 2012.
His current research interests include software-
defined networking and big data analytics.

Baochun Li received his Ph.D. degree from the
Department of Computer Science, University of
Illinois at Urbana-Champaign, Urbana, in 2000.
Since then, he has been with the Department
of Electrical and Computer Engineering at the
University of Toronto, where he is currently a
Professor. He holds the Bell Canada Endowed
Chair in Computer Engineering since August
2005. His research interests include large-scale
distributed systems, cloud computing, peer-to-
peer networks, applications of network coding,

and wireless networks. He is a member of the ACM and a Fellow of the
IEEE.

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2795580, IEEE
Transactions on Network Science and Engineering

14

Bo Li is a Professor in the Department of Com-
puter Science and Engineering, Hong Kong Uni-
versity of Science and Technology. He holds the
Cheung Kong Chair Professor in Shanghai Jiao
Tong University. Prior to that, he was with IBM
Networking System Division, Research Triangle
Park, North Carolina. He was an adjunct re-
searcher at Microsoft Research Asia-MSRA and
was a visiting scientist at Microsoft Advanced
Technology Center (ATC). He has been a tech-
nical advisor for ChinaCache Corp. (NASDAQ

CCIH) since 2007. He is an adjunct professor in Huazhong University of
Science and Technology, Wuhan, China. His recent research interests
include: large-scale content distribution in the Internet, Peer-to-Peer me-
dia streaming, the Internet topology, cloud computing, green computing
and communications. He is a Fellow of IEEE for “contribution to content
distributions via the Internet”. He received the Young Investigator Award
from the National Natural Science Foundation of China (NSFC) in
2004. He served as a Distinguished Lecturer for IEEE Communications
Society (2006-2007). He was a co-recipient for three Best Paper Awards
from IEEE, and the Best System Track Paper in ACM Multimedia (2009).

