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Abstract—In production datacenters operated by Web service
providers such as Google, multiple data parallel applications,
such as MapReduce, are employed to facilitate data processing
at a large scale, with a strong demand for intra-datacenter
bandwidth in their communication stages. A noteworthy phe-
nomenon in these applications is the presence of barriers, which
implies that a job will not finish until the last task completes.
Existing flow-level sharing in datacenter networks is not designed
and optimized to meet such application-level needs. In this
paper, we promote the awareness of application barriers in
the design of both bandwidth allocation and path selection
strategies. In particular, we propose the notion of application-level
fairness when bandwidth is allocated, with favorable properties
of performance-centric max-min fairness and Pareto efficiency.
Further, we show that both application-level performance and
resource utilization can be further improved by considering
path selection as well. With our implementation in the Mininet
emulation testbed and large-scale simulations, we demonstrate
that our new barrier-aware strategy for fair bandwidth sharing
and path selection significantly outperforms barrier-agnostic
strategy when application performance is concerned.

I. INTRODUCTION

In current production datacenters operated by Web service
providers such as Google and Facebook, a wide variety of
data-intensive applications are hosted for large-scale data
analytics, ranging from PageRank [1] to machine learning [2].
To efficiently process large volumes of data, these applications
typically embrace data parallel frameworks to proceed in
multiple computation stages, each with a group of computation
tasks running in parallel. Between successive computation
stages, the intermediate data is transferred over the datacenter
network, called the communication stage. With MapReduce
[3] as an example, during the communication stage, the
intermediate data produced in the map stage is shuffled over
the network to be processed by reduce computation tasks.

A common characteristic shared by most of the existing
data parallel frameworks is the existence of barriers [4], which
implies that the application would not finish or progress until
the completion of all its constituent flows. To be more specific,
a MapReduce job would not finish until its last reducer
finishes, exhibiting the phenomenon of a barrier at the end
of the job. Naturally, barriers exist in frameworks (e.g., Pig
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[5]) that use MapReduce as its building block. Pregel [6], a
framework that proceeds in a series of supersteps, contains
barriers at the end of each superstep.

In the communication stage of a data parallel application,
there is a strong demand for intra-datacenter bandwidth by
the constituent flows, in order to complete the data transfer as
soon as possible. With the presence of barriers, the application
performance, represented by the reciprocal of the amount of
time required to complete the data transfer, is determined
by the slowest flow. Therefore, to achieve better utilization,
bandwidth allocation should be performed at the application
level, so that all the constituent flows of an application would
finish at the same time. Blindly allocating more bandwidth to a
faster flow does not make any improvement to the application
performance.

As multiple data parallel applications share the same dat-
acenter network, a commonly accepted manner is to share
the bandwidth fairly. Specially customized for data parallel
applications with barriers, performance-centric fairness [7]
regulates that fairness should be maintained with respect to
the performance achieved by each application. The guiding
principle of such notion of fairness is that the application
performance should be proportional to their weights. However,
bandwidth allocation with such fairness constraint fails to
achieve efficiency, since some available bandwidth is left
unused to keep the strict performance proportionality.

In this paper, we propose the notion of application-level
fairness as the guiding principle for the bandwidth allocation
among data parallel applications with barriers. With the satis-
faction of such fairness, among all the applications, the perfor-
mance achieved is weighted max-min fair [8], an implication
of which is that the worst performance is optimized. Also,
Pareto efficiency [9] can be satisfied, since no application can
improve its performance without degrading the performance
of others.

There is further space to improve the worst performance, as
well as bandwidth utilization, if we are allowed the flexibility
to select paths in multi-rooted tree topologies [10]–[12], which
is the norm in current datacenters. The simple intuition is
that the performance of an application can be improved if
its slowest flow shifts from a heavily-loaded path to a lightly-
loaded one. Existing effort in path selection is either barrier-
aware but orthogonal to fair sharing of link bandwidth [13],
or coupled with fair bandwidth sharing but agnostic to the



presence of barriers [14]. To fill this gap, we wish to optimize
the path selection for all the concurrent flows, yet with the
fair bandwidth allocation jointly considered, which remains
an open challenge.

In this paper, we begin with the problem formulation of
bandwidth allocation with the constraint of application-level
fairness, given the paths traversed by all the flows. With a
theoretical study of this problem, we design an algorithm
and explore its properties. Then, with path selection also
considered as decision variables, the problem is extended to a
joint optimization that has a larger solution space.

The upshot in this paper revolves around a joint optimiza-
tion of bandwidth allocation and path selection, with the
objective of maximizing the worst application performance,
while achieving application-level fairness. It turns out that
this problem is equivalent to a Mixed-Integer Linear Program,
which is NP-hard [15]. Therefore, we develop a practical
greedy-based algorithm to approximate the maximum worst
performance, while satisfying the proposed fairness.

With the rising popularity of software-defined networking
(SDN) [16], the network can be conveniently tailored to meet
application demands through a well-defined programming
interface such as OpenFlow [17]. We thus implement our
algorithm in a centralized controller in the Mininet emu-
lation testbed, with the global view of network states for
our optimization. Compared with barrier-agnostic strategy
for fair sharing and path selection [14], our barrier-aware
strategy achieves better bandwidth utilization and applica-
tion performance. Moreover, extensive large-scale simulations
demonstrate the effectiveness of our strategy towards fairness
satisfaction and performance maximization.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the motivation and objective of our
barrier-aware strategy, with respect to both bandwidth alloca-
tion and path selection. In Sec. III, we formulate the problem
of bandwidth allocation, with known flow paths. We then
propose a new algorithm and study its properties theoretically.
Further, we formulate the joint optimization problem when
path selection is to be decided, and design a greedy-based
algorithm in Sec. IV. Our experimental results are presented
in Sec. V, and we conclude the paper in Sec. VII.

II. MOTIVATION AND DESIGN OBJECTIVES

Our design of barrier-aware strategy for joint bandwidth al-
location and path selection is motivated by both the awareness
of application barriers and the requirement of application-level
fairness.

A. Barriers Awareness in Bandwidth Allocation

With the presence of a barrier at the end of a computation
stage, the performance of an application depends on the
time when the last computation task completes. Without loss
of generality, the computation times of parallel tasks can
be considered the same, due to mature techniques of load
balancing and resource allocation. In contrast, the completion
times of flows in the communication stage are quite variable

since the network resource is globally shared, with bottleneck
links contended by flows from multiple applications.

To achieve efficiency in bandwidth utilization, all the flows
of a communication stage should finish at the same time. To
understand the reason, let us consider a flow of an application
that will complete earlier than other flows. If we reduce its
bandwidth to let it complete at the same time with other flows,
the performance of this application will remain the same.
However, the saved bandwidth can be better utilized by the
slowest flow of another application to improve its performance.
Therefore, bandwidth should be allocated at the application
level, with awareness of application barriers, in order to avoid
wasting bandwidth.

In particular, within an application, the amount of bandwidth
allocated to each flow should be of the same proportionality to
the volume of data to be transmitted, so that all of these flows
can finish at the same time. Across concurrent applications,
bandwidth should be allocated so that the performance of these
applications achieves weighted max-min fairness. We refer to
such a notion of fairness as application-level fairness, which
is quite different from existing efforts. First, without barrier
awareness, traditional allocation strategies decide the amount
of bandwidth for each flow in an isolated way, with the belief
that the more the bandwidth, the better the performance. In
contrast, we have shown that a larger amount of bandwidth
allocated to a single flow does not necessarily improve the
application performance. Second, max-min fairness is tradi-
tionally defined for the rates achieved by concurrent flows.
On the contrary, in our barrier-aware bandwidth allocation,
max-min fairness is defined for the performance achieved by
concurrent applications (or groups of flows).

We next provide an example to better illustrate our basic
idea of barrier-aware bandwidth allocation with the satisfaction
of the proposed fairness.

Coupling within an application. We first consider the allo-
cation of bandwidth at a bottleneck link shared by two flows,
represented as A1-A2 and B1-B2, from different applications.
Application A has another flow A1-A3 which is expected to
finish within 10s; application B has another flow B1-B3 which
is expected to finish within 8s. The bandwidth capacity of the
shared link is 15 MB/s, and the amounts of intermediate data
transmitted by A1-A2 and B1-B2 are 50 MB and 100 MB,
respectively.

Traditional flow-level bandwidth allocation, such as TCP,
would allocate the same amount (7.5 MB/s) of bandwidth to
the contending flows, in order to achieve flow level fairness.
With such an allocation, A1-A2 will finish within 20

3 s, while
the flow completion time of B1-B2 is 10s. Since barriers exist
in both applications, the performance is determined by the
slowest flow completion time, which we refer to as the transfer
time. Hence, the transfer time of A is 10s, with A1-A3 as
the slowest flow, while the transfer time of B is also 10s,
with B1-B2 as the slowest flow. In this sense, a part of the
bandwidth allocated to A1-A2 is wasted, without improving
the performance of A.

In contrast, if we use barrier-aware allocation, the bandwidth
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Fig. 1: An illustration of bandwidth allocation to achieve application-level
fairness among applications A, B and C.

allocated to flows within an application should be coupled. In
this example, B1-B2 requires 12.5 MB/s to finish within 8s,
while A1-A2 can utilize the residual bandwidth to complete
within 10s. This way, bandwidth is more efficiently used to
improve the performance at the application level. We can see
that, compared with flow-level sharing that is barrier-agnostic,
the performance of B is improved to 8s, without degrading
performance of A.

Max-min fairness across applications. Now we consider
bandwidth allocation across multiple applications, still with
the awareness of barriers. As shown in Fig. 1, link L1, L2,
and L3, with a capacity of 20 MB/s, 15 MB/s and 20 MB/s,
respectively, are shared by the flows in A, B, and C. Each of
the two flows in application A transmits 50 MB of intermediate
data; each of the flows in B transmits 100 MB. A1-A3 shares
link L1 with C1-C2, which needs to transmit 80 MB data,
while B1-B3 shares link L3 with C3-C4, and the amount of
data to be sent is 40 MB.

In this allocation, L2 is first bottlenecked, with 5 MB/s
allocated to A1-A2 and 10 MB/s allocated to B1-B2. Due to
the coupling relationship among flows of the same application,
the amounts of bandwidth allocated to A1-A3 and B1-B3 are
also determined as 5 MB/s and 10 MB/s. Thus, both A and B
achieve the same application performance.

After the allocations of A and B have been fixed, the
available capacities for L1 and L3 are reduced as 15 MB/s
and 10 MB/s, respectively. Then C1-C2 and C3-C4 can be
allocated the residual bandwidth still in a coupled way, so that
they both finish at the same time, as shown on the right side of
Fig. 1. (Note that despite some idle bandwidth in L3, allocating
it to C3-C4 does not improve the application performance.) In
this way, max-min fairness is achieved among A, B and C,
with respect to their application-level performance.

B. Flexibility in Path Selection

Given our barrier-aware fair bandwidth allocation, the worst
application performance is determined by the degree of con-
tention at the bottleneck link. Intuitively, if the link load is
well balanced, both the worst application performance and
bandwidth utilization can be optimized. As multiple equal-
cost paths exist in today’s datacenters with multi-rooted tree
topologies [10]–[12], through flexible path selection, we can
balance the link load to achieve the optimum.

A datacenter network with a fat-tree topology [10] is shown
in Fig. 2. For the flow that is sent from server S1 and received
by R1, the selected path shown in the figure can be represented
as FCBDH. If the flow S2-R2 passes along the path GCBEI,
it will share the bottleneck link C-B with the flow S1-R1.
Suppose all the links have capacities of 100 MB/s, and these
flows are identical1. According to our allocation, both of these
flows will send at 50 MB/s. If flow S2-R2 switches its path
to GCAEI, the link load will be balanced, with link C-B no
longer being the bottleneck. In this case, both flows can send
at 100 MB/s, so that the application performance is improved
and bandwidth utilization is increased.
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Fig. 2: An illustration of path selection resulting in different application
performance and bandwidth utilization.

III. BARRIER-AWARE BANDWIDTH ALLOCATION WITH
MAX-MIN FAIRNESS

Before we jointly consider barrier-aware fair bandwidth
allocation and path selection, we first investigate the problem
of bandwidth allocation with application-level fairness, given
the paths taken by all the flows.

A. Problem Formulation

In a private datacenter, the network is shared by K data-
parallel applications with active transfers. Each application
k ∈ K = {1, 2, ...,K} is represented by (Fk, wk), where
Fk = {1, 2, ...nk} denotes the set of its flows whose total
number is nk, and wk represents the weight of the application.
For each flow i ∈ Fk, the amount of data to be sent is dki.

In a datacenter with a typical multi-rooted tree topology,
flow i ∈ Fk can exploit a set of equal-cost paths, denoted
as Pki. In our setting, a flow cannot be split across multiple
paths, to avoid packet reordering. Let the binary variable Ijki
denote whether flow i chooses path j ∈ Pki, i.e.,

Ijki =

{
1, when flow i ∈ Fk chooses path j
0, otherwise.

(1)

Similarly, the binary variable hjlki ∈ {0, 1} denotes whether
link l ∈ L is on path j ∈ Pki.

1This example only highlights our problem from a particular perspective;
a more thorough investigation of the problem is presented in Sec. IV.



Let rki denote the amount of bandwidth allocated to flow i
of application k. The total amount of bandwidth to be allocated
at link l is

∑
k∈K

∑
i∈Fk

∑
j∈Pki rkiI

j
kih

jl
ki, which represents

the sum of the allocated bandwidth over all the flows that pass
through this link. More specifically, the bandwidth allocated
to flow i ∈ Fk is added, if the flow follows path j ∈ Pki,
i.e., Ijki = 1, and link l is on this path, i.e., hjlki = 1. Let Cl
denote the bandwidth capacity of link l, then the link capacity
constraint is represented as:∑

k∈K
∑
i∈Fk

∑
j∈Pki rkiI

j
kih

jl
ki ≤ Cl,∀l ∈ L (2)

For application k, the performance metric αk is defined as:

αk = 1/tk, (3)

where tk represents the transfer time that is determined by
the slowest flow, i.e., tk = mini∈Fk dki/rki, as implied by the
existence of a barrier. Obviously, in order to avoid wasting
bandwidth, all the constituent flows of a transfer should finish
at the same time. Hence, the bandwidth allocated to flows
within an application should be in proportion to the volume
of data to be sent by them, i.e., rki ∝ dki,∀i ∈ Fk. As a
result, tk can be represented as follows:

tk = dki/rki,∀i ∈ Fk (4)

To allocate bandwidth across applications, we first illus-
trate rigorously that performance-centric fairness [7] does
not achieve bandwidth efficiency. Such fairness regulates the
weight proportionality with respect to application perfor-
mance, represented as:

αk ∝ wk,∀k ∈ K, (5)

Substituting Eq. (3) and (4) into Eq. (5) yields:

rki/dki ∝ wk ⇒ rki ∝ wkdki,∀i ∈ Fk, k ∈ K,

This equation has the following equivalent form:

rki = λwkdki,∀i ∈ Fk, k ∈ K, (6)

where λ is referred to as the allocation factor, which is
constrained by link capacities. The problem of bandwidth
allocation with performance-centric fairness can thus be for-
mulated as:

maxλ λ (7)
s.t. Eq. (2), Eq. (6)

which can be equivalently represented as:

maxλ λ

s.t. λ ≤ Cl/(
∑
k∈K

∑
i∈Fk

∑
j∈Pki

wkdkiIjkih
jl
ki),∀l ∈ L

Obviously, the optimal solution can be derived as:

λ∗ = min
l∈L

Cl/(
∑
k∈K

∑
i∈Fk

∑
j∈Pki

wkdkiIjkih
jl
ki) (8)

With λ obtained, the amount of bandwidth to be allocated
to each flow is computed according to Eq. (6). Analyzing this
allocation, we obtain the following proposition:

Proposition 1: Bandwidth allocation with performance-
centric fairness, as described in Problem (7), is not able to
achieve the best utilization of bandwidth.

The basic idea of the proof is to show that there exists
an application k̄, such that for all the links that flows of
k̄ pass through, there is idle bandwidth, which could have
been utilized by application k̄ to improve its performance.
However, since bandwidth allocation across all the applications
is coupled through a common allocation factor λ, according to
Eq. (6), application k̄ is not allowed to utilize more available
bandwidth, and thus efficiency is not achieved.

Next, we study our application-level fairness in bandwidth
allocation, and demonstrate its favorable properties of perfor-
mance maximization and bandwidth efficiency.

To achieve such a fairness, we relax Eq. (6) as rki =
λkwkdki,∀i ∈ Fk, k ∈ K, where λk is referred to as
the allocation factor for application k. We then present the
following definitions as the basis of our problem formulation.

Definition 1: 〈λλλ〉 = (〈λ〉1, 〈λ〉2, ..., 〈λ〉K) denotes a version
of vector λλλ = (λ1, λ2, ..., λK) with its elements sorted in non-
decreasing order. To be more rigorous, 〈λλλ〉 satisfies 〈λ〉1 ≤
〈λ〉2 ≤ ... ≤ 〈λ〉K , where 〈λ〉k = λϕ(k) and ϕ is a permutation
on the set {1, 2, ...,K}.

Definition 2: For two vectors xxx ∈ RK and yyy ∈ RK , if
∃k ∈ {1, 2, ...,K} such that xk > yk and xn = yn,∀n ∈
{1, ..., k − 1}, xxx is lexicographically greater than yyy.

Definition 3: The lexicographical maximization is to max-
imize the non-decreasingly sorted vector 〈λλλ〉, represented as:

lexmaxλλλ〈λλλ〉 ⇒ lexmaxλλλ(〈λ〉1, 〈λ〉2, ..., 〈λ〉K)

We are now ready to formulate the problem of barrier-aware
bandwidth allocation as follows:

lexmaxλλλ (〈λ〉1, 〈λ〉2, ..., 〈λ〉K) (9)
s.t. Eq. (2), Eq. (6)

B. Algorithm Design

Solving the lexicographical maximization in Problem (9) is
equivalent to solving the following problem (associated with
round n) over a decreasing solution space (K(n) and L(n))
by rounds:

maxλ λ(n) (10)

s.t.
∑

k∈K(n)

∑
i∈Fk

∑
j∈Pki

rkiIjkih
jl
ki ≤ Cl(n),∀l ∈ L(n)

rki = λwkdki, ∀i ∈ Fk, k ∈ K(n)

In each round n, we maximize λ(n) across all the applica-
tions in K(n) and allocate bandwidth to the applications that
are bottlenecked at this round. These applications are then
removed from K(n), so that Problem (10) will be solved over
a smaller set of applications in the next round. This procedure
iterates until all the applications have been allocated.

Based on this idea, we present our barrier-aware bandwidth
allocation strategy in Algorithm 1. The input consists of flow
traffic volumes, application weights, flow paths and link ca-
pacities, which can be obtained in practice (to be discussed in



Algorithm 1: Barrier-Aware Bandwidth Allocation.
Input:

Traffic volume dk,i, Application weight wk,
Link capacity Cl, Flow paths Ijk,i, Path-link map hjl

ki,
∀i ∈ Fk, ∀k ∈ K, ∀l ∈ L;

Output:
Bandwidth allocation for all applications: rki;

1: Initialize the set of applications: K = {1, 2, ...,K};
2: Initialize the set of links L and the available bandwidth
cl = Cl, ∀l ∈ L;

3: while K 6= ∅ do
4: al = 0, ∀l ∈ L;
5: for all link l ∈ L do
6: for all application k ∈ K do
7: for all flow i ∈ Fk do
8: if flow i traverses link l: Ijkih

jl
ki == 1 then

9: al = al + wkdk,i;
10: bl = cl/al;
11: λ∗ = minl∈L bl, which is the optimal λ∗ for Problem (10)

across K;
12: Obtain Bottleneck Links l ∈ LB that satisfies: bl = λ∗;
13: Obtain Bottleneck Applications k ∈ KB , containing the flows

that traverse the bottleneck links;
14: for all application k ∈ KB do
15: for all flow i ∈ Fk do
16: Allocate bandwidth as: rki = λ∗wkdki;
17: for all link l ∈ L do
18: if flow i traverses link l: Ijkih

jl
ki == 1 then

19: cl = cl − rki;
20: K = K −KB , L = L − LB ;

the next section). After the initialization of the application set
K, the link set L and the available link bandwidth cl,∀l ∈ L,
we iteratively allocate bandwidth with the following steps (for
round n), until K becomes empty:

1) Solve Problem (10) across applications in K(n) and links
in L(n), and obtain the solution as λ∗(n) = minl∈L(n) bl(n).
(Lines 4 – 11)

2) Obtain the Bottleneck Links (LB(n)) that have the
smallest bl(n), and the Bottleneck Applications (KB(n)) that
have at least a flow passing through a bottleneck link. (Lines
12 – 13)

3) Allocate bandwidth to all the flows of the Bottleneck Ap-
plications (KB(n)): rki = λ∗(n)wkdki, ∀i ∈ Fk, k ∈ KB(n).
(Lines 14 – 19)

4) Update available bandwidth of links in L(n): Cl(n+1) =
Cl(n)−

∑
k∈KB(n)

∑
i∈Fk

∑
j∈Pki rkiI

j
kih

jl
ki. (Lines 14 – 19)

5) Update K and links L by removing applications and links
that are bottlenecked in this round: K(n+1) = K(n)−KB(n),
L(n+ 1) = L(n)− LB(n). (Line 20)

This algorithm has the following favorable properties:
Property 1: The optimum λ∗ obtained at each round is

increasing.
Proof: Let λ∗(n) represent the optimum λ∗ obtained at

the n-th round. Let lβ and lγ denote the bottleneck links at
any two consecutive rounds n and n+ 1, respectively. Let bl
represent the term Cl/(

∑
k∈K

∑
i∈Fk

∑
j∈Pki wkdkiI

j
kih

jl
ki).

As λ∗ is determined by the contention at the bottleneck link
for each round, i.e., λ∗ = minl∈L bl, we have λ∗(n) = blβ (n)

for round n, and λ∗(n+ 1) = blγ (n+ 1) for round n+ 1.
At n-th round, lγ is not yet bottlenecked, so we have

λ∗(n) < blγ (n). Let KB(n) denote the bottleneck appli-
cations that have their flows passing through the bottle-
neck link lβ . For ease of expression, we denote A(n) =∑
k∈KB(n)

∑
i∈Fk

∑
j∈Pki rkiI

j
kih

jlγ
ki , representing the total

demand of all the bottleneck applications at link lγ , and
B(n) =

∑
k∈(K(n)−KB(n))

∑
i∈Fk

∑
j∈Pki rkiI

j
kih

jlγ
ki , repre-

senting the total demand of other applications at lγ . Then
we can represent blγ (n) as Clγ (n)/(A(n) +B(n)), based on
which we have λ∗(n) <

Clγ (n)

A(n)+B(n) and further

λ∗(n) < (Clγ (n)− λ∗(n)A(n))/B(n) (11)

At (n+1)-th round, link lγ is bottlenecked, thus λ∗(n+1) =
blγ (n+ 1) = Clγ (n+ 1)/(A(n+ 1) +B(n+ 1)). Since lγ is
the bottleneck link at this round, all the applications that have
their flows passing through lγ are bottlenecked applications.
Thus we have B(n + 1) = 0. At the end of the previous
round, the bottleneck applications KB(n) have been removed
from K(n), with their flows allocated bandwidth according to
λ∗(n). Therefore, at round n + 1, the bandwidth capacity of
link lγ has been updated as Clγ (n+1) = Clγ (n)−λ∗(n)A(n).
The applications that are not bottlenecked at the previous
round are now bottlenecked, so that A(n + 1) = B(n).
Therefore, from λ∗(n+ 1) =

Clγ (n+1)

A(n+1)+B(n+1) we have

λ∗(n+ 1) = (Clγ (n)− λ∗(n)A(n))/B(n) (12)

With Eq. (11) and (12), it is obvious that λ∗(n) < λ∗(n+ 1)
and we are done with the proof.

Property 2: Barrier-aware bandwidth allocation (Problem
(9)) achieves weighted max-min fairness and Pareto efficiency
with respect to application performance.

Proof: At any round n, flows of bottleneck applica-
tions in KB(n) are allocated bandwidth according to rki =
λ∗(n)wkdki, ∀k ∈ KB(n). For any k1, k2 ∈ KB(n) that
are competing for bandwidth at the bottleneck link, the per-
formance metric of k1 and k2 are calculated as αk = 1/tk1 =
λ∗(n)wk1 and αk2 = 1/tk2 = λ∗(n)wk2 , respectively. Hence,
we have αk1 : αk2 = wk1 : wk2 . This implies that for
any competing applications within a round, their performance
achieved are proportional to their weights.

The algorithm maximizes the minimum weighted perfor-
mance across rounds, and the maximum possible allocation
factor λ∗ increases with rounds, as shown in Property 1.
Across rounds, applications are gradually bottlenecked, allo-
cated with bandwidth and ruled out from the solution space.
When the algorithm terminates, weighted max-min fairness
is achieved among application performance. Also, Pareto
efficiency is achieved, since it is impossible to improve the
performance of any one individual application without making
at least one individual application worse off.

The time complexity of Algorithm 1 is O(LFK2), where
L is the number of network links, F is the maximum number
of constituent flows across all the applications, and K is the
number of applications. With any two sets of input fixed, the



complexity is linearly or at most quadratically increasing with
the other input, which is reasonable for resource allocation in
a private datacenter.

IV. JOINT PATH SELECTION AND BANDWIDTH
ALLOCATION

A. Problem Formulation

In this section, we move a step further to consider path
selection as decisions to be made in our optimization. Specif-
ically, Ijki is considered as a variable with the following
constraint:

Ijki ∈ {0, 1},
∑
j∈Pki I

j
ki = 1, ∀i ∈ Fk, k ∈ K, j ∈ Pki (13)

which indicates that each flow should choose a single path
from its available ones. Hence, the problem of joint barrier-
aware bandwidth allocation and path selection can be formu-
lated as:

lexmaxλλλ 〈λλλ〉 s.t. Eq. (2), Eq. (6), Eq. (13)

With the flexibility afforded by allowing path selection, we
now have a larger solution space than Problem (9), and it is
thus possible to achieve a larger optimum λλλ∗.

Similar to the previous section, we can solve this lexi-
cographical maximization problem by iteratively solving the
following single-objective joint optimization:

maxλ,III λ s.t. Eq. (2), Eq. (6), Eq. (13)

To be particular, in the first round, we can obtain the maximum
λ as 〈λ〉∗1, with the optimal path selection for the problem
above. If such a solution is unique, then the flow paths
are selected accordingly, thus we can allocate bandwidth
iteratively as in Algorithm 1 with the known paths. Otherwise,
we solve this problem in the next round, over a smaller set
of applications, with the flow paths selected according to the
multiple optimal solutions, respectively. The solution that gives
the maximum λ is the optimal path selection for our original
problem (lexicographical maximization). Then, we can obtain
the other 〈λ〉∗i in rounds, during which bandwidth is allocated
to bottlenecked applications, as in Algorithm 1.

However, the aforementioned single-objective joint opti-
mization is NP-hard, as we illustrate next. With λ replaced
by ν = 1/λ, it is transformed as:

minν,III ν (14)

s.t.
∑
k∈K

∑
i∈Fk

∑
j∈Pki

wkdkiIjkih
jl
ki ≤ νCl, Eq. (13)

Among its variables, Ijki is binary while ν is continuous. The
objective function and all the link capacity constraints are
linear. Hence, this problem is a Mixed-Integer Linear Program-
ming (MILP) problem, which is NP-hard [15]. Therefore, we
will design a practical heuristic in the next subsection.

Algorithm 2: Barrier-Aware Strategy (Joint Bandwidth
Allocation and Path Selection)

1: Initialize the total weighted traffic volume on each link:
El = 0, ∀l ∈ L;

2: for all application k ∈ K do
3: for all flow i ∈ Fk do
4: tmp = 10000; s = 0;
5: for all path j ∈ Pki do
6: if max

l,h
jl
ki
6=0

(El + wkdki)/Cl < tmp then
7: tmp = max

l,h
jl
ki
6=0

(El + wkdki)/Cl;
8: s = j;
9: Select path s for flow i ∈ Fk: Iski = 1;

10: Update El for all the links along the selected path s:
El = El + wkdki, ∀l, s.t. hsl

ki 6= 0;
11: Use Algorithm 1 to compute the barrier-aware bandwidth

allocation that achieves max-min fairness.

B. Barrier-Aware Strategy

We first transform Problem (14) to the following form that
is more convenient for us to understand and derive insights:

minIII maxl∈L (
∑
k∈K

∑
i∈Fk

∑
j∈Pki wkdkiI

j
kih

jl
ki)/Cl

s.t. Eq. (13)

The term wkdki represents the weighted traffic volume of
flow i ∈ Fk, and

∑
k∈K

∑
i∈Fk

∑
j∈Pki wkdkiI

j
kih

jl
ki repre-

sents the total weighted traffic volume of all the passing flows
at link l. If flow i ∈ Fk chooses a path j ∈ Pki (i.e.,
Ijki = 1), then for every link l along the path (i.e., l that
satisfies hjlki = 1), the total weighted traffic volume at this link
is increased by the weighted traffic volume of flow i.

Interpreted in this way, the objective of our barrier-aware
strategy is to select paths for all the flows, so that the resulted
maximum value of the total weighted traffic volume at a link
divided by its capacity, among all the links in L, is minimized.

Based on this observation, we propose Algorithm 2 to
jointly allocate bandwidth and choose paths for flows with the
awareness of application barriers. The main idea is to greedily
map each flow i to the path j that can result in a minimum
value of maxl∈L

∑
k∈K

∑
i∈Fk

∑
j∈Pki wkdkiI

j
kih

jl
ki/Cl.

As illustrated in Algorithm 2, we first initialize the total
weighted traffic volume at each link l, represented by El, as
0. When considering a path j for flow i ∈ Fk, we calculate
maxl,hjlki 6=0 (El + wkdki)/Cl, which represents the maximum
value of (El +wkdki)/Cl among all the links l along path j.
For the flow i, the path j ∈ Pki that has the smallest value of
maxl,hjlki 6=0 (El + wkdki)/Cl will be found through Lines 4–8
and selected for flow i by Line 9. Then, the total weighted
traffic volume at each link l along the selected path, denoted
as El, will be updated by adding the weighted traffic volume
of flow i, as shown in Line 10. This process iterates across all
the flows from all the applications.

After all the flows have been mapped to their respective
paths, the worst performance among all the applications is
nearly optimized. With all the variables Ijki becoming known
as input, we can further use Algorithm 1 to achieve weighted



max-min fairness with respect to application performance, and
improve bandwidth utilization.

C. Implementation Aspects

With the increasing popularity of SDN and data intensive
applications, it is increasingly common for a SDN controller
to coordinate network transfers of these applications based
on their demands, which are either conveyed from application
managers [18], [19], or anticipated by the SDN controller [20].

Our idea of incorporating barrier awareness into bandwidth
allocation and path selection is aligned with this line of
research. Each application manager can leverage existing APIs
and messages [19] to interact with the network, by sending
their traffic matrices to the controller, and receiving decisions
from the controller. With a global view of both application
requirements and network states, the SDN controller is able
to make the optimized decision on allocating bandwidth and
selecting paths for all the application flows. The decision of
routing will be enforced by installing rules for corresponding
flows in switches, while the decision of bandwidth allocation
will be conveyed to application managers for enforcement.
Our assumption is that applications report real demands to the
controller, and follow decisions from the controller. This is
reasonable in a private datacenter without malicious competi-
tion among applications.

V. PERFORMANCE EVALUATION

In this section, we evaluate our barrier-aware strategy
(Algorithm 2), henceforth referred to as AppFair, with both
emulations in the Mininet 2.0 testbed [21] and extensive
simulations. We demonstrate whether our strategy achieves
performance max-min fairness among all the applications,
and extensively investigate how the algorithm performs in
maximizing the overall application performance in various
settings. We also evaluate the runtime performance of our
algorithm in different scales with various parameters.

A. Mininet Emulation

Experimental Setup. AppFair involves both path selection
and bandwidth allocation, the enforcement of which requires
routing flows to selected paths, and controlling flow sending
rates, respectively, according to the computed results.

We implement AppFair in the centralized POX controller
for a fat-tree datacenter network emulated in Mininet. Based
on a global view of the network states, AppFair computes
the paths and bandwidth allocated to all the application flows.
Application flows between communicating tasks are emulated
with their rates specified by the results of AppFair. Moreover,
AppFair installs routing rules for these flows in the switches,
according to the computed flow paths. In comparison, Hedera
[14], the state-of-the-art barrier-agnostic strategy for fair band-
width sharing and path selection, only determines flow paths in
the centralized controller, leaving rate allocation decisions to
TCP at the senders. We measure the actual bandwidth achieved
by each flow, with AppFair and Hedera applied respectively,

based on which the performance achieved by each application
can be calculated for comparison.

Performance Comparison. We first evaluate AppFair over
an emulated network with 4-pods fat-tree topology, which is
shared by applications A, B and C. Without the loss of gener-
ality, A has four flows transmitting data of 300, 150, 300, 300
MB, respectively, B has two flows, each sending 300 MB
of data, and C has three flows sized 300, 300 and 100
MB, respectively. Fig. 3 presents the transfer times (each
averaged over 15 times) achieved by the three applications,
with AppFair and Hedera applied, respectively. Compared
with Hedera, all the applications complete their transfers faster
with AppFair, which demonstrates the effectiveness of AppFair
in improving the overall application performance.

To clearly illustrate the reason for such performance im-
provements, we compare the bandwidth achieved by each
individual flow in Fig. 4. With AppFair, all the flows of A
finish at the same time, as the bandwidth allocated to each
individual flow has the same proportionality (2 : 1 : 2 : 2)
with that of their traffic volumes. In contrast, when Hedera is
applied, flow A-2 transfers 150 MB data at the rate of about
0.95 MB/s, while A-1, with a larger size of 300 MB, obtains a
smaller amount of bandwidth (0.68 MB/s), which becomes the
slowest to complete, determining the application performance.
In this sense, A-2, A-3 and A-4 only require 0.34, 0.68 and
0.68 MB/s, respectively, to finish at the same time with A-
1 and keep the same application performance. Therefore, the
excessive bandwidth beyond these amounts obtained by them
is wasted. The same analysis applies to applications B and C,
which demonstrates that with barrier awareness, AppFair can
efficiently utilize bandwidth to maximize application perfor-
mance, outperforming Hedera significantly.

B. Large-Scale Simulations

1) Tuning Parameters: Having conducted verification and
insightful analysis in the Mininet testbed, we further evaluate
AppFair by extensive simulations with various settings.

The Number of Applications. We conduct three groups
of simulations in a 16-pods network, with the number of
applications set as 15, 100 and 300, respectively, while the
total number of flows is 1500. We randomly set the size of
each individual flow in the range of 200 MB to 400 MB.
In each group, AppFair, Hedera and BwAlloc are applied,
respectively, where BwAlloc represents Algorithm 1 that only
allocates bandwidth according to the application-level fairness,
with flows following the same paths with those in Hedera. The
final application performance achieved by these algorithms
for each test group is plotted as the empirical CDF shown
in Fig. 6.

For each group, AppFair achieves the best application
performance, corresponding to the leftmost curve in the CDF,
while Hedera performs the worst. BwAlloc outperforms Hed-
era, since it has the same path selection, yet a barrier-aware
bandwidth allocation to achieve better efficiency. However, it
performs worse than AppFair, since its path selection is not
jointly optimized with barrier-aware bandwidth allocation.
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Fig. 3: Comparison between the performance
(transfer times) achieved by Hedera and App-
Fair, for applications A, B and C.
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Fig. 4: Comparison between the flow bandwidth allo-
cated by Hedera and AppFair, for 9 flows that belong
to applications A, B and C.

d: 
(10-50)

d: 
(20-40)

d: 
(25-35) d: 30

5 * 300 1.370 1.348 1.366 1.298
15 * 100 1.449 1.473 1.469 1.306

30 * 50 1.649 1.638 1.632 1.323

50 * 30 1.786 1.817 1.800 1.351

150 * 10 2.260 2.331 2.362 1.336

Fig. 5: Running time (seconds) of AppFair
with different settings of traffic volumes
and application numbers. 5 × 300 repre-
sents 5 applications, each with 300 flows.
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(a) 15 applications, each with 100 flows.
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(b) 100 applications, each with 15 flows.
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(c) 300 applications, each with 5 flows.

Fig. 6: Empirical CDFs for application performance achieved by AppFair, BwAlloc and Hedera. Traffic volume d is randomly selected from 200 to
400.
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(a) d = 300
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(b) d is randomly selected from 200 to 400.
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(c) d is randomly selected from 100 to 500.

Fig. 7: Empirical CDFs for application performance achieved by AppFair and Hedera. 30 applications are considered, each with 50 flows.

Comparing the three CDFs, we observe that the difference
among the algorithms is decreasing, with an increasing number
of applications. The reason is that, with more applications,
the number of flows within each application becomes fewer
(since the total number of flows is the same), which indi-
cates weaker coupling among application flows. As a result,
there is less bandwidth wastage, thus the benefit of barrier-
awareness becomes limited. Intuitively, if the number of flows
of each application decreases to 1, application-level fairness in
AppFair and BwAlloc becomes identical to flow-level fairness
in Hedera. This analysis implies that AppFair has more
advantage in the case where each application has more flows.

Traffic Volume. Now we tune the amount of traffic to be

sent by each flow, with the number of applications set as
30, each has 50 flows. As illustrated in Fig. 7(a), when we
increase the range of traffic volumes (d), AppFair exhibits an
increasing extent of performance improvement over Hedera.
This observation can be briefly explained as follows: a larger
variance of d may result in a larger amount of bandwidth
wasted with flow-level allocation in Hedera, thus the perfor-
mance improvement of AppFair with barrier awareness would
be more significant.

Network Size. We further compare AppFair to Hedera
with an increasing problem scale. In particular, the size of
network is increased from 16 pods to 32 pods, and the total
number of application flows is gradually increased from 1500
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(a) 16 pods, 1024 hosts, 1500 flows.
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(b) 32 pods, 8192 hosts, 8192 flows.
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(c) 32 pods, 8192 hosts, 15000 flows.

Fig. 8: Empirical CDFs for application performance achieved by AppFair and Hedera, with different network scales.

to 15000. Without loss of generality, d is randomly selected
from [200, 400]. The performance comparison of AppFair
and Hedera is shown in Fig. 8, which demonstrates that
AppFair scales well, and always performs better than Hedera
in maximizing the overall application performance.

2) Running Time: Finally, we evaluate the running time
of AppFair on a 1.86 GHz dual-core Intel Core 2 server,
with different settings of the simulated datacenter network.
Fig. 5 presents the running time achieved in a 16-pods fat-
tree network, with the range of the traffic volume d shrinking
from [10, 50] to 30 horizontally, and the number of applications
increasing from 5 to 150 vertically. Each time shown in the
table is averaged over 15 runs. The running time is observed
to increase with an increasing number of applications, because
with more applications, Algorithm 1 as a component of
AppFair would require more iterations to complete. In each
row, the running time for d = 30 is much smaller than the
other three, simply because bandwidth computation would
be much easier and allocation would be finished with fewer
iterations if all the flows have the same traffic volume.

16 pods, 1500 flows 32 pods, 8192 flows 32 pods, 15000 flows

BwAlloc 0.463 10.476 16.709

AppFair 1.638 35.050 67.766

Hedera 3.625 46.975 91.335

Fig. 9: Running time comparison with different problem scales. 1500
flows belong to 30 applications, each with 50 flows, i.e., 30∗50. Similarly,
8192 flows: 128 ∗ 64, 15000 flows: 300 ∗ 50.

Further, we compare the running times of BwAlloc, AppFair
and Hedera with an increasing problem scale. Note that the
difference between the running time of AppFair and BwAlloc
is the time for computing flow paths, which increases with the
size of the network and the total number of flows. As shown in
Fig. 9, the running time of BwAlloc is much smaller than that
of AppFair, which implies that path selection is more time
consuming. Compared with Hedera, AppFair has a shorter
running time2 than Hedera, regardless of the problem scale.

2The running times are tens of seconds in our simulations, but in a standard
datacenter server, the running times would be significantly decreased.

VI. RELATED WORK

Fair Bandwidth Allocation. Bandwidth allocation among
multiple tenants in public cloud datacenters has received a
substantial amount of recent research attention [22]–[27], with
the focus on ensuring fair allocation among competing tenant
virtual machines (VMs) [23] or VM-pairs [24] according to
their payments. However, in a private datacenter shared by
data paralllel applications with barriers, bandwidth allocation
with such kind of fairness does not ensure a fair share of
the application performance. Agnostic of application barriers,
it also fails to achieve optimal application performance and
bandwidth efficiency.

In the context of a private datacenter, Kumar et al. proposed
that bandwidth should be allocated with the awareness of
communication patterns in data parallel applications [28], but
they did not give a clear definition of fairness with respect
to application performance in a sharing environment. Our
previous work [7] proposed performance-centric fairness to
offer a definitive guide to the problem of bandwidth allo-
cation among multiple data parallel applications in a private
datacenter. Yet, there is a tradeoff between such fairness and
bandwidth efficiency.

Application Awareness. Orchestra [29] is the first work that
considers the important characteristic of barriers in optimizing
the data transfers within data parallel applications. It allocated
bandwidth to each flow in a shuffle using weighted fair
sharing, where the flow weight is proportional to the volume
of data to be sent by this flow. Chowdhury et al. [4] proposed
the concept of a coflow as a collection of flows between
successive computation stages, which accounted for the ap-
plication semantics. It was pointed out that a coflow, rather
than an individual flow, should be the basic unit for network
optimization. With such application awareness, existing works
[13], [30]–[32] have adopted the concept of coflow in their
scheduling and routing strategies. However, all these works are
based on flow ordering, which are orthogonal to fair sharing
considered in our work.

Multi-Path Routing. In today’s datacenter networks with
multi-rooted tree topologies, such as fat-tree topologies, mul-
tiple equal-cost paths exist between each pair of cross-rack



hosts. ECMP [33] exploited such path diversity by hashing.
Without a global view of link states and flow statistics, ECMP
may result in network congestion if two large flows are hashed
to the same path. Hedera [14] and microTE [34] tried to
overcome this limitation by taking advantage of a global view
to dynamically make flow path decisions for load balancing.
However, they both made flow-level optimization without
accounting for application barriers, and as such failed to
achieve application-level optimality with respect to application
performance and bandwidth efficiency. RAPIER [13] and App-
Sch [32] proposed coflow-aware path selection that considered
application barriers, but their bandwidth allocation failed to
achieve application-level fairness among sharing coflows.

VII. CONCLUDING REMARKS

In this paper, we focus on incorporating application-level
characteristics when making bandwidth allocation and routing
decisions in datacenter networks, so that fairness can be
achieved among sharing applications, and application perfor-
mance as well as bandwidth efficiency can be optimized. As
the first step, we theoretically study the problem of barrier-
aware bandwidth allocation, with flow paths considered as the
known input, and propose an algorithm to achieve weighted
max-min fairness across application performance, as well as
Pareto efficiency. Then, with the flexibility of path selection,
we investigate the joint optimization problem, and design an
barrier-aware strategy to improve application performance and
bandwidth utilization. Using Mininet emulation and extensive
simulations, we compare our barrier-aware fair bandwidth
allocation and path selection algorithm with barrier-agnostic
strategy, which demonstrates the effectiveness of our algorithm
in improving application performance and bandwidth utiliza-
tion. We also evaluate our algorithm with various settings of
parameters.
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