Scheduling Jobs across Geo-Distributed
Datacenters with Max-Min Fairness

Li Chen! Shuhao Liu!

Baochun Lit Bo Li2

1University of Toronto, {lchen,shuhao,bli} @ece.utoronto.ca
2The Hong Kong University of Science and Technology, bli@cse.ust.hk

Abstract—It has become routine for large volumes of data
to be generated, stored, and processed across geographically
distributed datacenters. To run a single data analytic job on
such geo-distributed data, recent research proposed to distribute
its tasks across datacenters, considering both data locality and
network bandwidth across datacenters. Yet, it remains an open
problem in the more general case, where multiple analytic jobs
need to fairly share the resources at these geo-distributed data-
centers. In this paper, we focus on the problem of assigning tasks
belonging to multiple jobs across datacenters, with the specific
objective of achieving max-min fairness across jobs sharing these
datacenters, in terms of their job completion times. We formulate
this problem as a lexicographical minimization problem, which
is challenging to solve in practice due to its inherent multi-
objective and discrete nature. To address these challenges, we
iteratively solve its single-objective subproblems, which can be
transformed to equivalent linear programming (LP) problems
to be efficiently solved, thanks to their favorable properties. As
a highlight of this paper, we have designed and implemented
our proposed solution as a fair job scheduler based on Apache
Spark, a modern data processing framework. With extensive
evaluations of our real-world implementation on Amazon EC2,
we have shown convincing evidence that max-min fairness has
been achieved using our new job scheduler.

I. INTRODUCTION

It is increasingly common for large volumes of data to
be generated and processed in a geographically distributed
fashion, across multiple datacenters around the world. Popular
data analytic frameworks, such as MapReduce [1] and Spark
[2], are extensively employed to process such large volumes
of data efficiently. A data analytic job typically proceeds in
consecutive computation stages, each of which consisting of
a number of computation tasks that are executed in parallel.
To start a new computation stage, intermediate data from
the preceding stage needs to be fetched, which may initiate
multiple network flows.

When input data is located across multiple datacenters,
a naive approach is to gather all the data to be processed
locally within a single datacenter. Naturally, transferring huge
amounts of data across datacenters may be slow and ineffi-
cient, since bandwidth on inter-datacenter network links is lim-
ited [3]. Existing research (e.g., [4], [S]) has shown that better
performance can be achieved if tasks in an analytic job can be

The research is supported in part by the NSERC Discovery Research
Program, NSERC Strategic Grants, and by grants from RGC under the
contracts 615613, 16211715 and C7036-15G (CRF), a grant from NSF (China)
under the contract U1301253.

distributed across datacenters, and located closer to the data
to be processed. In this case, designing the best possible task
assignment strategy to assign tasks to datacenters is important,
since different strategies lead to different flow patterns across
datacenters, and ultimately, different job completion times.

When designing optimal task assignment strategies, how-
ever, existing works in the literature [4], [5] only considered
a single data analytic job. The problem of assigning tasks
belonging to multiple jobs across datacenters remains open.
Given the limited amount of resources at each datacenter,
multiple jobs are inherently competing for resources with each
other. It is, therefore, important to maintain fairness when
allocating such a shared pool of resources, which cannot be
achieved if tasks from one job are assigned without consider-
ing the other jobs.

In this paper, we propose a new task assignment strategy that
is designed to achieve max-min fairness across multiple jobs
with respect to their performance, as they compete for the lim-
ited pool of shared resources across multiple geo-distributed
datacenters. To be more specific, we wish to minimize the job
completion times across all concurrent jobs, while maintaining
max-min fairness. Such a problem can be formally formulated
as a lexicographical minimization problem, which has unique
challenges that make it difficult to solve this problem with
multiple objectives. The task assignment problem is essentially
an integer optimization problem, which in general is NP-hard
[6].

To address these challenges, we first consider the subprob-
lem of minimizing the worst (longest) job completion time
among all the concurrent jobs, which turns out to have a
totally unimodular coefficient matrix for linear constraints,
based on an in-depth investigation of the problem structure.
Such a nice property guarantees that the extreme points in
a feasible solution polyhedron are integers. Moreover, with
several steps of non-trivial transformations, we show that the
optimal solution to the original problem can be obtained by
solving an equivalent problem with a separable convex objec-
tive. With these structures identified, we can then apply the A-
technique and linear relaxation to obtain a linear programming
(LP) problem, which is guaranteed to have the same solution
to the original problem. As a result, any LP solver can be
used for minimizing the completion time of each job, and
to efficiently compute the overall assignment decisions that
achieve the optimal completion times with max-min fairness.

To demonstrate the practicality of our proposed solution,
we have designed and implemented a new job scheduler to
assign tasks from multiple jobs to geo-distributed datacenters,
in the context of Apache Spark. Our experimental results on
multiple Amazon EC2 datacenters have shown that our new
scheduler is effective in optimizing job completion times and
achieving max-min fairness.

Highlights of our original contributions are as follows. First,
as motivated by our example in Sec. II, we focus on jointly
assigning tasks from multiple data parallel jobs across multiple
datacenters, which considers the interplay between these jobs
when sharing a limited pool of datacenter resources. Second,
our problem, formulated as a lexicographical minimization
problem in Sec. III, has both the discrete and multi-objective
nature that make it challenging to solve. Fortunately, with a
careful investigation of its structure, we are able to identify
the favorable properties of totally unimodular constraints and
a separable convex objective, thus transforming it into an
equivalent LP problem to be efficiently and elegantly solved
(Sec. IV and Sec. V). Finally, to show its practicality, we
have completed a real-world implementation of our proposed
solution within the Spark job scheduling framework, and
conducted extensive evaluations across multiple datacenters in
Amazon EC2 (Sec. VI).

II. BACKGROUND AND MOTIVATION

It is typical for a data analytic job to contain tens or
hundreds of tasks, supported by a data parallel framework,
such as MapReduce and Spark. These tasks are parallel to or
dependent upon each other, and network flows are generated
between dependent tasks, since tasks in the subsequent stage
need to fetch intermediate data from tasks in the current
stage. For example, in a MapReduce job, a set of map tasks
are first launched to read input data partitions and generate
intermediate results; then reduce tasks would fetch such
intermediate data from map tasks for further processing, which
involves transferring data over the network.

In the case of running tasks in a data analytic job across
multiple datacenters, data may be transferred over inter-
datacenter links, which may become bottlenecks due to their
limited bandwidth availability. Our design objective in this
paper is to compute the best way to assign tasks belonging to
multiple jobs to geo-distributed datacenters, so that all jobs can
achieve their best possible performance with respect to their
completion times, without harming the performance of others.
This implies that max-min fairness needs to be achieved across
jobs sharing the datacenters, in terms of their job completion
times.

For a better intuition of our problem, we use Fig. 1 to show
an example with two data analytic jobs sharing three geo-
distributed datacenters. For job A, both of its tasks, tA1 and
tA2, require 100 MB of data from input dataset A1 stored in
DC1, and 200 MB of data from A2 located at DC3. For job
B, the amounts of data to be read by task tB1 from dataset
B1 in DC2 and B2 in DC3 are both 200 MB; while task tB2
needs to read 200 MB of data from B1 and 300 MB from B2.

These tasks are to be assigned to available computing slots
in the three datacenters, each with two slots, two slots, and
one slot, respectively. The amounts of available bandwidth of
inter-datacenter links are illustrated in the figure, with the unit
of MB/s.

For each job, a different assignment of its tasks will lead to
flows of different sizes traversing different links, thus resulting
in different job completion times. Moreover, both jobs must
share and compete for the same pool of computing resources
across these datacenters. For example, since DC3 only has
one available computing slot, if we assign a task from one
job, tasks from the other job cannot be assigned. In order to
achieve the best possible performance for both jobs, we need
to consider the placement of their tasks jointly, rather than
independently.

We have illustrated two ways of assigning tasks to data-
centers in Fig. 2 and Fig. 3. Intuitively, DC3 is a favorable
location for tasks from both jobs, since they all have part of
their input data stored in this datacenter, and the links of DC1-
DC3 and DC2-DC3 both have high bandwidth. If the scheduler
tries to optimize task assignment of these jobs independently,
the result is shown in Fig.2. To optimize the assignment of job
A, task tA2 would be assigned to the only available computing
slot in DC3, and tA1 would be placed in DC2, which result in
a job completion time of max{100/80,200/160,100/150} =
1.25 seconds. Then, if the scheduler continues to optimize
the assignment of job B, DC1 and DC2 would be selected
to distribute task tB1 and tB2, respectively, resulting in the
completion time of max{200/80,200/100,300/160} = 2.5
seconds for job B.

However, this placement is not optimal when considering
the performance of these jobs jointly. Instead, we show the
optimal assignment for both jobs satisfying max-min fairness
in Fig. 3. With this assignment, task tB2 of job B would occupy
the computing slot in DC3, which avoids the transfer of 300
MB data from dataset B2. Task tB1 is assigned to DC2 rather
than DC1, which takes advantage of the high bandwidth of
the DC3-DC2 link. As a result, the flow patterns are illustrated
in the figure. In this assignment, the completion times of job
A and B are max{200/100,100/80,200/160} = 2 seconds,
and max{200/160,200/120} = 5/3 seconds, respectively.
Compared with the independent assignment in Fig. 2 where
the worst performance is 2.5 seconds, this assignment results
in the worst completion time of 2 seconds (job A), which is
optimal if we wish to minimize the worst completion time,
and is fair in terms of the performance achieved by both jobs.

We are now ready to formally construct a mathematical
model to study the problem of optimizing task assignment
with max-min fairness across multiple jobs to be achieved.

III. MODEL AND FORMULATION

We consider a set of data parallel jobs K = {1,2,--- , K}
submitted to the scheduler for task assignment. The input data
of these jobs are distributed across a set of geo-distributed
datacenters, represented by D = {1,2,---,J}. Each job
k € K has a set of parallel tasks 7 = {1,2,--- ,n;} to

avallablg DC1
computation
resource

Fig. 1: An example of scheduling multiple jobs fairly
across geo-distributed datacenters.

be launched on available computing slots in these datacenters.
We use a; to denote the capacity of available computing slots
in datacenter j € D.

For each task ¢ € T of job k, the time it takes to complete
consists of both the network transfer time, denoted by ciﬁ o
to fetch the input data if the task is assigned to datacenter
J, and the execution time represented by eﬁ ;- The network
transfer time is determined by both the amount of data to be
read, and the bandwidth on the link the data traverses. Let
Sk denote the set of datacenters where the input data of task 4
from job k are stored, called the source datacenters of this task
for convenience. The task needs to read the input data from
each of its source datacenters s € S¥, the amount of which
is represented by df’s. Let b ; ! represent the bandwidth of
the link from datacenter s to datacenter j (s # j). Hence, the
network transfer time of task i € Ty, if assigned to datacenter
7, is expressed as follows:

0, when S¥ = {j};
Ck =

o k .
2 max d;""/bs;, otherwise.
SGS;?,syéj

(D

which indicates that the network transfer completes when input
data from all the source datacenters have been fetched.

The assignment of a task is represented with a binary
variable xf j» indicating whether the i-th task of job k is
assigned to datacenter j. A job k completes when its slowest
task finishes, thus the job completion time of &, represented
by 7, is determined by the maximum completion time among

all of its tasks, expressed as follows:

max _z¥ (cfyj + eﬁj) 2)

T —
i€Tw,jeD 7

As the computing slots in all the datacenters are shared by
tasks from multiple jobs, we would like to obtain an optimal
task assignment without exceeding the resource capacities. To
be more specific, our scheduler would decide the assignment
of all the tasks, aiming to optimize the worst performance

'0n popular cloud platforms (e.g., Amazon EC2 and Google Could), inter-
datacenter wide-area networks are provided as a shared service, where user-
generated flows will compete with millions of other flows. As a result, each
inter-datacenter TCP flow will get a fair share of the link capacity. Our
measurement with iperf3 on EC2 verifies this assumption.

Fig. 2: A task assignment that favors the perfor-
mance of job A at the cost of job B.

100/150

Fig. 3: The optimal assignment for both job A and
job B.

achieved among all the jobs with respect to their job comple-
tion times, and then optimize the next worst performance with-
out impacting the previous one, and so on. This is executed
repeatedly until the completion times have been optimized for
all the jobs. Such an objective can be rigorously formulated
as a lexicographical minimization problem, with the following
definitions as its basis.

Definition 1: Let (v), denote the k-th (1 < k < K) largest
element of v € ZX, implying (v), > (v), > -+ > (V).
Intuitively, (v) = ((v),, (v),,- -+, (v)) represents the non-
increasingly sorted version of v.

Definition 2: For any o € Z¥ and B € Z¥, if (a), < (B)
or 3k € {2,3,--- ,K} such that (a), < (8), and (a), =
(B);, Vi€ {l,--- ,k—1}, then a is lexicographically smaller
than B, represented as a < B. Similarly, if (&), = (8),, Yk €
{1,2,--- , K} ora < B, then et is lexicographically no greater
than B, represented as a < .

Definition 3: 1exﬂrcnin f(z) represents the lexicographical

minimization of the vector f € RY . which consists of N
objective functions of z. To be particular, the optimal solution
xz* € RX achieves the optimal f*, in the sense that f* =
f(x*) < f(z), vz € RE.

With these definitions, we are now ready to formulate
our optimal task assignment problem among sharing jobs as
follows:

lexmin f=(r,m, ,7TK) 3)
x
= ko(ck 4k

s.t. Th = toax z; (e +ei;),Vke K (4)
> D wi;<a VjED)
keK i€Ts
dabi=1, VieTh, Vkek (6)
jED

of, {01}, VieTi, VjeD, Vkek (7)

where constraint (5) indicates that the total number of tasks
to be assigned to datacenter j does not exceed its capacity
aj, which is the total number of available computing slots.
Constraint (6) implies that each task should be assigned to a
single datacenter.

The objective is a vector f € RX with K elements,
each standing for the completion time of a particular job

k € K. According to the previous definitions, the optimal
f* is lexicographically no greater than any f obtained with a
feasible assignment, which means that when sorting them in
a non-increasing order, if their k-th largest element satisfies
() = (fp, VK < k and (f*), # (f),. then we have
(F*). < (f),. This implies that the first largest element of f*,
i.e., the slowest completion time, is the minimum among all
f. Then among all f with the same worst completion time, the
second worst completion time in f* is the minimum, and so
on. In this way, solving this problem would result in an optimal
assignment vector *, with which all the job completion times
are minimized.

IV. OPTIMIZING THE WORST COMPLETION TIME AMONG
CONCURRENT JOBS

Problem (3) is a vector optimization with multiple objec-
tives. In this section, we consider the single-objective subprob-
lem of optimizing the worst job performance as follows:

min
T

s.t. Constraints (4), (5), (6) and (7).

g () ®

which is a primary step towards solving the original problem,
to be elaborated in the next section.

Substituting the completion time 7, in the objective with the
expression in constraint (4), we have the following problem
with the non-linear constraint (4) eliminated:

k[k k
ek (ie%%}ép i j(ciy +eig)))]

s.t. Constraints (5), (6) and (7).

min
T

Though this problem is an integer programming problem,
we will show that it can be transformed into an equivalent lin-
ear programming (LP) problem after an in-depth investigation
of its structure. As a result of such a transformation, it can
be solved efficiently to obtain the optimal schedule vector z.
Our transformation takes advantage of its features of separable
convex objective and totally unimodular linear constraints, and
it involves three major steps to be elaborated in the following
subsections.

A. Separable Convex Objective

In the first step, we will show that the optimal solution
for Problem (9) can be obtained by solving a problem with a
separable convex objective function, which is represented as
a summation of convex functions with respect to each single
variable z} ;.

We first show that the optimal solution of Problem (9) can
be obtained by solving the following problem:

9= (qb(xil)’ T 7¢(x§,j)’ T 7¢(anK,J))

s.t. Constraints (5), (6) and (7).
where ¢(xf ;) = o} (¢} ; + e} ;),Vi € T, Vj € D, Vk € K,
and g is a vector with the dimension of M = |g| =

J S, n. For this problem, the objective includes minimiz-
ing the maximum element in g, which is the worst completion

lexmin
T

time across all the jobs. Therefore, the optimal assignment
variables x* that gives g* is also the optimal solution for
Problem (9).

Let ¢(g) define a function of g:

lg| M

oa)= Y lgl = 3 hroe

m=1
where g, is the m-th element of g.
Lemma 1: ¢(-) preserves the order of lexicographically no
greater (2), ie., g(x") = g(x) < @(g(z")) < p(g(z)).
Proof: We first consider a, 8 € ZX that satisfies a < B.
If we use the integer k(1 < k < K) to represent the first non-
zero element of (@) —(B), we have (@), = (8),,Vk <k < K
and (a); < (B)j. Assume (a); = m, then (B); > m + 1.

K E-1 K
ola) = ZK@% - ZK@% + K@k 4 Z Kl
k=1 k=1 kit 1

< i;i K@ 4 K@% 4 (K — kK@%
= FIK@ 4 (K +1—Fk)- K@
< YK 4 K.oK™,

where the first inequality holds as (a); > ()., VE4+1<k<
K.

Eall

—1 K
KB 4 KB 4 Z KBy
1 k=k+1

pB) =

ES
Il

K
S KB —
k=1

ﬁ;i KB + KB 4 (K —k)-0
P KB 4 K K™

V

Y]

Given that ZZ;} Kl = l,:;i K(B)x we have proved that
pla) < @(B).

If @ = B, which means that (o), = (8),,V1 <k < K, it
is trivially true that p(a) = Y1 | K@ = S8 KB =
©(B). Thus, we have proved a < 8 = ¢(a) < ¢(B).

We further prove p(a) < ¢p(B) = a < B by proving
its contrapositive: =(a <) = p(a) > ¢(B). ~(a = B)
implies @ # B and the first non-zero element of {a) — (B)
is positive, which further indicates the first non-zero element
of (B) — (@) is negative, i.e., B < a. Thus, the contrapositive
is equivalent to 8 < @ = ¢(B) < ¢(a), which has already
been proved previously using the exchanged notations of o
and 8.

With a < 8 <= ¢(a) < ¢(B) holding for any a and
B of the same dimension, we complete the proof by letting
a=g(z*) and 8 = g(z). |

Based on Lemma 1, we have

lexmin g < min ¢(g) = Z Z Z MeE)
N N keK €Ty, j€D
where the objective function ¢(g) is a summation of the term
k
M?®i5) | which is a convex function of the single variable

k
xi,j'

Therefore, solving Problem (9) is equivalent to solving the
following problem with a separable convex objective:

z: Z Z Z M¢(l’f,j)

min
keK €T, j€D
s.t. Constraints (5), (6) and (7).

(10)

B. Totally Unimodular Linear Constraints

In the second step, we investigate the coefficient matrix of
linear constraints (5) and (6). An m-by-n matrix is fotally uni-
modular [6], if it satisfies two conditions: 1) any of its elements
belongs to {—1,0,1}; 2) any row subset R C {1,2,--- ,m}
can be divided into two disjoint sets, R; and R, such that
| ZieRl Q5 — ZieRQ aij‘ <LVje {1,2, e ,TL}.

Lemma 2: The coefficients of constraints (5) and (6) form
a totally unimodular matrix.

Proof: Let A,,,«xn denote the coefficient matrix of all the
linear constraints (5) and (6), where m = J + Zszl Nk,
representing the total number of the constraints, and n =
J Zszl ny, denoting the dimension of the variable z.

It is obvious that any element of A,,x, is either 0 or
1, satisfying the first condition. For any row subset R C
{1,2,--- ,m}, we can select all the elements that belong to
{1,2,---,J} to form the set R;. As such, R is divided into
two disjoint sets, R; and Ry = R— R;. Itis easy to check that
for coefficient matrix of constraint (5), the summation of all its
rows, represented by rows {1,2,--- , J}, is a 1 xn vector with
all the elements equal to 1. Similarly, for coefficient matrix
of constraint (6), the summation of all its rows, represented
by rows {J +1,J +2,--- ,J+ZkK:1nk}, isalsoalxn
vector whose elements are 1. Hence, we can easily derive
that ZiGRl Qij <1, ZiGRQ Qjj < 1,Vj € {1, 2, ,TL}.
Eventually, we have |}, p aij — > cp aij| < 1,Vj €
{1,2,---,n}, and the second condition is satisfied.

In summary, we have shown that both conditions for total
unimodularity are satisfied, thus the coefficient matrix A, x,
is totally unimodular.]

C. Structure-Inspired Equivalent LP Transformation

In the final step, exploiting the problem structure of totally
unimodular constraints and separable convex objective, we can
use the A-representation technique [7] to transform Problem
(10) to a linear programming problem that has the same
optimal solution.

For a single integer variable y € Y = {0,1,--- Y} , the
convex function A : Y — R can be linearized with the \-
representation as follows:

sy Y= Z 5As

= h(s)A
sEY seY
D A=1, A eRT, Vse.
sey
In our problem, we apply the A- representation technique to

each convex function h} ; (j) = ML) {0,1} - R as
follows:

REj (k)= 30 Ml \be = \B0y ppeistens b
se{0,1}

which removes the variable z¥ ; by sampling at each of its
possible value s € {0,1}, welghted by the newly introduced
variables)\ff € R*,Vs € {0,1} that satisfy

k k,s _ \k,1
Tij = E, SN = Aij
se{0,1}
k,s _ k0 k1
D A=A A =1

s€{0,1}

Further, with linear relaxation on the integer constraints (7),
we obtain the following linear programming problem:

dp XX okt

min
kEIC i€Ty JED

Y

s.t. af =M\, VkeK,ieT,jeD
A’?Q)\’-“-1:1 VkeK,i€T,jeD
Ako/\“ JERT, VkeK,ieTh,jeD

2,7 27\, y L
Constraints () and (6).

Theorem 1: An optimal solution to Problem (11) is an
optimal solution to Problem (8).

Proof: The property of total unimodularity ensures that
an optimal solution to the relaxed LP problem (11) has integer
values of xl j» which is an optimal solution to Problem (10),
and thus an optimal solution to Problem (9) as demonstrated
in Sec. IV-A. Moreover, Problem (8) and (9) are equivalent
forms, completing the proof. []

Therefore, the optimal assignment that minimizes the worst
completion time among all the jobs can be obtained by solving
Problem (11) with efficient LP solvers, such as MOSEK [8].

V. ITERATIVELY OPTIMIZING WORST COMPLETION TIMES
TO ACHIEVE MAX-MIN FAIRNESS

With the subproblem of minimizing the worst completion
time efficiently solved as an LP problem (11), we continue to
solve our original multi-objective problem (3) by minimizing
the next worst completion time repeatedly.

After solving the subproblem, it is known that the optimal
worst completion time is achieved by job £*, whose slowest
task ¢* is assigned to datacenter j*. We then fix the computed
assignment of the slowest task of job k*, which means that
the corresponding schedule variable z%. _j= 1s removed from
the variable set & for the next round. Also since task ¢*
to be assigned to datacenter j*, it is intuitive that all the
assignment variables associated with it should be fixed as zero
and removed from z: x% ;=0,Vj#35"j€D.

As we have fixed a part of the assignment, the resource
capacities should be updated in our problem constraints in the
next round. For example, if 2% = = 1, which means that
the ¢*th task of job £* would be ass1gned to datacenter j*,
then for the problem in the next round, x%. _j= 1s no longer a
variable. The resource capacity constraints should be updated
a8 Dkek LieTi (k)£ (ke i) Vi S 4t — L.

Moreover, the completion tlme of job k* is obtained as
¢(xf:,j*), the completion time of its slowest task ¢* assigned
to datacenter j*, yet the assignment of other tasks has not been

® @

DC1 DC1
:

2s 3.5s

C3
2s

2s 2.5s

DC2

DC2 DC3
< '
4s 3s

Fig. 4: Two possible assignments of tasks from two jobs.

fixed, which would be the variables (z¥ J,V(i) # (@5, 5%)
of the problem in the next round. We set the associated
completion times of these variables as xf] (ck * +ei—‘f,j*). The
rationale is that no matter how fast other tasks of £* complete,
the completion time is determined by the slowest task ¢*. This
ensures that the completion time optimized in the next round
is achieved by another job, rather than a task of job k* (other
than its slowest). This is better illustrated with the example in
Fig. 4.

In this example, after the calculation in the first round,
task tA1 assigned in DC2 achieves the worst completion time
of 4s, among the two sharing jobs. In the second round, if
we do not change the associated completion time for another
task tA2, assignment (a) would be calculated as the optimal
solution, since it achieves the completion times of (4, 3, 2.5, 2)
for the four tasks, which is lexicographically smaller than
(4,3.5,2,2) achieved by assignment (b). However, assignment
(a) minimizes the next worst completion time for another task
of the same job A, which does not match our original objective
to optimize the worst completion time for job B. Instead, if we
set the associated completion times of all job A’s tasks as 4,
the objective function achieved by assignment (b) would be
(4,4,2,2), better than (4,4,2.5,2) given by assignment (a).
In this way, the optimization can correctly choose assignment
(b) to achieve the optimal completion time of job B. Note that
although the completion time of task tA2 in assignment (b) is
longer than in assignment (a), the completion time of job A
remains the same, which is 4s.

As a result, the subproblem in the next round is solved
over a decreased set of variables with updated constraints and
objectives, so that the next worst job completion time would
be optimized, without impacting the worst job performance
in this round. Such a procedure is repeatedly executed until
the last worst completion time of jobs has been optimized,
and the max-min fairness has been achieved, as summarized
in Algorithm 1.

VI. REAL-WORLD IMPLEMENTATION
AND PERFORMANCE EVALUATION

Having proved the theoretical optimality and efficiency of
our scheduling solution, we proceed to implement it in Apache
Spark, and demonstrate its effectiveness in optimizing job
completion times in real-world experiments.

A. Design and Implementation

In Apache Spark [2], a job can be represented by a Directed
Acyclic Graph (DAG), where each node represents a task

Algorithm 1: Performance-Optimal Task Assignment
among Jobs with Max-Min Fairness.

Input:
Input data sizes dk’s and link bandwidth b,; to obtain
network transfer time c ; (by Eq. 1); execution time
1 s datacenter resource capacrty as;
Output:
Task assignment 2
1: Initialize K' = K;
2: while K’ # & do
3: Solve the LP Problem (11) t0 obtain the solution x;
4: Obtain ack*,i* = argmax B (xk)
=

Vk € KC,Vi € Ty,Vj € D,

©,5°

5. Fix J,Vj € D remove them from variable set x;
6: Update the corresponding resource capacities in
Constraints (5);
kY k" (kT
7. Set ¢(x7 ;) = a7 (¢
8: Remove k* from K';

e el), Vi€ Ty, Vj € D;

9: end while
- = N
DAG : Cluster :
Scheduler ; Manager |
s Submit «, | Resource
i TaskSet Offer

Expire or

Scheduling

Optimization
Enough jobs (Algorithm 1)

Assigned

Pool TaskSet

Task Scheduler

To be launched

Fig. 5: The implementation of our task assignment algorithm in Spark.
and each directed edge indicates a precedence constraint. In
general, the problem of assigning all the tasks in a DAG to
a number of worker nodes, with the objective of minimizing
the job completion time, is known as NP-Complete [9]. As a
practical and efficient design, Spark schedules tasks stage by
stage, which is handled by the DAG scheduler. When a job is
submitted, it is transformed into a DAG of tasks, categorized
into a set of stages. The DAG scheduler will then submit the
tasks within each stage, called a TaskSet, to the task scheduler
whenever the stage is ready to be scheduled, implying that all
its parent stages have completed.

Fortunately, the task scheduler in Spark has access to most
of the information that our algorithm needs as its input.
As a result, we have implemented our new task assignment
algorithm as an extension to Spark’s TaskScheduler module.
The design of our implementation is illustrated in Fig. 5.
In our implementation, as soon as a TaskSet in a job has
been submitted by the DAG scheduler to the task scheduler,
they will be immediately queued in the scheduling pool. With
a number of concurrent jobs waiting to be scheduled, our
algorithm will be triggered when a preset timer expires or
when the number of pending jobs in the pool exceeds a certain
threshold.

To optimize the assignment of tasks, our algorithm requires
knowledge about the size and location of the output data

TABLE I: Available bandwidth across geo-distributed datacenters (Mbps).

Virginia | Oregon | Ireland | Sing | Sydney SP
Virginia 1000 169 154 52 53 104
Oregon - 1000 71 69 77 68
Ireland - - 1000 49 40 65
Singapore - - - 1000 58 35
Sydney - - - - 1000 38
San Paulo - - - - - 1000

“Sing" is short for “Singapore”, and “SP" is short for “San Paulo".

from each map task, represented by df’s in our formulation.
Such knowledge can be obtained from the MapOutputTracker,
which are further saved in the TaskSet of reduce tasks. The
available bandwidth (bs;) between each pair of datacenters
(s to j7) can be measured with the iperf2 utility. In ad-
dition, information about the amount of available resources,
corresponding to a; in our formulation, can be obtained
from the cluster manager. Now that all the input required
by our algorithm is ready, an optimal assignment will be
computed for all the tasks in the scheduling pool, through
iteratively formulating and solving updated versions of linear
programming problems, solved by the LP solver in the Breeze
optimization library [10].

After the assignment has been computed, it will be recorded
in the corresponding TaskSet, overriding the original task
assignment preferences. When the tasks are finally submitted
for execution, these assignment preferences will be satisfied in
a greedy manner. Since the scheduling decisions will satisfy
resource constraints by considering Resource Olffers, each task
in the TaskSet can be launched in any available computing
slot in the assigned datacenter.

B. Experimental Setup

We are now ready to evaluate our real-world implementation
with an extensive set of experiments deployed across 6 data-
centers in Amazon EC2, located in a geographically distributed
fashion across different continents. The available bandwidth
between each pair of datacenters, measured with the iperf2
utility, is shown in Table I. Compared to the intra-datacenter
network where the available bandwidth is around 1 Gbps,
bandwidth on inter-datacenter links are much more limited:
almost all inter-continental links have less than 100 Mbps
of available bandwidth. This confirms the observation that
transferring large volumes of data across datacenters is likely
to be time-consuming.

In our experiments, we have used a total of 12 on-demand
Virtual Machine (VM) instances as Spark workers in our Spark
cluster, located across 6 datacenters. Two special VM instances
in Virginia (us-east-1) have been used as the Spark master
node and the Hadoop File System (HDFS) [11] Name Node,
respectively. All instances are of type m3.large, each with 2
vCPUs, 7.5 GB of memory, and a 32GB Solid-State Drive.
In each instance, we run Ubuntu Server 14.04 LTS 64-bit
(HVM), with Java 1.8 and Scala 2.11.8 installed. Hadoop
2.6.4 is installed to provide HDFS support for Spark. Our
own implementation of the task assignment algorithm is based
on Spark 1.6.1, a recent release as of July 2016. Our Spark
cluster runs in the standalone mode, with all configurations

left as default. No external resource manager (e.g., YARN) or
database system is activated.

In order to illustrate the efficiency of our task assign-
ment algorithm, we use the legacy Sort application as the
benchmark workload. We choose this workload because it
is simple but primitive. As one of the simplest MapReduce
applications, Sort has only one map and one reduce stage.
However, its sortByKey() operation is a basic building block
for many complex data analytics applications, especially in
Spark SQL. It triggers an all-to-all shuffle, which introduces
heavier cross-node traffic than other reduce operations such as
reduceByKey ().

In our experiments, we have implemented a Sort appli-
cation with multiple jobs, and submitted it to Spark for
execution. The jobs are submitted to Spark in parallel threads,
triggering concurrent jobs to share the resources in the cluster.
Therefore, the task assignment decisions for these concurrent
jobs will be made and enforced by our implementation in the
TaskScheduler. To evaluate the performance under different
workloads, we run the workload with 3, 4 and 5 concurrent
jobs as separate experiments.

For each Sort job in our benchmark application, the default
parallelism is set to 3. In other words, the job will trigger 3
reduce tasks to sort the input dataset, which has 3 partitions
distributed on 3 randomly chosen worker nodes. The input
dataset is prepared as a step in the map task. Each partition
of the generated dataset is 100 MB in size, containing 10,000
key-value pairs. Then, as the start of the reduce task, these
key-values will be shuffled over the network. Since each dat-
acenter has only two workers, a fraction of the shuffled traffic
will be sent over inter-datacenter network links, which are
likely to be the performance bottleneck. Our task assignment
algorithm is specifically designed to mitigate the negative
effects of such bottlenecks.

C. Experimental Results

We conducted three groups of experiments, with 3, 4,
and 5 concurrent jobs, respectively. In the first two groups,
each job has three tasks; while in the third group, the total
number of tasks of the five jobs is set as the total number of
available computing slots, which is 12 in our Spark cluster.
In each experiment, the job completion times achieved with
our optimal task assignment algorithm is compared with that
achieved with the default scheduling in Spark, used as the
baseline in our comparison study.

The results of our experiments are presented in Fig. 6 and
Fig. 7, showing the worst completion times and the second
worst completion times among concurrent jobs, respectively.
With respect to the worst completion time, it is easy to see
that our algorithm always performs better than the baseline
in Spark, with a performance improvement of up to 66%, as
shown in Fig. 6. With respect to the second worst completion
time, our algorithm does not theoretically guarantee that it is
smaller than that achieved with any unfair placement. Even
without guarantees, our algorithm always shows better per-
formance than the baseline in Spark. These experiments have

100 - - - - + : . : : I 120 .
oo Fair : : 1' 100,.'. air | - ..’ i e Fair °
& & Baseline : : , ¢ ¢ Baseline ; e & ¢ Baseline L7
= 2 - - : - 100 H -y
) =)
5 5 5 4
B 4 B
S S 60 S
= = = 60
40 ; : : : : 20
2 4 6 8 10
Sorted Runs for 3 Jobs Sorted Runs for 4 Jobs Sorted Runs for 5 Jobs
Fig. 6: The worst job completion time in a set of concurrent jobs.
100 : : . . 'y 100 - - - - 3 100 : : . . .
E =@ Fair ’ @ o=@ Fair : : , E o=@ Fair Fe
— 4 & Baseline | 4 : ~ : - 4 & Baseline -~
o 80 i O 80 O 80 R P o -~ i
- - - ‘— “
4 2 & v-*-*"
o o o
= = 60 = 60} R
© el ©
C c C
o o o
3 o 40 @ 401 E
%] n : : : : : wn
2 4 6 8 10 2 4 6 8 10

Sorted Runs for 3 Jobs

Sorted Runs for 4 Jobs

Sorted Runs for 5 Jobs

Fig. 7: The second-worst job completion time in a set of concurrent jobs.

shown convincing evidence that our algorithm — optimizing
for max-min fairness — is effective in maximizing the worst
completion time and achieving best possible performance for
all concurrent jobs.

To offer a more in-depth examination and show why such
a performance improvement can be achieved, we consider the
7-th run in the second group of our experiment, with the
sharing relationship and bandwidth shown in Fig. 8. The six
circles represent the six datacenters used in our experiment.
A1 is located in the Virginia datacenter, representing the data
required by tasks from job A. For each task in job A to
be scheduled, a fraction of data needs to be read from all
the three datasets (A1, A2 and A3). As each datacenter has
two available computing slots, the assignment of 12 tasks
from four jobs becomes a one-to-one mapping. In such a
limited resource scenario, the assignment of a task is tightly
coupled with each other. It becomes more difficult for the
default strategy in Spark to find a good assignment, without
optimizing across all the tasks. Moreover, the wide range
of available bandwidth between datacenters is not taken into
consideration by the default scheduling in Spark, which also
explains the performance improvement of our strategy over
the baseline.

Fig. 8: The location of input data for four jobs across six datacenters.

3

o - N
13 M SR) B RS

Algorithm running time (s)

12 24 36 48 72
The number of variables

120

Fig. 9: The computation times of our algorithm at different scales.

Furthermore, to evaluate the practicality of our algorithm,
we have recorded the time it takes to calculate optimal solu-
tions. Fig. 9 illustrates the computation times, each averaged
over 10 runs, with the number of variables varying from 12
to 120. The linear program in our algorithm is efficient, as it
takes about 1 second to obtain the solution for 48 variables.
The computation time is less than 3 seconds for 120 variables,
which is acceptable compared with the transfer times across
datacenters that could be tens or hundreds of seconds. In our
experiment, the algorithm is running in the VM with 2 vCPUs.
We envision that with more powerful servers for the scheduler
in a production environment, the running time could be even
smaller.

VII. RELATED WORK

With increasingly large volumes of data generated globally
and stored in geo-distributed datacenters, it has received an
increasing amount of research attention to deploying data
analytic jobs across multiple datacenters. Based on their
objectives, existing efforts can be roughly divided into two
categories: reducing the amount of inter-datacenter network
traffic to save operation costs, and reducing the job completion
time to improve application performance.

Vulimiri et al. [3], [12] took the initiative to reduce the
amount of data to be moved across datacenters when running

geo-distributed data analytic jobs. To reduce the bandwidth
cost, they formulated an integer programming problem to opti-
mize the query execution plan and the data replication strategy.
They also took advantage of the abundant storage resources to
aggressively cache results of queries, to be leveraged by subse-
quent queries to reduce data transfers. Pixida [13] proposed to
divide the DAG of a job into several parts, each to be executed
in a datacenter, with the objective of minimizing the total
amount of traffic among these divided parts. Despite reducing
traffic across datacenters, these solutions do not necessarily
shorten job completion times, as bandwidth availability varies
across different links and over time.

As a representative work in the second category, Iridium
[4] proposed an online heuristic to place both data and
tasks across datacenters. Unfortunately, it assumes that the
wide-area network that interconnects datacenters is free of
congestion, which is far from realistic. Flutter [5] removed
this unrealistic assumption, formulated a lexicographical min-
imization problem of task assignment for a single stage of one
job, and obtained its optimal solution. However, all existing
works focused on assigning tasks in a single job, without
considering the inherent competition for resources among
concurrent jobs. Despite using a similar theoretical foundation
as [5], our problem considers multiple jobs, and is therefore
remarkably different and more challenging.

Accounting for the scenario of multiple jobs sharing geo-
distributed datacenters, Hung er al. [14] proposed a greedy
scheduling heuristic to make job scheduling decisions across
geo-distributed datacenters, with an objective of reducing the
average job completion time. However, it assumes that the task
assignment is predetermined, and the scheduling decision is
the execution order of all the assigned tasks in each datacenter.
Therefore, despite sharing a similar context of considering
multiple jobs sharing the same pool of computing resources
in geo-distributed datacenters, this work is orthogonal to our
work, which aims to determine the best possible placement for
tasks of all the sharing jobs with the consideration of fairness.

There are plenty of existing efforts [15]-[17] related to
task assignment and job scheduling in big data analytic
frameworks. To reduce job completion times, they proposed to
improve data locality and fairness [15], [16], and to mitigate
the negative impact of tasks that progress slowly, called strag-
glers ([17]). However, they are all designed for frameworks
deployed in a single datacenter, and do not work effectively
across multiple datacenters.

VIII. CONCLUDING REMARKS

In this paper, we have conducted a theoretical study of
the task assignment problem among competing data analytic
jobs, whose input data are distributed across geo-distributed
datacenters. With tasks from multiple jobs competing for the
computing slots in each datacenter, we have designed and im-
plemented a new optimal scheduler to assign tasks across these
datacenters, in order to better satisfy job requirements with
max-min fairness achieved across their job completion times.
To achieve this objective, we first formulated a lexicographical

minimization problem to optimize all the job completion
times, which is challenging due to the inherent complexity
of both multi-objective and discrete optimizations. To address
these challenges, we started from the single-objective subprob-
lem and transformed it into an equivalent linear programming
(LP) problem to be efficiently solved in practice, based on an
in-depth investigation of the problem structure. An algorithm
is further designed to repeatedly solve an updated version of
the LP subproblems, which would eventually optimize all the
job performance with max-min fairness achieved. Last but
not the least, we have implemented our performance-optimal
scheduler in the popular Spark framework, and demonstrated
convincing evidence on the effectiveness of our new algorithm
using real-world experiments.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107-113, 2008.

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. Franklin, S. Shenker, and I. Stoica, ‘“Resilient Distributed Datasets:
A Fault-Tolerant Abstraction for in-Memory Cluster Computing,” in
Proc. USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2012.

[3] A. Vulimiri, C. Curino, P. Godfrey, T. Jungblut, J. Padhye, and G. Vargh-
ese, “Global Analytics in the Face of Bandwidth and Regulatory Con-
straints,” in Proc. USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2015.

[4] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl,
and 1. Stoica, “Low Latency Geo-Distributed Data Analytics,” in
Proc. ACM SIGCOMM, 2015.

[5] Z. Hu, B. Li, and J. Luo, “Flutter: Scheduling Tasks Closer to Data
Across Geo-Distributed Datacenters,” in Proc. IEEE INFOCOM, 2016.

[6] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algo-
rithms, 3rd ed., ser. Algorithms and Combinatorics. ~ Springer, 2006,
vol. 21, ch. 5, p. 104.

[7]1 R. Meyer, “A Class of Nonlinear Integer Programs Solvable by A Single
Linear Program,” SIAM Journal on Control and Optimization, vol. 15,
no. 6, pp. 935-946, 1977.

[8] E. Andersen and K. Andersen, “The MOSEK Interior Point Optimizer
for Linear Programming: an Implementation of the Homogeneous Al-
gorithm,” in High Performance Optimization. Springer, 2000, pp. 197—
232.

[91 Y. Kwok and 1. Ahmad, “Static Scheduling Algorithms for Allocating

Directed Task Graphs to Multiprocessors,” ACM Computing Surveys

(CSUR), vol. 31, no. 4, pp. 406471, 1999.

Breeze: A Numerical Processing Library for Scala. [Online]. Available:

http://www.scalanlp.org

Hadoop. [Online]. Available: https://hadoop.apache.org/

A. Vulimiri, C. Curino, P. Godfrey, K. Karanasos, and G. Varghese,

“WANalytics: Analytics for A Geo-Distributed Data-Intensive World,”

in Proc. Conference on Innovative Data Systems Research (CIDR), 2015.

K. Kloudas, M. Mamede, N. Preguica, and R. Rodrigues, “Pixida:

Optimizing Data Parallel Jobs in Wide-Area Data Analytics,” VLDB

Endowment, vol. 9, no. 2, pp. 72-83, 2015.

C. Hung, L. Golubchik, and M. Yu, “Scheduling Jobs Across Geo-

Distributed Datacenters,” in Proc. ACM Symposium on Cloud Computing

(SoCC), 2015.

M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,

and I. Stoica, “Delay Scheduling: A Simple Technique for Achieving

Locality and Fairness in Cluster Scheduling,” in Proc. ACM European

Conference on Computer Systems, 2010, pp. 265-278.

B. Hindman, A. Konwinski, M. Zaharia, and et al., “Mesos: A Platform

for Fine-Grained Resource Sharing in The Data Center,” in Proc.

USENIX Symposium on Networked Systems Design and Implementation

(NSDI), 2011.

X. Ren, G. Ananthanarayanan, A. Wierman, and M. Yu, “Hop-

per: Decentralized Speculation-aware Cluster Scheduling at Scale,” in

Proc. ACM SIGCOMM, 2015.

[10]
[11]
[12]
[13]

[14]

[15]

[16]

(17]

