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Abstract—In the context of private datacenters that are
operated by Web service providers such as Google, multiple
applications using data parallel frameworks, such as MapReduce,
coexist and share a limited supply of link bandwidth capacities.
It has been shown that failures are the norm, rather than
the exception, in datacenters, and will negatively affect the
performance of data parallel applications as failed tasks need to
be relaunched and placed on newly selected servers. In this paper,
we argue that even with the presence of failures, link bandwidth
should be allocated to competing applications with performance-
centric fairness, in that the performance that applications enjoy
should be proportional to their weights. We formulate and solve
the open challenge of jointly optimizing placement decisions for
relaunched tasks and bandwidth allocation, so that the adverse ef-
fects of failures on application performance are minimized. With
our proposed algorithm implemented in the Mininet emulation
testbed, our experiments show the effectiveness of our solutions
towards minimizing the negative effects of failures, while still
achieving performance-centric fairness.

I. INTRODUCTION

Datacenters have become the de facto standard comput-
ing platform for Web service providers and online social
networks — such as Google and Facebook — to host a
wide variety of computationally intensive applications, ranging
from PageRank [1] to machine learning [2]. To process large
volumes of data, these applications typically embrace data
parallel frameworks, such as MapReduce [3] and Dryad [4],
which proceed in several computation stages that require
communication between them. With MapReduce, for example,
input data is first partitioned into a set of splits [3], so that
they can be processed in parallel with map computation tasks.
The map tasks produce intermediate results, which are then
shuffled over the datacenter network to be processed by reduce
computation tasks.

As multiple data parallel applications share the same private
datacenter operated by a Web service provider, we wish to
allocate link bandwidth to these applications fairly. But how
should the notion of fairness be defined when allocating band-
width in a private datacenter? In our previous work [5], we
have introduced and defined the notion of performance-centric
fairness, in that fairness should be maintained with respect
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to the performance across multiple data parallel applications.
In particular, as available bandwidth is allocated for data
parallel applications to transfer data in their communication
stages, their performance is best represented by the amount of
time needed to complete the data transfer, called the transfer
time. The guiding principle of weighted performance-centric
fairness is that the reciprocal of the transfer times should be
proportional to their weights across competing applications.
To put it simply, applications with equal weights sharing the
same private datacenter should enjoy the same performance.

The major open challenge, however, is to allocate bandwidth
according to the notion of performance-centric fairness, yet
with the presence of failures. Recent measurement studies have
clearly pointed out that physical servers and their access links
in datacenters exhibit a large number of short-term failures
[6]. Such failures will negatively affect the performance of
data parallel applications with tasks running on failed servers,
since failed tasks will need to be relaunched on alternative
servers, and intermediate data will need to be retransmitted
from these relaunched tasks. This is typically referred to as
the straggler problem in MapReduce applications.

The presence of failures changes the design space of
performance-centric bandwidth allocation in a fundamental
way. The most pressing concern, of course, is to determine
which alternative servers should be selected to relaunch these
failed tasks, which is a decision that needs to be made as
soon as failures occur. Yet, by placing relaunched tasks in
newly selected servers, the communication pattern among
communicating tasks has been changed, which necessitates
the re-allocation of link bandwidth such that failed tasks
may finish more quickly with a larger share of bandwidth.
Preferably, flows from failed tasks may even finish at the same
time as other flows in the same application.

In this paper, our original contributions are based on the
belief that the placement of relaunched tasks after failures
occur and the allocation of link bandwidth following the
principle of performance-centric fairness should be considered
and optimized jointly. With an example, we show that such
joint consideration is necessary and instrumental, due to the
fact that the communication pattern is materially changed as
different servers are selected to host the relaunched tasks.

By re-allocating bandwidth at the same time of placing
relaunched tasks onto newly selected servers, our objective
is to diversify the risk of failures on a subset of unfortunate



applications, by spreading their adverse effects on application
performance among all the applications with performance-
centric fairness. In order to achieve this objective, we first
formulate the joint optimization problem in the general case as
a mixed-integer nonlinear programming problem. In order to
narrow the solution space when the Branch-and-Cut method is
used to solve this problem, we propose a preliminary filtering
algorithm to choose a set of server candidates to be considered.
With our proposed algorithm implemented in the Mininet
emulation testbed, our experiments show the effectiveness
of our solutions towards minimizing the negative effects of
failures, while still achieving performance-centric fairness.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the principles of performance-centric
bandwidth allocation, and present an example to serve as a
clear motivation for the joint optimization of task placement
and bandwidth allocation. We formulate the joint optimization
problem in Sec. III, and then present our algorithm to solve
the problem in Sec. IV. Our experimental results are presented
in Sec. V, demonstrating the effectiveness of our solutions
towards minimizing the adverse effects of failures, while still
achieving performance-centric fairness. Finally, we conclude
the paper in Sec. VII.

II. BACKGROUND AND MOTIVATION

A. Allocating Bandwidth with Performance-centric Fairness

We first introduce the intuition of performance-centric fair-
ness [5], which will be used as the guiding principle for our
bandwidth allocation among data parallel applications.

In a private datacenter shared by concurrent data parallel ap-
plications, the network performance, measured by the transfer
time of the communication stages, achieved by these applica-
tions is the most important concern. Allocating bandwidth with
performance-centric fairness across competing applications —
or, simply put, performance-centric bandwidth allocation —
has two implications, with respect to allocating bandwidth to
flows within an application and across applications.

Within an application, bandwidth should be allocated in
proportion to the volumes of data to be sent, so that all of the
flows in its communication stage finish at the same time. This
is based on the observation that the application performance
is determined by the completion time of the slowest flow.
Since faster flows do not improve the application performance,
we can reduce their bandwidth allocation until they all finish
at the same time with the slowest flow. In this way, the
performance of the application would not be degraded, yet
the saved bandwidth can be utilized by other applications.

This principle is particularly useful with the presence of
failures: the delays of relaunching tasks and re-transmitting
intermediate data from these tasks can be compensated by
allocating more bandwidth to speed up the corresponding
flows, to the extent that they can finish at the same time with
the other flows.

Across applications, bandwidth should be allocated such

that the performance1 achieved by these applications is pro-
portional to their weights. However, such a simple objective is
non-trivial to achieve especially when task placement is jointly
considered at the presence of failures, since the volumes of
network traffic in their communication stages and the sharing
relationship among their flows are influenced by the placement
of their tasks.

B. Joint Task Placement and Bandwidth Allocation with Fail-
ures: An Example

We now explore the coupling relationship between task
placement decisions and performance-centric bandwidth al-
location, after the occurrence of failures. To begin with, we
illustrate the coupling relationship between task placement and
the first principle of performance-centric bandwidth allocation
within a single application.

In the illustrative example shown in Fig. 1, a data parallel
application A has two tasks A1, A2 that produce intermediate
data to be transmitted to tasks A3, A4 in the communication
stage. All servers have the same bandwidth capacity of 200
MB/s. Suppose a failure occurs to the server S2. As a result,
task A2 has to be relaunched on an alternative server.
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Fig. 1: Failure occurs on server
S2, and task A2 has to be re-
launched.
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Fig. 2: Two possible placements
and bandwidth allocation within a
single application.

Two possible placements of A2 are shown in Fig. 2, with A2
either co-located with A1 on S1, or relaunched on S4. Because
of the interruption of failures, the relaunched A2 has a larger
amount of data to be transmitted than A1. To be particular,
when A2 starts to transfer 300 MB intermediate data by each
flow, the volume of data left to be sent by each flow of A1 is
200 MB.

Let us first consider how bandwidth is to be allocated if we
relaunch A2 on S1. To ensure that all the flows complete at
the same time, the bandwidth of S1 needs to be allocated to
flows of A1 and A2 with a 2 : 3 ratio. In consequence, the
A1-A3 flow will be allocated a bandwidth of 40 MB/s while
the A2-A3 flow obtains 60 MB/s, so that they can both finish
in 5 seconds.

An alternative placement of A2, i.e., co-locating A2 with
A4 on S4 as shown in Fig. 2, reduces the bandwidth demand,
since A2 no longer needs to transmit data to A4 over the
network. With this placement, the bandwidth bottleneck is

1The performance considered in this paper is the network performance.
With mature techniques, computation performance of tasks is predictable,
which is beyond our scope.
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Fig. 3: One possible solution of placing relaunched tasks as multiple
applications compete for bandwidth.
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Fig. 4: An alternative solution of placing relaunched tasks as multiple
applications compete for bandwidth.

at S3. In this case, we may allocate 80 MB/s to the A1-A3
flow, and 120 MB/s to A2-A3, so that they both finish in
2.5 seconds. Therefore, if we make placement decisions with
performance-centric bandwidth allocation jointly considered,
better performance may be achieved, since communicating
tasks may be co-located to reduce the data to be transmitted
over the datacenter network.

The problem becomes more intricate when we further con-
sider the second principle of performance-centric bandwidth
allocation across multiple applications, in the case that A
shares the datacenter network with other applications, as
shown in Fig. 3 and Fig. 4.

In Fig. 3, when the relaunched A2 on S1 starts to
transmit 300 MB data by each flow (A2-A3, A2-A4), the
amounts of data to be sent by B1-B2, C1-C2 and D1-D2
are 1000/3, 300, 300 MB, respectively. The weights of A, B,
C and D are 1, 1, 4 and 4, respectively. The best possible
performance-centric bandwidth allocation coupled with this
placement is illustrated in the figure, with the bandwidth of
S1 fully allocated among flows of A and B. The transfer time
of A is tA = 200MB/30MB/s = 300MB/45MB/s = 20

3 s.
Similarly, we can calculate the transfer times of B, C and D
as tB = 1000

3 MB/50MB/s = 20
3 s, tC = 300MB/180MB/s = 5

3
s and tD = 300MB/180MB/s = 5

3 s. As we can see, weighted
performance-centric fairness is successfully achieved with the
weight ratio of 1

tA
: 1
tB

: 1
tC

: 1
tD

= 1 : 1 : 4 : 4 satisfied.
If task A2 is placed on S3, however, the best possi-

ble performance-centric bandwidth allocation is illustrated in
Fig. 4, where the egress link of S3 becomes the bottleneck that
is fully utilized. The transfer times achieved with this alloca-
tion are: tA = 200MB/ 80

3 MB/s = 300MB/40MB/s = 7.5 s,
tB = 1000

3 MB/ 400
9 MB/s = 7.5 s, tC = 300MB/160MB/s =

7.5
4 s and tD = 300MB/160MB/s = 7.5

4 s. Therefore, we have
1
tA

: 1
tB

: 1
tC

: 1
tD

= 1 : 1 : 4 : 4, satisfying the requirement
of weighted performance-centric fairness. Compared with the
previous example shown in Fig. 3, the performance of applica-
tions achieved by the joint placement and bandwidth allocation
in this example is worse. Although the co-location of A2 and
A4 reduces the network demand, sharing bandwidth with D1
results in less bandwidth allocated to A than sharing with B1,
because D1 is more bandwidth demanding than B1.

With these examples, we have clearly shown that place-
ment decisions for failed tasks will fundamentally reshape
the design space of performance-centric bandwidth allocation.
Their effects on application performance are coupled with each
other. To maximize the application performance, i.e., to mini-
mize the adverse effects of failures, we should jointly optimize
task placement and performance-centric bandwidth allocation.
We will generalize our insights from these examples to the
general case, in the next section.

III. PROBLEM FORMULATION

With the intuition obtained from our examples, we now
formulate the problem of jointly optimizing the task placement
and bandwidth allocation decisions as failures occur in a
private datacenter.

We consider a datacenter where there are K data parallel
applications —such as MapReduce [3] and machine learning
applications [2] — running concurrently, with their tasks dis-
tributed across N physical machines (or servers interchange-
ably). Each application k ∈ K = {1, 2, ...,K} requires mk

tasks, represented by Tk = {1, 2, ...,mk}. The i-th task of
application k is represented by T ik ∈ Tk. Similar to existing
works [7], [8], we assume that the network load matrix Dk can
be measured, where the (i, j)-th component Di,jk represents the
amount of data to be sent by the flow between task T ik and
T jk .

Let ri,jk denote the bandwidth allocated to the communicat-
ing task pair (i, j) of application k, then the completion time of
the flow between the task pair (i, j) is D

i,j
k

ri,jk

. The transfer time
of application k, defined as the completion time of the slowest
flow in the communication stage, can thus be represented as:

tk = maxi,j,Di,j
k 6=0D

i,j
k /ri,jk

According to the first principle of performance-centric
bandwidth allocation, bandwidth allocated to flows within an
application should be in proportion to the volumes of data
to be sent by them, i.e., ri,jk ∝ D

i,j
k , so that all flows of the

application will finish at the same time. As a result, we have:

ri,jk /Di,jk = 1/tk = αk, ∀i, j ∈ Tk,Di,jk 6= 0, (1)



where αk = 1
tk

represents the performance of application
k, indicating that the shorter the transfer time, the better the
performance.

Based on the second principle of performance-centric
bandwidth allocation, performance-centric fairness should be
achieved across competing applications:

αk = 1/tk = wkS/
∑
k wk, ∀k ∈ K, (2)

where wk is the weight of application k, and S is a positive
variable called the total performance-centric share, which is
upper bounded given the fixed amount of bandwidth capacity
in the shared datacenter.

On each server n ∈ N = {1, 2, ..., N}, tasks from different
applications share its CPU resource, with the capacity of
Cn, and its link bandwidth, including both the egress link
with capacity BEn and the ingress link with capacity BIn.
Since the bisection bandwidth in datacenter networks has been
significantly improved by multi-path routing (i.e., [9]) and
multi-tree topologies (i.e., [10]), we assume a full bisection
bandwidth network, where bandwidth is only bottlenecked
at the access links of physical machines. Consequently, the
completion time of each flow is determined by the bandwidth
allocated at the access links.

Let the binary variable Xi
k,n denote whether task i of

application k is placed on server n, i.e.,

Xi
k,n =

{
1, when T ik is placed on server n
0, otherwise.

(3)

If we use cik to denote the CPU requirement by task T ik , the
CPU capacity constraint on server n is represented as:∑

k

∑
i c
i
k ·Xi

k,n ≤ Cn. (4)

The total egress rate of each task T ik placed on server n is∑
j,Xj

k,n=0 r
i,j
k ·Xi

k,n. Constraint Xj
k,n = 0 in the summation

reflects the fact that there will be no data sent through the
network if the task T jk receiving the intermediate data from
T ik is also placed on server n. Summing over all the tasks of an
application, and then all the applications, we obtain the total
egress rate of server n, which should not exceed the egress
link capacity:∑

k

∑
i

∑
j,Xj

k,n=0 r
i,j
k ·Xi

k,n ≤ BEn .

From Eq. (1), ri,jk can be represented as follows:

ri,jk = Di,jk /tk = αk · Di,jk , ∀k ∈ K, i, j ∈ Tk, (5)

which indicates that the egress link capacity constraint can be
equivalently represented as:∑

k αk
∑
i

∑
j,Xj

k,n=0D
i,j
k Xi

k,n ≤ BEn . (6)

Similarly, the total ingress rate of server n is∑
k

∑
i

∑
j,Xj

k,n=0 r
j,i
k ·Xi

k,n, which can be further

transformed to
∑
k αk

∑
i

∑
j,Xj

k,n=0D
j,i
k X

i
k,n. We hence

have the capacity constraint for the ingress link as follows:∑
k αk

∑
i

∑
j,Xj

k,n=0D
j,i
k X

i
k,n ≤ BIn. (7)

When a server fails, the transfers of all the tasks running on
it would be terminated 2. As a result, all the intermediate data
needs to be retransmitted once these tasks are relaunched on
other available servers. For a task of the second computation
stage, it starts to fetch the intermediate data as soon as it is
relaunched. For a task that belongs to the first computation
stage, we know that its computation has already finished and
the whole set of intermediate data has been generated. It is
not necessary to relaunch it from scratch to implement the
computation again. Instead, we can select a server with a
backup task, or select a server that has the replication of the
intermediate data, based on existing technique [11]. Therefore,
in both cases, the transfers would start immediately once the
placement is given3.

For convenience, we call these tasks the failed tasks, de-
noted by the set Tf . The set of servers that are undergoing
failures is represented by Nf , while N−f denotes the set
of servers that are running normally. The problem of task
placement is to choose servers fromN−f to relaunch the failed
tasks in Tf . For differentiation, we use X = {X ik,n|T ik ∈
Tf , n ∈ N−f} to represent the placement of failed tasks as
variables, while X = {Xi

k,n|T ik ∈ T−f , n ∈ N−f} denotes
the placement of other tasks, which is a known constant. For
binary variables X ik,n ∈ X , the following constraint should be
satisfied:

X ik,n ∈ {0, 1},
∑
n∈N−f

X ik,n = 1, ∀X ik,n ∈ X , (8)

which indicates that each failed task should be placed on
one of the normal servers. As aforementioned, a failed task
that belongs to the first computation stage needs to be placed
on a server with backup task or replication of intermediate
data so that it can transmit data immediately. Hence, we can
rule out the placement on the servers without backup tasks or
without intermediate data, by setting the corresponding binary
variables as 0, i.e.,

X ik,n = 0, if l(k, i, n) = 1, (9)

where l(k, i, n) equals 1 if T ik is a task in the fist computation
stage and server n does not have its backup task or interme-
diate data.

With such notations, Eq. (4), (6) and (7) can be represented
as follows:∑

k

( ∑
i,T i

k∈Tf

cik · X ik,n +
∑

i,T i
k /∈Tf

cik ·Xi
k,n

)
≤ Cn (10)

∑
k

αk
( ∑
i,T i

k∈Tf

di,Ek,nX
i
k,n +

∑
i,T i

k /∈Tf

di,Ek,nX
i
k,n

)
≤ BEn (11)

∑
k

αk
( ∑
i,T i

k∈Tf

di,Ik,nX
i
k,n +

∑
i,T i

k /∈Tf

di,Ik,nX
i
k,n

)
≤ BIn, (12)

2Note that all the tasks considered in our model are in the communication
stages when failures happen. The tasks that are not sending or receiving data
do not require bandwidth allocation, thus relaunching these tasks is out of the
scope of our joint problem.

3Even if this does not hold, our model can be extended to consider the
delay of relaunching a task, and predict network load of other tasks when the
relaunched task starts its communication stage. We leave it as future work.



where di,Ek,n =
∑
j,T j

k /∈Tf ,X
j
k,n=0D

i,j
k +

∑
j,T j

k ∈Tf ,X
j
k,n=0D

i,j
k ,

representing the total amount of data to be sent by
task T ik when it is placed on server n, and di,Ik,n =∑
j,T j

k /∈Tf ,X
j
k,n=0D

j,i
k +

∑
j,T j

k ∈Tf ,X
j
k,n=0D

j,i
k , representing

the total amount of data to be received by task T ik at server
n.

We are now ready to formulate the problem of jointly
optimizing task placement and performance-centric bandwidth
allocation as follows:

maxα,X i
k,n∈X S s.t. Eq. (2), (8), (9), (10), (11), and (12).

The objective is to achieve the maximum S, so that the adverse
effects to application performance caused by failures are min-
imized, and the performance achieved by each application is
maximized. Eq. (2) represents the performance-centric fairness
among applications. Eq. (10), (11), (12) correspond to capacity
constraints for CPU, egress and ingress link capacities at each
server. Eq. (8) indicates the property of the placement variables
and Eq. (9) limits the placement of failed tasks of the first
computation stage.

Substituting Eq. (2) into (11) and (12) yields:

S ·
∑
k

w
′

k

( ∑
i,T i

k∈Tf

di,Ek,nX
i
k,n +

∑
i,T i

k /∈Tf

di,Ek,nX
i
k,n

)
≤ BEn (13)

S ·
∑
k

w
′

k

( ∑
i,T i

k∈Tf

di,Ik,nX
i
k,n +

∑
i,T i

k /∈Tf

di,Ik,nX
i
k,n

)
≤ BIn, (14)

where w‘
k = wk/

∑
k wk, representing the relative weight of

application k.
For the capacity constraint of CPU, we use cn =∑
k

∑
i,T i

k /∈Tf
cik ·Xi

k,n to represent the total CPU cycles
required by the tasks running on server n, which is a known
constant. Then Eq. (10) can be represented as follows:∑

k

∑
i,T i

k∈Tf
cik · X ik,n + cn ≤ Cn,∀n ∈ N−f . (15)

Therefore, the optimization problem can be transformed to
the following form:

maxS,X i
k,n∈X S s.t. Eq. (8), (9), (13), (14), and (15)

This problem is a Mixed-Integer Nonlinear Programming
(MINIP), as X ik,n are binary variables, S is continuous, and
the capacity constraints for egress/ingress links are not linear.
The MINIP problem is NP-hard [12], since it combines all
the difficulties of its subclasses: the combinatorial nature of
Mixed-Integer Programming and the difficulty of Nonlinear
Programing. The dimension of difficulty with Nonlinear Pro-
gramming can be removed by transforming the MINLP to the
following equivalent form, with S being replaced by p = 1/S:

minp,X p (16)

s.t.
∑
k w

′

k

∑
i,T i

k∈Tf
di,Ek,nX ik,n + bEn ≤ BEn p (17)∑

k w
′

k

∑
i,T i

k∈Tf
di,Ik,nX ik,n + bIn ≤ BInp (18)

Eq. (8), (9), and (15)

explanation
SBD flow demand of an application to achieve its fair performance

share, i.e., Di,j
k w

′
k for the flow between task T i

k and T j
k

SBD-t sum of SBD over all flows of task t
SBD-n sum of SBD-t over all tasks on server n
rSBD-n SBD-n divided by link bandwidth capacity Bn of server n

TABLE I: Notation explanation and expression.

where bEn =
∑
k w

′

k

∑
i,T i

k /∈Tf
di,Ek,nX

i
k,n and bIn =∑

k w
′

k

∑
i,T i

k /∈Tf
di,Ik,nX

i
k,n.

As the link capacity constraints are now linear, problem (16)
is a Mixed-Integer Linear Programming (MILP), which is
simpler than MINLP yet still NP-hard [13]. An intuitive way
to solve the MILP is to simply change the constraint of
X ik,n ∈ {0, 1} to 0 ≤ X ik,n ≤ 1, which is called Linear
Programming (LP) relaxation, solve the relaxed LP problem
and then round to the nearest binary variables that are feasible
to the MILP. However, rounding to a feasible solution may be
difficult, and more importantly, the solution may be far from
the optimum. To compute the optimal solutions, we choose
to use the exact algorithm with the method of Branch-and-
Cut [14] in this paper, and using the solution of LP relaxation
as a lower bound for MILP. Instead of applying Branch-and-
Cut on the entire set of variables in the problem, we propose
to first choose some promising candidate servers to reduce the
search space, based on more in-depth insights on the problem
itself.

IV. ALGORITHM

A. Interpretation and Insights

We first re-investigate Problem (16) and interpret its objec-
tive and constraints, with the hope of deriving better insights
towards an optimal solution.

As shown in Table I, let us define the standard performance-
centric bandwidth demand, or SBD in short, as the amount
of bandwidth required by each flow of an application k to
achieve its fair share of performance, i.e., to finish within 1/w

′

k

seconds. Obviously, the SBD for the flow between task T ik and
T jk is Di,jk w

′

k. In a similar vein, let SBD-t ( for each task t)
represent the total amount of SBD for all flows of a task, and
let SBD-n (for each server n) denote the total amount of SBD-t
for all the tasks placed on a server.

Now let us check the left side of Constraint (17) for server n.
The first term

∑
k w

′

k

∑
i,T i

k∈Tf
di,Ik,nX ik,n can be considered as

the SBD-t for the failed task T ik if it is to be placed on server n.
Similarly, the second term bEn =

∑
k w

′

k

∑
i,T i

k /∈Tf
di,Ek,nX

i
k,n

represents the sum of SBD-t for all existing tasks on server
n. Thus, the left side of Constraint (17), as the sum of SBD-t
for all tasks on server n, is interpreted as the SBD-n for this
server. In this way, the link bandwidth constraint for server
n can be represented as SBD-n ≤ Bnp, or SBD-n/Bn ≤ p
equivalently. If we further denote SBD-n/Bn for server n as
the relative SBD-n, or rSBD-n in short, then our joint task
placement and bandwidth allocation problem represented by
(16) can be interpreted as follows:

—



The placement of a failed task t on a server n will increase
the SBD-n for this server by the amount of SBD-t for this task.
Moreover, the SBD-t for this task is also impacted by the server
where it is to be placed. The objective of our problem is to find
a placement of all failed tasks that enables the maximum of
the rSBD-n across all the servers to achieve the minimum,
represented as p∗, so that the performance of applications
α∗k = wk∑

k wk
S∗ = wk∑

k wk
/p∗ achieves the maximum.

—

With the interpretation above, we can derive two insights
as follows: First, for each failed task t, the SBD-t for this task
that will be added to the total SBD-n for the server, where
t is to be placed, is not the same for all possible placement
alternatives. When it is placed on a server where at least one
of its communicating tasks within the transfer is running, the
SBD-t for this task that will be added to the total SBD-n for
this server is smaller than the SBD-t to be added when placed
on a server without any communicating tasks. For example,
when a failed Reduce task is placed on a server where a Map
task of the same application is located, the network load will
be reduced, thus resulting in a smaller SBD-t for this Reduce
task. Second, for each failed task t, the servers with a smaller
rSBD-n after the placement of the task are more preferred than
those servers with a larger rSBD-n.

B. Preliminary Filtering
Inspired by the combination of the two insights, we propose

the method of preliminary filtering as in Algorithm 1 to choose
a set of servers as promising candidates for the placement of
failed tasks.

Algorithm 1: Preliminary Filtering.
1: Initialize the candidate set C = ∅;
2: Sort failed tasks T i

k ∈ Tf in a decreasing order of their
required CPU cycles, resulting in the sorted set as T s

f ;
3: for all task T i

k ∈ T s
f do

4: for all server n ∈ N−f do
5: if Eq. (9) and Eq. (10) are satisfied then
6: Compute rSBD-n for n if T i

k is placed on n;
7: Insert n to Sn

k in increasing order of rSBD-n;
8: end if
9: end for

10: Add the first η (≥ 1) servers from Sn
k to C,

and remove them from N−f ;
11: end for
Output:

The candidate set C;

The main idea of preliminary filtering is that each failed task
takes turns to greedily select a number of the most promising
candidate servers, according to the rSBD-n for server n if the
task is to be placed on it. More specifically, the server n with
the smallest rSBD-n is the first to be selected to the candidate
set, based on the insights we have previously derived.

The algorithm begins with sorting failed tasks according to
their CPU requirements (Line 2). Particularly, a task with a
larger CPU requirement has a smaller set of feasible place-
ment. Hence, it would be allowed to choose the candidate

servers ahead of a task with a smaller demand of CPU cycles.
Among tasks with the same CPU requirement, a task of the
first computation stage will take its turn first, since it has more
constraint on its placement than tasks of the second stage, as
indicated by Eq. (9).

Such a sorting rule is aimed at selecting more promising
candidates (given a fixed setting of parameters). The simple
intuition is that for a task with less feasible placement, once
the feasible servers have been selected by other tasks, it would
have no feasible server to choose; while for a task that has a lot
of feasible placement, it could still add some feasible servers
that are most promising into the candidate set.

With preliminary filtering, we will obtain a candidate set of
servers, yet without fixing the mapping relationship between
the failed tasks and the preferable servers selected by them.
Instead, the final decision of the placement is to be made by
the Branch-and-Cut algorithm, which will find the optimal
placement among the reduced solution space determined by
the candidate set.

Note that η (Line 10 in Algorithm 1) is an integer parameter
that can be tuned. When set as the smallest possible value, i.e.,
η = 1, we can at least guarantee a solution space that contains
a good feasible solution, since the candidates are selected in
a greedy manner. In this case, the running time of our joint
optimization achieves the best possible speedup, with a much
smaller solution space. We may achieve the global optimum in
this space when we are fortunate in some particular scenarios.
However, in general, to increase the chance of achieving the
global optimum, we may need to increase the solution space
so that the global optimum is more likely to be reached, yet
with longer running times.

The novelty of our algorithm lies in the important insights
developed from the in-depth analysis of our formulation for
joint performance-centric bandwidth allocation and task place-
ment. The standard performance-centric bandwidth demand,
as well as its varieties (SBD, SBD-t, etc.) used in our algorithm,
are based on application-level performance-centric fairness.
Also, the interplay between the communication pattern and the
task placement is characterized when computing these demand
metrics. Both of these insights significantly differentiate us
from existing heuristics. The implementation details in practice
will be discussed in the next subsection.

C. Joint Optimization

With a reduced solution space obtained from preliminary
filtering, the Branch-and-Cut algorithm will be a much more
feasible method to be used to find the optimum. After the
optimal S∗ = 1/p∗ and X ∗ are obtained by the Branch-
and-Cut algorithm, we relaunch the failed tasks according
to the optimal placement, and implement performance-centric
bandwidth allocation to all the flows as follows:

ri,jk
∗
=

wk∑
k wk

S∗ · Di,jk . (19)

To summarize, our aforementioned algorithm for joint task
placement and bandwidth allocation with performance-centric



Algorithm 2: Joint Task Placement and Performance-
Centric Bandwidth Allocation.

Input:
Servers with failures: Nf ; Normal servers: N−f ;
Bandwidth capacity: BE

n , B
I
n, ∀n ∈ N−f ;

Network load matrix Dk
i,j and weight wk, ∀k ∈ K; Placement

of tasks that are running on servers without failures: Xi
k,n ∈ X;

Output:
Placement of tasks that are running on servers with failures:
X i

k,n ∈ X ;
Bandwidth allocation for all applications: rki,j ;

1: Obtain the candidate set C from Algorithm 1;
2: Branch-and-Cut [14] for problem (16) over the reduced solution

space: X = {X i
k,n|T i

k ∈ Tf , n ∈ C};
3: Relaunch failed task T i

k ∈ Tf on server n if X i
k,n = 1.

4: Allocate bandwidth to flows of k ∈ K based on Eq. (19);

fairness is presented in Algorithm 2, which can be imple-
mented in a global scheduler for resource sharing among data
parallel applications in a private datacenter, such as Mesos
[15]. Each application has a controller that detects failures and
tracks the progress of its transfer, i.e., the amounts of data left
to be transmitted [7], [8].

When failures are detected by application controllers and
reported to the global scheduler, Algorithm 2 will be executed
in the global scheduler4, which can gather up-to-date state
information such as network load matrices and existing task
placement of all the applications. According to Algorithm 1,
each application controller that has reported failures will
compute the relative demand (rSBD-n) for each server that
has sufficient CPU cycles for the failed task. It then chooses
η of these servers that have the smallest rSBD-n, and informs
the global scheduler.

With the candidate servers reported by these application
controllers, the global scheduler will merge them as the
candidate set C, and apply Branch-and-Cut algorithm for the
joint optimization over such decreased solution space. Finally,
the optimal solution is conveyed to the respective application
controllers for them to relaunch failed tasks and allocate
bandwidth accordingly.

With this algorithm, the best possible performance for all
the applications has been achieved, and the adverse effects
to application performance caused by failures are minimized.
Across all the concurrent applications, fairness is achieved
with respect to the application-level performance. When re-
source utilization is further considered, we can arbitrate the
tradeoff between performance-centric fairness and bandwidth
efficiency, as proposed in our previous work [5]. More intu-
itions and properties of our jointly optimal strategy will be
investigated in our performance evaluation.

V. PERFORMANCE EVALUATION

In this section, we investigate how the proposed algorithm
performs in minimizing the adverse effects of failures while

4If multiple failures are detected within a scheduling interval, which can
be set by the datacenter operator, the failed tasks will be scheduled once at
the end of this scheduling interval.

maintaining performance-centric fairness, with a detailed anal-
ysis in a typical scenario implemented in the Mininet 2.0
emulation testbed [16]. We also conduct extensive simulations
at large scale, to evaluate the performance of our algorithm in
a general setting.

A. Mininet Testbed Evaluation

As we consider the network with full bisection bandwidth,
we emulate a small cluster with a single switch topology
in Mininet, interconnecting 8 homogeneous servers (S0, S1,
... , S7) with links of 10 MB/s. The cluster is shared by 5
applications (A, B, C, D, E), each with multiple tasks placed
across several servers, as shown in Fig. 5. Such an emulation
is for the sake of verification and detailed analysis. We leave
real-world implementation as our future work.
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Fig. 5: A private datacenter with applications A, B, C, D and E running
concurrently on 8 servers and a failure happens to S0.

Since our focus is on the network transfer in the communi-
cation stages of an application, we use the Netcat (nc) tool to
implement file transfer between each communicating task-pair.
In this way, the placement of a failed task can be represented
by the establishment of several file transfers. To be specific,
relaunching a failed task on a selected server is represented
by initiating file transfers between the selected server and
other servers hosting the tasks that are communicating with
the failed task. We use the Pipe Viewer (pv) tool to measure
the flow completion time of each file transfer. If the completion
time of all flows of an application have been measured,
the performance of this application can be obtained as the
reciprocal of the slowest completion time.

In our scenario, suppose a failure occurs to S0, resulting
in the failed tasks A1, B1 and C3 to be relaunched. As-
sume the amount of data to be sent by each flow of A1,
B1 and C3 are 60, 80 and 100 MB, respectively, and other
normal flows of application A, B, C and all flows of D,
E have 30, 40, 50, 60, 70 MB data to be sent respectively.
We evaluate the performance of our algorithm for jointly
placing these failed tasks and allocating bandwidth with the
constraint of performance-centric fairness in two cases: Case
I) wA : wB : wC : wD : wE = 1 : 1 : 1 : 1 : 1. Case II)
wA : wB : wC : wD : wE = 1 : 2 : 1 : 1 : 1.

Intuition of the Jointly Optimal Strategy. The optimal
solution of our joint task placement and performance-centric
bandwidth allocation is presented in Fig. 6 and 10 for Case



I, and Fig. 7 and 11 for Case II, respectively. The character-
istic inherited with an optimal placement is that with it, the
maximum of the final relative standard bandwidth demand
(rSBD-n) for all servers achieves the minimum. For Case
I shown by Fig. 6, the optimal S∗ is calculated as 1/4.8,
so that the transfer time achieved by each application is
1/(w

′
S∗) = 24s. For Case II shown by Fig. 7, since the

weight of B becomes larger, the rSBD-t for B1 becomes larger.
Swapping the placement of A1 and B1 in Case I will result
in smaller rSBD-n for all servers. The optimal S∗ in this case
is 1/5, so that the optimal transfer times achieved by A, C,
D is 1/(1/6 · S∗) = 30s, while the optimal transfer time for
B is 1/(2/6 · S∗) = 15s. The analysis of the optimal solution
with respect to bandwidth allocation will be presented next,
compared with per-flow fair allocation.
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Fig. 6: Optimal placement when
applications have the same
weight.
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Fig. 7: Optimal placement
when application have different
weights.
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Fig. 8: Comparison among
different placement strategies
when applications have the
same weight.
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Fig. 9: Comparison among
different placement strategies
when applications have different
weights.

Comparison among Different Strategies. As our strategy
is the first to jointly optimize the two dimensional decisions
of both bandwidth allocation and task placement, we evalu-
ate it in comparison with the following two groups of one
dimensional strategies, respectively:

Different placement, with the same bandwidth allocation.
We compare the transfer time achieved by application A among
the following strategies, which employ the same performance-
centric bandwidth allocation, yet use different task placements:
1) Our Joint Optimization (Algorithm 2), denoted as JO,
which is to first use Preliminary Filtering to select a set of
candidate, and then use Branch-and-Cut to find the optimum.
2) Preliminary Filtering (Algorithm 1) and Random Placement,
denoted as PFR, which randomly selects a placement in a
reduced solution space given by Preliminary Filtering. 3)
Random Placement, denoted as R, which randomly chooses
among all feasible servers to relaunch the failed tasks.

As shown in Fig. 8, for Case I, the strategy of JO achieves

the optimal transfer time, which is 24s aforementioned. In
comparison, the placement decisions made by strategy R, with
R1 and R2 as two runs, result in bad transfer times as large as
about 45s. The underlying reason is that the failed task may be
randomly placed on a server which is already heavy-loaded,
with a large rSBD-n. The application performance achieved
by PRF strategy (PFR1 and PFR2) are in between JO and
R. This is because Preliminary Filtering can filter out a set
of promising candidate with good possible placement. With
good placement covered in a reduced solution space, PFR is
more likely to choose a fairly good placement compared with
strategy R that randomly chooses among the entire solution
space. The same analysis applies to Fig. 9 when the strategies
of placement are compared for Case II.

Different bandwidth allocation, with the same placement.
We further compare our performance-centric bandwidth al-
location with the standard per-flow fair allocation, given the
same placement of failed tasks, in order to illustrate how the
performance-centric fairness in bandwidth allocation helps to
alleviate the adverse effects of failures. With the failed tasks
relaunched as what is shown in Fig. 6 for Case I and in Fig. 7
for Case II, we compare the completion time of application
flows with per-flow fairness and performance-centric fairness,
respectively.

As shown in Fig. 10, for Case I where applications have
the same weight, the bandwidth allocation following per-flow
fairness will result in different completion times of flows
within the same application. In comparison, all flows finish at
the same time if the bandwidth is allocated with performance-
centric fairness. For application A, although flows of task A3
finish faster than flows of task A1 if the per-flow fairness is to
be maintained, the performance of A is determined by slowest
flows of A1, which still achieves the same performance as
with performance-centric fairness. For application C, per-flow
fairness will result in flows of the failed task C3 as stragglers,
which require 42s to finish, almost twice the completion time
of other flows. In contrast, with performance-centric fairness,
the adverse effects will be spread among all applications, so
that stragglers no longer exist, and all applications enjoy the
performance proportional to their weights.

Fig. 11 shows the comparison between different fairness
notions in Case II. With performance-centric fairness, the
failed task C3 will no longer lag behind other flows, and the
performance achieved by application B is better than other
applications, since it has a larger weight. In the figure, we can
see that the completion time achieved by B with the weight of
2 is half the completion time achieved by other applications
with the weight of 1, satisfying the weighted performance-
centric fairness.

B. Large Scale Simulations

We now investigate the behavior of our joint optimization
strategy through large scale simulations in a general setting. To
be particular, we focus on the following aspects: the ability of
minimizing adverse effects caused by failures, and the running
time overhead incurred by the algorithm.
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Fig. 10: Comparison between different notions of fairness when appli-
cations have the same weight.
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Fig. 11: Comparison between different notions of fairness when
application have different weights.

Minimizing Adverse Effects Caused by Failures. We
simulate a large scale datacenter where 100 data parallel
applications, each with 40 tasks, are hosted by 1000 servers of
the same capacity. We randomly set the placement of existing
tasks and the amounts of data to be sent by each flow. As
a result of host failures, 20 tasks need to be relaunched, to
retransmit data. All the applications are assigned the same
weight5, without loss of generality. Similar to our previous
Mininet evaluation, we compare our jointly optimal strategy
to two groups of strategies as follows.

The comparison of our joint optimization strategy JO with
other strategies (same bandwidth allocation yet different task
placement) — R, PFRb and PFRs — over 10 runs is shown
in Fig. 12. As previously defined, strategy R represents the
Random Placement over the whole solution space, and PFR
denotes the Random Placement over the decreased space
resulted from Preliminary Filtering. PFRb and PFRs are PFR
strategies with different parameter settings, the former of
which selects a larger candidate set (η = 25), while the latter
indicates a smaller space (η = 15) for the random placement.
As shown in Fig. 12, JO achieves the best application perfor-
mance, in that the transfer time is the lowest. PFRb and PFRs
are both better than R because of using Preliminary Filtering.
PFRb is worse than PFRs, since a larger space would contain
more bad placement, which will make it less likely to choose
a good one at random.

Given the same task placement, Fig. 13 shows the per-
formance achieved by tasks on a server, when performance-
centric fairness and per-flow fairness are to be maintained
respectively in bandwidth allocation. FT denotes the failed
task that is relaunched, while ET1, ... , ET4 represent the
normal running tasks. With performance-centric fairness, the
adverse effect to the unlucky failed task is spread among
all the applications. Compared with per-flow fairness which
results in FT lagging behind, as slow as 15s, performance-
centric fairness guides the reallocation of bandwidth so that
all applications share and thus minimize the adverse effects
caused by failures.

Algorithm Running Time. Finally, we evaluate the running
time of our algorithm for a simulated datacenter, with 500
servers hosting 10 applications, each with 20 tasks. There

5Analysis for the case of different weights is similar, as in our previous
Mininet testbed evaluation.

are 8 tasks to be relaunched as a result of host failures. Our
algorithm is implemented on a 1.86GHz dual-core Intel Core
2 server. Without using Preliminary Filtering, it takes about 5
seconds for the Branch-and-Cut algorithm to find the optimum
over the whole solution space, as shown by Fig. 14, the
empirical CDF of the running times for 100 runs. Fig. 15 plots
the empirical CDFs of the running times when Preliminary
Filtering is used, with the size of candidate servers tuned to
be 250, 100 and 50 respectively. As we can see, the decrease
of the candidate size due to Preliminary Filtering can achieve
speedup of the algorithm.

VI. RELATED WORK

Bandwidth allocation among multiple tenants in public
cloud datacenters has received a substantial amount of recent
research attention [17]–[23]. The general focus of these works
has been on ensuring fair allocation among different tenants
according to their payments. For example, NetShare [17]
achieves tenant level fairness while Seawall [18] achieves fair-
ness between VM sources. FairCloud [19] allocates bandwidth
on congested links based on the weights of the communicating
VM-pairs, thus achieving VM-pair level fairness. However,
in our setting of a private datacenter running data parallel
frameworks, the previous notion of fairness is not applicable.

In the context of a private datacenter, Kumar et al. proposed
that bandwidth should be allocated with the awareness of
the communication patterns of data parallel applications [24].
Their focus is mainly on effective parallelization for each
application, i.e., the completion time should be N times faster
if the application parallelizes by N . However, when tasks
of one application share bandwidth with tasks of different
applications at different bottlenecks, it is not known what
performance each application should expect, without a clear
definition of fairness with respect to application performance.
In contrast, our previous work [5] proposed the performance-
centric fairness and offered a definitive guide to the problem of
bandwidth allocation among multiple data parallel applications
in a private datacenter. In this paper, we investigate how such
kind of fairness is coupled with task placement when failures
occur in the datacenter. To our best knowledge, we are the
first to jointly consider the placement of failed tasks and the
performance-centric bandwidth allocation in order to minimize
the adverse effects of failures.
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Fig. 14: Empirical CDF of algorithm run-
ning times over the whole solution space
(with 500 candidate servers).
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Fig. 15: Empirical CDFs of algorithm running times when tuning the Pre-
liminary Filtering to obtain 250, 100, 50 candidate servers respectively.

VII. CONCLUDING REMARKS

Our focus in this paper is to study the placement of failed
tasks and the sharing of link bandwidth among applications
running data parallel frameworks in a private datacenter,
with the presence of failures. We argue that even with the
presence of failures, the performance achieved by applications
should be proportional to their weights, which is defined as
performance-centric fairness for competing applications. With
a clear motivation for joint optimization of task placement
and bandwidth allocation, we formulate the problem and
present our algorithm to solve it efficiently. Our experimental
results and extensive simulations have shown that our joint
task placement and performance-centric bandwidth allocation
strategy can efficiently minimize the adverse effect of failures
and eliminate the straggler problem caused by failures.
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